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Abstract 

Background  Ineffective drug treatment is a major problem for many patients with immune-mediated inflammatory 
diseases (IMIDs). Important reasons are the lack of systematic solutions for drug prioritisation and repurposing based 
on characterisation of the complex and heterogeneous cellular and molecular changes in IMIDs.

Methods  Here, we propose a computational framework, scDrugPrio, which constructs network models of inflamma-
tory disease based on single-cell RNA sequencing (scRNA-seq) data. scDrugPrio constructs detailed network models 
of inflammatory diseases that integrate information on cell type-specific expression changes, altered cellular crosstalk 
and pharmacological properties for the selection and ranking of thousands of drugs.

Results  scDrugPrio was developed using a mouse model of antigen-induced arthritis and validated by improved 
precision/recall for approved drugs, as well as extensive in vitro, in vivo, and in silico studies of drugs that were pre-
dicted, but not approved, for the studied diseases. Next, scDrugPrio was applied to multiple sclerosis, Crohn’s disease, 
and psoriatic arthritis, further supporting scDrugPrio through prioritisation of relevant and approved drugs. How-
ever, in contrast to the mouse model of arthritis, great interindividual cellular and gene expression differences were 
found in patients with the same diagnosis. Such differences could explain why some patients did or did not respond 
to treatment. This explanation was supported by the application of scDrugPrio to scRNA-seq data from eleven indi-
vidual Crohn’s disease patients. The analysis showed great variations in drug predictions between patients, for exam-
ple, assigning a high rank to anti-TNF treatment in a responder and a low rank in a nonresponder to that treatment.

Conclusions  We propose a computational framework, scDrugPrio, for drug prioritisation based on scRNA-seq of IMID 
disease. Application to individual patients indicates scDrugPrio’s potential for personalised network-based drug 
screening on cellulome-, genome-, and drugome-wide scales. For this purpose, we made scDrugPrio into an easy-to-
use R package (https://​github.​com/​SDTC-​CPMed/​scDru​gPrio).

†Danuta Gawel, Hui Wang and Mikael Benson are joint last authors.

*Correspondence:
Mikael Benson
mikael.benson@ki.se
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-024-01314-7&domain=pdf
http://orcid.org/0000-0002-7753-9181
https://github.com/SDTC-CPMed/scDrugPrio


Page 2 of 24Schäfer et al. Genome Medicine           (2024) 16:42 

Keywords  Single-cell RNA sequencing, scRNA-seq, Immune-mediated inflammatory disease, Drug prioritisation, 
Drug repurposing, Drug prediction

Background
Immune-mediated inflammatory diseases (IMIDs), such 
as rheumatoid arthritis, Crohn’s disease, and psoriatic 
arthritis, affect millions of people worldwide and can cause 
chronic pain, disability, and reduced quality of life [1]. 
While new classes of therapies are transforming the man-
agement of IMIDs, it is still a general problem that many 
patients do not achieve remission with mono- [2, 3] or 
combinatorial therapy [3]. This may be due to drug devel-
opment involving testing drugs on large groups of patients, 
with the assumption that the drug will work similarly on 
all patients. Such an approach does not take into account 
the fact that each individual’s genetic makeup and environ-
ment are unique, leading to significant variations in drug 
efficacy and side effects.

Given that IMIDs are known to involve thousands of 
genes that are variably expressed in different cell types and 
show temporal and interindividual differences [4, 5], single-
cell RNA sequencing (scRNA-seq) provides a promising 
foundation for the identification of suitable drug treatments 
[6]. Indeed, one pioneering case report described scRNA-
guided therapy of one patient with an inflammatory dis-
ease [7]. The case report described successful outcomes 
in a patient who did not respond to standard treatment. 
A limitation was that drug selection was empirical rather 
than based on systems-level understanding of the relative 
importance of disease-associated cell types, pathways, and 
genes.

Several systematic prediction models for drug selec-
tion in cancer exist, in which omics data are leveraged 
to determine the chemotherapies’ “killing potential” 
of tumour cells [8–11]. However, these models are not 
immediately translatable to IMIDs as they are (1) trained 
on large public drug-response data (e.g. GDSC database 
[12] and PRISM [13]), which are thus far unavailable for 
IMIDs, and (2) pursuing the eradication of disease-asso-
ciated cell types. Rather few methodologies are applica-
ble to IMIDs, including (1) identification of all druggable 
targets [14, 15], (2) targeting enriched pathways [7, 15], 
(3) network-based proximity calculations [6, 16] or (4) 
matching of transcriptomic signatures as by Connectiv-
ity Map (CMap) [17]. A limitation of these approaches 
is that they are developed using bulk transcriptomics or 
genetic variants and hence do not possess inherent solu-
tions for rank aggregation for parallel analyses of several 
cell types, which limits their applicability to scRNA-seq.

Aiming to create a systematic framework for scRNA-
seq-based drug prioritisation and repositioning in 

inflammatory diseases, we hypothesised that the limi-
tations of previous methodologies could be overcome 
by transposing network-based approaches [6, 16] to 
a systematic and scalable strategy for network-based 
virtual drug screening of multicellular disease models 
(MCDMs). Therefore, we composed a computational 
framework henceforth referred to as scDrugPrio (Fig. 1). 
Using scRNA-seq-derived differentially expressed genes 
(DEGs) of either (1) one individual or (2) a group com-
parison between patients and controls, scDrugPrio starts 
by identifying cell type-specific drug candidates by con-
sidering both proximity in a protein‒protein interaction 
network and biopharmacological criteria. To rank drug 
candidates, scDrugPrio calculates two measures, intra-
cellular and extracellular centrality. We used these two 
measures to capture two important drug properties, 
namely, (1) proficiency in targeting key disease-associ-
ated expression changes in a cell type and (2) the relative 
importance of the targeted cell type. These measures are 
then aggregated over all cell types to provide a final drug 
ranking.

Because of the complexity and heterogeneity of IMIDs, 
we started by developing scDrugPrio using scRNA-seq 
data from a mouse model of antigen-induced arthritis. 
This reduced heterogeneity since the mice are inbred and 
the disease induced in a standardised way. Moreover, the 
mouse model allowed extensive in vitro and in vivo vali-
dation studies. To illustrate some potential case-of-use 
scenarios, we next applied scDrugPrio to cerebrospinal 
fluid from multiple sclerosis patients and intestinal biop-
sies from Crohn’s disease (CD) patients. Our analyses 
demonstrated drug selection and ranking capabilities 
through (1) the prioritisation of known drugs. For anti-
gen-induced arthritis, drug selection was also supported 
by (2) experimental validation of repurposed drugs and 
(3) favourable comparison with previous methods. Next, 
we applied scDrugPrio to paired biopsies from indi-
vidual CD patients, revealing its ability to capture the 
significant heterogeneity in individualised therapeutic 
prioritisations.

Methods
scDrugPrio’s computational framework
As indicated in Additional file  1: Fig. S1, scDrugPrio 
requires (1) an adjusted scRNA-seq matrix, (2) disease-
associated differentially expressed genes (DEGs) for each 
cell type from either group-based comparison of healthy 
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Fig. 1  Overview of the scDrugPrio workflow. Samples were derived from inflamed tissue in patients (red) and healthy tissues in controls (blue) or, 
for individual predictions, sampling included inflamed and uninflamed tissue taken from the same patient. Single-cell RNA-sequencing (scRNA-seq) 
data were preprocessed by undergoing quality control, denoising, clustering, cell typing and differentially expressed gene (DEG) calculation. 
DEGs for each cell type were calculated between healthy and sick samples. Using DEGs alongside information on drugs, scDrugPrio selects drug 
candidates (for each cell type; CT) whose gene targets are (1) in network proximity to DEGs (network proximity based selection) and (2) who 
counteract disease-associated expression changes (pharmacological action filtering). These cell type-specific drug candidates are next ranked 
using intracellular and intercellular centrality. (3) Intracellular centrality is computed based on the centrality of drug targets in the largest 
connected component (LCC) formed by DEGs and functions as a proxy for drug target importance. (4) Intercellular centrality measures centrality 
in disease-associated cellular crosstalk networks called multicellular disease models (MCDMs). (5) To derive a final ranking that aggregated cell 
type-specific drug selection and ranking into one list, drug candidates were ranked using a composite score of intra- and intercellular centralities 
(Additional file 1: Fig. S1). Drugs with identical targets and mechanism of action were given identical rankings
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and sick samples or from inflamed and noninflamed sam-
ples of one individual, (3) a protein‒protein interaction 
network (PPIN) and (4) drug-target information. scDrug-
Prio then utilises this information for cell type-specific 
drug selection, calculation of drug ranking measures and 
finally rank aggregation. Unless otherwise stated, analysis 
was performed in R 3.6.3.

For drug selection, scDrugPrio first computes the mean 
closest network distance (dc) between cell type-specific 
DEGs and drug targets in the PPIN for each cell type-
drug combination [16]. To calculate z-scores (zc) for net-
work distance, permutation tests (1000 iterations) were 
performed in which both cell type-specific DEGs and 
drug targets were randomised in a bin-adjusted man-
ner [16] before the mean closest distance was calcu-
lated. The minimal bin size for randomisation was set 
at 100 genes. Drugs that did not have any target in the 
interactome were removed from the analysis (n = 4 for 
literature-curated PPIN). Based on network distance, we 
selected only drugs that targets were significantly close 
(zc <  − 1.64 corresponding to one-sided P < 0.05) to DEGs 
and that frequently targeted DEGs directly (dc < 1). These 
cut-offs were chosen based on our empirical observa-
tions (e.g. Additional file 1: Fig. S2h, j; Additional file 2) 
and previous knowledge [18]. As the significance of 
network proximity can depend on the number of DEGs 
relative to the size of the network, cut-offs allowing only 
the top significant DEGs to enter analysis were imple-
mented when needed. Cell type-specific drug candidates 
were selected further by requiring drugs to counteract 
the fold change of at least one targeted DEG. This crite-
rion intuitively removes drugs that likely will not help to 
restore transcriptomic homeostasis. For this purpose, the 
pharmacological action of the drugs on their targets was 
determined. Binary drug action (activating/enhancing or 
inhibiting) on the drug target was recorded for each drug 
(Additional files 3, 4, 5, 6 and 7). If the pharmacologi-
cal effect of the drug on the target had not been speci-
fied explicitly in DrugBank [19], a literature search was 
performed using the drug name and gene symbol of the 
targeted DEG as search terms in PubMed and Google 
Scholar. Additional information gathered from the lit-
erature can be found in Additional files 3, 4, 5, 6 and 7. 
In case the pharmacological effect of the drug on a tar-
get, despite a literature search, could not be classified as 
enhancing/activating or inhibiting, the drug target was 
assumed to not counteract fold-change.

Drug ranking by intra- and intercellular centralities was 
motivated by empirical observations (Fig. 3e; Additional 
file 1: Fig. S3) in our study as well as previous indications 
of the biological importance of disease modules [6, 20] 
and central cell types in MCDMs [6]. For calculation of 
intracellular centrality, disease modules for each cell type 

were defined as the largest connected component (LCC) 
formed by a cell type’s DEGs in the PPIN. For LCC iden-
tification, the igraph R package [21] was utilised. To avoid 
overparameterisation, the eigenvector centrality [22] 
of DEGs in the LCC was calculated using the CINNA R 
package [23]. For each drug, the intracellular centrality 
was calculated as the geometric mean of its differentially 
expressed target centrality scores in the cell type-specific 
LCCs. If a drug did not target any DEG included in the 
LCC, intracellular centrality was set to zero.

Intercellular centrality was calculated using MCDMs 
that modelled disease-associated cellular crosstalk. For 
the creation of MCDMs, first, cell type interactions were 
predicted using NicheNet [24]. Briefly, NicheNet pre-
dicts and ranks ligand–target links between interact-
ing cells by combining their expression data with prior 
knowledge on signalling and gene regulatory networks. 
As suggested by Browaeys et  al. [24], Pearson correla-
tion was used to measure each ligand’s ability to predict 
the gene expression of genes in the gene set of interest 
compared to background genes in the receiving cell type. 
This means that a ligand has a strong positive correlation 
coefficient if its cognate receptor and the downstream 
genes of that receptor are all differentially expressed in 
the downstream cell type. We downloaded the human 
ligand-target model as well as the human ligand‒receptor 
network (downloaded from https://​zenodo.​org/​record/​
32607​58 April 2020). Cell type-specific DEGs constituted 
the gene set of interest. A set of potentially active ligands 
was defined as the intersection of ligands included in 
the downloaded human ligand-target model and ligands 
among respective cell type DEGs. Background genes for 
each cell type were defined as genes (i) in the denoised 
single-cell expression matrix D of k cell type-associated 
cells that showed a mean aggregate expression, Ea(i), 
over Ea(i) ≥ 0.2. This definition of background genes was 
similar to definitions by Browaeys et al. [24] and Puram 
et al. [25]. At the chosen cut-off, we identified ca. 10,000 
background genes that corresponded to the recom-
mended amount for NicheNet calculations [24].

All genes were translated to human Entrez gene sym-
bols using human-mouse orthologues downloaded from 
NCBI (August 2019). Ligand activity analysis in NicheNet 
was performed for all possible cell type pairs, including 
self-interactions, excluding cell types that did not express 
DEGs. In the next step of MCDM construction, directed 
cell type interactions were derived from ligand activity 
results and weighted by NicheNet-derived Pearson coef-
ficients. Only ligand interactions with a positive Pearson 
correlation coefficient were considered negative Pearson 

Ea(i) = log2
k

j=1
10Dij/k

https://zenodo.org/record/3260758
https://zenodo.org/record/3260758
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coefficients that reflected the association of a ligand 
with background genes and therefore were not biologi-
cally relevant. The resulting MCDM was visualised using 
Cytoscape 3.6.1 [26], and for visualisation purposes, the 
sum of Pearson coefficients that described the directed 
interaction between two cell types was used. Supplemen-
tal analysis supported the relevance of identified ligand 
interactions (Additional file  2). Eigenvector centrality 
was calculated for each cell type based on the weighted, 
directed interactions in the MCDM using the igraph and 
CINNA R package [21, 23]. The intercellular centrality 
of each drug was computed as the sum of MCDM cen-
tralities of the cell types that had selected the drug as a 
candidate. While eigenvector centrality is well tailored 
to capture central disease-associated cell types in the 
MCDM, considering both direct and indirect node con-
nections [22], multiple centrality measures are available. 
We evaluated several of them, finding them to yield simi-
lar results to eigenvector centrality (as described in Addi-
tional file 2 and listed in Additional files 3, 4, 5, 6 and 7).

Final rank aggregation involved the calculation of a 
drug’s compounded intra- and intercellular centrality. For 
this, we calculated combined intracellular centrality for 
each drug as the sum of drug-specific intracellular cen-
tralities in all cell types. The centrality compound score 
consisted of a drug intercellular centrality + 0.1 × com-
bined intracellular centrality and thereby emphasised the 
importance of intercellular centrality over intracellular 
centrality. Intracellular centrality effectively worked as a 
tiebreaker. Drugs were ranked based on centrality com-
pound scores, using the average position for ties.

Drug data
We retrieved data on 13,339 drugs from DrugBank [19] 
(downloaded July 2019) and selected only drugs that 
had been or currently FDA approved (n = 4021) were 
indicated for use in humans (n = 1964) and had at least 
one human protein target (n = 1864). Of those, drug tar-
gets could be translated to human Entrez IDs for 1844 
drugs. The drug-target interactions used are provided 
in Additional file  3. Sets of drugs that are approved for 
each disease were identified according to DrugBank’s [19] 
“Indication” category (as described in Additional file  2 
and listed in Additional files 3, 4, 5 & 7). Unless other-
wise specified, precision is calculated using these disease-
specific sets of FDA-approved drugs as relevant drugs or 
true positives.

For validation of ranked drug candidates, we also 
downloaded data from www.​clini​caltr​ials.​gov (Septem-
ber 2023). Data included information on 465,269 clinical 
trials registered from September 17th, 1999, to Septem-
ber 7th, 2023. Clinical trials (n = 70,396) for 1085 of the 
included 1844 drugs were found. To derive information 

on the disease relevance of drug candidates, we filtered 
clinical trials further by MESH terms, resulting in sets 
of 724, 494, 532, and 140 drugs that had been tried for 
rheumatoid arthritis, multiple sclerosis, Crohn’s disease 
and psoriatic arthritis, respectively (Additional files 3, 
4, 5, 6 and 7). Even though the outcome of such trials is 
largely unknown, using drugs registered for clinical tri-
als alongside approved drugs for calculation of precision 
tests scDrugPrio’s ability to capture the pharmacological 
consensus of the medical community on drugs with an 
expected effect.

For further validation of drug ranking, we also per-
formed a literature search for the top 100 ranked drug 
candidates of each data set. We systematically searched 
PubMed and Google Scholar between June 2020 and 
December 2022 using the specific disease denotation and 
the drug name as search terms. No restrictions or filters 
were applied. The relevance of the identified articles was 
screened by title and abstract. When no relevant articles 
were identified, the drug name was replaced by the sub-
stance name, and another search was conducted. To be 
eligible, studies had to (1) include a control group, (2) be 
a human clinical study or rodent experiment, (3) meas-
ure inflammatory activity and (4) be accessible. When 
several studies were identified that reported contradic-
tory results, the drug was labelled as having a previously 
reported effect, reasoning that it would be impossible to 
determine the evidence and accuracy level in every such 
instance. In Additional files 3, 4, 5 and 6, a summary on 
the nature of the identified article and a full reference is 
provided, listed by drug.

Precision and recall

When referring to precision among the top 100 candi-
dates, we refer to all candidates with rank ≤ 100.

Protein‒protein interaction network
The human interactome was derived from do Valle et al. 
[27]. The literature-curated interactome included 351,444 
protein‒protein interactions (PPIs) connecting 17,706 
unique proteins and was annotated using Entrez Gene 
IDs. The largest connected component included 351,393 

precision =
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http://www.clinicaltrials.gov


Page 6 of 24Schäfer et al. Genome Medicine           (2024) 16:42 

PPIs and 17,651 proteins. Only the largest connected 
component was used for further analysis.

Antigen‑induced arthritis mouse model
Antigen-induced arthritis (AIA) was triggered in six 
8-week-old, anaesthetised female 129/Sve mice by intra-
articular injection of methylated bovine serum (mBSA) 
in the left knee joint after having presensitised mice 
to mBSA. The left knee joints of four naïve mice were 
injected with phosphate-buffered saline (PBS, 20 μL) and 
used as a negative control. One week after intra-articu-
lar triggering of AIA, mice were euthanized with carbon 
dioxide, and joints were either used for immunohisto-
chemistry or scRNA-seq. Histochemical preparation 
was performed as previously described [6], and speci-
mens were examined in a blinded manner for pannus 
formation, cartilage and subchondral bone destruction, 
and synovial hypertrophy on an arbitrary scale, 0–3, as 
described by Magnusson et  al. [28]. For the scRNA-seq 
experiment, joint tissue was minced to ~ 1-mm3 pieces, 
which were digested by collagenase IV (1.5 mg/mL) and 
DNase I (100 µg/mL) at 37  °C. Dissociated cells were 
passed through a 70-µm cell strainer. Single-cell sus-
pensions were resuspended in RPMI-1640 at a density 
of 1 × 105 cells/mL for cell loading. One mouse in which 
AIA had been triggered developed only mild arthritis 
(arthritis score 0.5) and was therefore excluded from fur-
ther analysis. All mice were housed with a 12-h light/dark 
cycle and fed standard chow diets in a specific pathogen-
free animal facility at Linköping University.

scRNA sequencing was performed using the Seq-
Well technique [29] following a described protocol [6]. 
Briefly, prepared single-cell suspensions were counted 
and coloaded with barcoded and functionalised oligo-
dT beads (Chemgenes, Wilmington, MA, USA, cat. No. 
MACOSKO-2011–10) on microwell arrays synthesised 
as described by Gierahn et  al. [29]. For each sample, 
20,000 live cells were loaded per array to bind with oligo-
dT beads. Beads were collected for capturing mRNA 
and preparing the library following cell lysis, hybridisa-
tion, reverse transcription and transcriptome amplifica-
tion. Except for one library, which was sequenced alone, 
libraries from three samples were pooled for sequencing 
(Additional file  2: Table  S1), resulting in a coverage of 
6.6 reads per base. Four libraries were prepared for each 
sample using the Nextera XT DNA Library Preparation 
Kit (Illumina, San Diego, CA, USA; cat. No. FC-131–
1096) according to the manufacturer’s instructions. Each 
library was sequenced once, except for one library, which 
was sequenced twice using the NextSeq 500/550 system.

The single-cell data were processed into digital gene 
expression matrices following James Nemesh, McCarrol’s 
lab Drop-seq Core Computational Protocol (version 

1.0.1, http://​mccar​rolll​ab.​com) using bcl2fastq Conver-
sion [30] and Picard software [31]. To increase the read 
depth for the cells, each sample was sequenced multiple 
times (Additional file 2: Table S1), and the fastq files for 
each sample were merged before further alignment steps. 
The indexed reference for alignment of reads was gener-
ated from GRCm38 (June 2017, Ensembl) using STAR 
software (2.5.3) [32]. Only primary alignments towards 
the reference genome were considered during down-
stream analyses, according to the mapping quality using 
STAR software.

Sampling and sequencing of psoriatic arthritis patients
Sampling
Psoriatic arthritis (PsA) patients and controls were 
recruited by the Immune-Mediated Inflammatory Dis-
eases Consortium (IMIDC) [33]. PsA patients were 
recruited from different rheumatology departments 
from university hospitals belonging to the IMIDC. All 
PsA patients were diagnosed according to the CASPAR 
diagnostic criteria for PsA [34] with > 1 year of disease 
evolution and > 18 years old at the time of recruitment. 
Exclusion criteria for PsA included the presence of any 
other form of inflammatory arthritis, rheumatoid fac-
tor levels greater than twice the normality threshold or 
confirmed presence of an inflammatory bowel disease. 
PBMCs were sampled prior to treatment with anti-TNF 
or anti-IL17 and cryopreserved. Treatment response was 
classified at week 12 according to the EULAR response 
[35] (Additional file 7). For the anti-TNF study, 6 males 
and 10 females were included. The corresponding figures 
for anti-IL-17 treatment were 3 males (2 responders) and 
13 females (6 responders). Simultaneously, healthy age- 
and sex-matched control subjects (Additional file 7) were 
recruited from healthy volunteers recruited through the 
Vall d’Hebron University Hospital in Barcelona (Spain). 
All the controls were screened for the presence of any 
autoimmune disorder, as well as for first-degree family 
occurrence of autoimmune diseases. None were found to 
be positive. Four males and four females were included.

Cell thawing
PBMCs cryopreserved at − 80 °C were thawed in a 37 °C 
water bath and transferred with a bored tip to a 15-ml 
Falcon tube containing 14 ml of 37 °C prewarmed RPMI 
medium supplemented with 10% FBS (Thermo Fisher 
Scientific). Samples were centrifuged at 300 × g for 10 
min at (room temperature) RT, the supernatant was 
removed, and pellets were resuspended in 1 ml of 1 × PBS 
(Thermo Fisher Scientific) supplemented with 1% BSA 
(PN 130–091-376, Miltenyi Biotec) and 10 µL of DNase 
I (PN LS002007, Worthington-Biochem). After incu-
bation at RT for 10 min with periodic shaking, the cells 

http://mccarrolllab.com
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were filtered with a 20-µm strainer (PN 43–10,020-70, 
Cell Strainer) into a new 15-ml falcon on ice, and the 
filter was washed by adding 9 mL of cold 1 × PBS. Sam-
ples were concentrated afterwards by centrifugation at 
300 × g for 10 min at 4°C and resuspended in 1 × PBS with 
0.05% BSA for further assessment of cell numbers and 
viability with the TC20™ Automated Cell Counter (Bio-
Rad). Samples balanced by responders and nonrespond-
ers for each treatment were mixed in pools of 8 patients 
at a 50:50 ratio and concentrated by centrifugation in 
an appropriate volume of 1 × PBS-0.05% BSA to obtain 
a final cell concentration > 4000 cells/µL, suitable for 
10 × Genomics scRNA-sequencing. The suspension was 
filtered again with a 20-µm strainer, and the cell concen-
tration was verified by counting with the TC20™ Auto-
mated Cell Counter.

Cell encapsulation and library preparation
Cells were partitioned into Gel BeadInEmulsions (GEMs) 
by using the Chromium Controller system (10 × Genom-
ics). Each pooled sample was loaded into two channels 
with a target recovery of 35,000 cells per channel to 
ensure a minimum final recovery of 2000 cells per sam-
ple condition. After GEM-RT incubation, the resulting 
cDNAs were purified with SPRI beads. To ensure maxi-
mal cDNA recovery, a second Sylane bead purification 
was performed on the supernatant from the first puri-
fication, and both products were eluted together and 
preamplified for 13 cycles, following the 10 × Genomics 
protocol. cDNA was quantified on an Agilent Bioana-
lyzer High Sensitivity chip (Agilent Technologies), and 
100 ng was used for library preparation. Gene Expression 
(GEX) libraries were indexed with 13 cycles of amplifica-
tion using the Dual Index Plate TT Set A (10 × Genomics; 
PN-3000431). The size distribution and concentration 
of full-length GEX libraries were verified on an Agi-
lent Bioanalyzer High Sensitivity chip. Finally, sequenc-
ing of GEX libraries was carried out on a NovaSeq 6000 
sequencer (Illumina) using the following sequencing 
conditions: 28 bp (Read 1) + 10 bp (i7 index) + 10 bp (i5 
index) + 90 bp (Read 2) to obtain approximately > 20,000 
paired-end reads per cell.

3’ single‑cell RNA sequencing (scRNA‑seq)
PBMC samples from 32 patients and 8 healthy controls 
were evenly mixed in pools of 8 donors per library follow-
ing a multiplexing approach based on donor genotype, 
as in Kang et al. [36], for a more cost- and time-efficient 
strategy. Importantly, libraries were designed to pool 
samples together from the same treatment (anti-TNF or 
anti-IL17) but mixing patients with a different response 
to treatment. With this approach, we aimed to avoid 
technical artefacts that could mask subtle biological 

differences between responders and nonresponders. 
To profile the cellular transcriptome, we processed the 
sequencing reads with 10X Genomics Inc. software 
package CellRanger v6.1.1 and mapped them against the 
human GRCh38 reference genome.

Library demultiplexing
The donor’s genotypes (VCF format) were simplified 
by removing SNPs that were unannotated or located in 
the sexual Y, pseudoautosomal XY or mitochondrial 
chromosomes (chr 0, 24, 25 and 26, respectively). As 
genotypes were assembled using the human GRCh19 ref-
erence genome, we converted them to the same genome 
assembly used to map the sequencing reads, the human 
GRCh38 reference genome, using the USCS LiftOver 
(https://​genome.​ucsc.​edu/​cgi-​bin/​hgLif​tOver) command 
line executable. To meet the LiftOver required format 
(BED format), we used an available wrapper script (lift-
Over_vcf.py) to support input/output from VCF format 
[37]. The library demultiplexing by donor was performed 
with cellsnp-lite v1.2.2 in Mode 1a [37], which allows 
genotyping single-cell GEX libraries by piling up the 
expressed alleles based on a list of given SNPs. To do so, 
we used a list of 7.4 million common SNPs in the human 
population (MAF > 5%) published by the 10,000 Genome 
Project consortium and compiled by Huang et  al. [37]. 
Importantly, we used the default parameters, setting the 
MAF > 5% (–minMAF 0.05) and requesting genotyping 
in addition to counting (–genotype). Then, we performed 
donor deconvolution with vireo v0.5.6 [38], which assigns 
the deconvoluted samples to their donor identity using 
known genotypes while detecting doublets and unas-
signed cells. Finally, we discarded detected doublets and 
unassigned cells before moving on to the downstream 
processing steps.

scRNA‑seq data sets and preprocessing
Below, we describe all of the scRNA-seq data sets and 
the preprocessing steps of the current work as outlined 
in Additional file 1: Fig. S1. As most preprocessing steps 
were applied to scRNA-seq expression matrices of all 
data sets, we will describe them jointly.

Quality cut‑offs
Starting from a raw scRNA-seq gene expression matrix, 
the quality of cells was assured by application of qual-
ity cut-offs that aimed to filter out low-quality cells (few 
genes, low read depth), dying cells (high expression of 
mitochondrial genes) and doublets (unexpectedly high 
reads and large number of genes). While arbitrary, these 
specific cut-offs were adapted to the corresponding data 

https://genome.ucsc.edu/cgi-bin/hgLiftOver
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set and reported in Additional files 3, 4, 5, 6 and 7 [39]. 
Genes that were expressed in less than three cells were 
excluded from further analysis.

Batch correction
In case a high degree of interindividual expression differ-
ences existed, batch correction was performed accord-
ing to a previously established pipeline [40]. In short, we 
used Seurat’s function findIntegrationAnchors() [41] for 
the list of objects that corresponded to each individual. 
These anchors were later used by IntegrateData() [41] to 
integrate the data from individuals to correct for patient-
specific differences as suggested in [42].

Denoising
Next, data for all cells were processed by a deep count 
autoencoder (DCA) model [43], which is a neural net-
work performing a nonlinear principal component anal-
ysis (PCA). The DCA method is initiated by computing 
a library size, log- and z-score normalised expression 
matrix, which is taken as an input to the neural network, 
and the output of the neural network log10 transformed), 
and denoised single-cell expression matrix D, which has 
the same features as the original data but is corrected for 
various sources of noise in the data. The DCA method 
also outputs a representation of the original single-cell 
data in a latent space. This representation has many fewer 
features than the original data, which is particularly 
important for performing accurate cluster analyses. The 
intercellular expression differences are generally better 
represented in this latent space than in purely linear PCA 
models, and the latent space representation is also cor-
rected for single-cell data artefacts such as dropouts and 
varying library sizes.

Clustering analysis was performed using the Seurat 
v3.1 package [41] on the DCA-derived latent representa-
tion. A shared nearest neighbour graph was constructed, 
and neighbourhood overlap between every cell and its 
k-nearest neighbours was calculated based on the Jaccard 
index using the FindNeighbors() function on all supplied 
latent features. Next, clusters were identified through 
application of the Louvain algorithm to the shared near-
est neighbour graph using the FindClusters() function 
along with a specified resolution setting. The resolution 
parameter and k for k-nearest neighbour analysis were 
tailored to each data set and are reported below. Clusters 
were visualised through RunTSNE ().

Analyses of interindividual molecular heterogeneity
After denoising and clustering, heterogeneity among 
samples was determined. For this, we trained a flexible 
machine learning model that attempts to find a deci-
sion boundary between the given groups of cells. If this 

model results in a high misclassification rate for test data, 
it indicates that groups are highly mixed. More specifi-
cally, the data were randomly divided in half and used for 
training and testing the model. A random forest classifier 
[44] was used to classify cells from sick samples based on 
what patient the sample was derived from. Cross-valida-
tion with tenfold and grid search [45] was used to find the 
most appropriate hyperparameters of the random forest. 
The bootstrap [46] percentile method [46] was used to 
construct the 95% confidence intervals for training and 
test misclassification rates. The Scikit package [47] from 
Python (3.7.9) was used to perform the analysis.

Furthermore, patient heterogeneity was explored 
through comparison of cell type proportions and exami-
nation of latent features of the non-batch-corrected data. 
Interindividual differences in cell type proportions were 
explored by the application of the chi-square test to the 
proportions of cell types in sick samples. The contin-
gency table for the chi-square test included individuals in 
columns and cell types in rows. Latent feature compari-
son was conducted visually through tSNE visualisation of 
the latent features of each patient. The results for these 
analyses are found in Additional file 2.

Cell typing
While cell typing is not crucial for scDrugPrio (which 
might be performed on unlabelled clusters), we cell typed 
clusters to enhance biological interpretation. Cell types 
were assigned to each cluster based on the relative coex-
pression of several known cell type marker genes (Addi-
tional file  3). For AIA data, each gene’s expression was 
expressed as a fraction of a cell’s total gene expression 
score. For visualisation of gene expression differences 
between clusters, z-scores were calculated. Z-scores 
for single cells were derived by comparison of one cell’s 
gene fraction to all other cells’ gene fractions. Z-scores 
for gene expression of clusters were derived by com-
parison of the average gene fraction in a cluster to the 
cluster-averaged gene fractions of cells in other clusters. 
Murine cell type-specific marker genes for the RA data 
were derived from the online resources of the R&D sys-
tems (www.​rndsy​stems.​com/​resea​rch-​area; accessed July 
2020). Cell typing of the human data sets was performed 
using DCA denoised gene fractions and utilised combi-
nations of marker genes (Additional files 4 & 5).

Differentially expressed genes
For each cell type separately, differentially expressed 
genes (DEGs) were calculated by comparing denoised 
gene expression of cells derived from healthy samples 
vs. cells from sick samples. For this purpose, the Find-
Markers() function in Seurat [41] was used to deploy a 
scRNA-seq-tailored hurdle model supplied by the MAST 

http://www.rndsystems.com/research-area
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package [48]. Genes were considered significantly dif-
ferentially expressed when they showed an absolute log 
fold change greater than or equal to 1.5 and a Bonferroni-
adjusted P < 0.05. The fold change cut-off was motivated 
by previous studies [49] and aimed to decrease the num-
ber of DEGs for later network calculations.

Antigen‑induced arthritis
Quality cut-offs resulted in a total of 16,751 cells (Addi-
tional file  3). Genes were annotated as murine NCBI 
Gene Symbols. Following denoising, clustering using 
k = 20 and a resolution of 0.6 resulted in the identification 
of 20 clusters that were cell typed. Heterogeneity analy-
sis used n_estimators = 1500, max_depth = 15, min_sam-
ples_split = 50, and min_samples_leaf = 50 and showed 
no significant heterogeneity. DEGs and the denoised 
expression matrix were translated to human Entrez gene 
IDs using human-mouse orthologues downloaded from 
NCBI (August 2019).

Multiple sclerosis
A unique molecular identifier (UMI) matrix [50] for cer-
ebrospinal fluid (CSF) of five human multiple sclerosis 
(MS) patients and five human patients with idiopathic 
intracerebral hypertension (IIH) were downloaded from 
Gene Expression Omnibus (GEO), GSE138266 [51]. 
Gene annotation was translated from human Ensembl 
gene IDs to human Entrez gene IDs and symbols using 
the HUGO Gene Nomenclature Committee (HGNC) 
database [52] (downloaded November 2020). After the 
application of quality cut-offs (Additional file  4), we 
derived 33,848 cells. Initial preprocessing was performed 
without batch correction using cluster parameters k = 10 
and resolution = 0.2 after DCA denoising to derive 17 
clusters. Interindividual heterogeneity was assessed 
as described below using the following hyperparam-
eters: n_estimators = 500, max_depth = 30, min_sam-
ples_split = 50, min_samples_leaf = 25. Since we noticed 
substantial patient-related heterogeneity, preprocessing 
was repeated, including batch correction, DCA denois-
ing, and clustering using k = 15 and resolution = 0.35 
to derive 21 clusters that were cell typed using known 
marker genes derived from the original publication [50] 
(Additional file  4). The number of DEGs ranged from 0 
to 10,076.

Crohn’s disease
A unique molecular identifier (UMI) matrix [53] for 
eleven human Crohn’s disease (CD) patients was down-
loaded from GEO (GSE134809) [54]. Data for each 
patient included intestinal biopsies from one inflamed 
site and one uninflamed site. After application of quality 
cut-offs (Additional file 5), we derived 77,416 cells. Gene 

annotation was translated from human Ensembl gene 
IDs to human Entrez gene IDs and symbols using the 
HGNC database (2020–11-08) [52]. Initially, data were 
DCA denoised without applying batch correction. Clus-
tering was performed using k = 15 and resolution = 0.8. 
Interindividual molecular heterogeneity was assessed 
as described below using the following hyperparam-
eters: n_estimators = 1000, max_depth = 20, min_sam-
ples_split = 50, min_samples_leaf = 25. Since there was 
substantial interindividual heterogeneity, preprocessing 
was repeated now batch-correcting before DCA denois-
ing. Clustering was again performed using k = 15 and 
resolution = 0.8.

Individual Crohn’s patients
For individual patient predictions, we used the same 
quality cut-offs as for the pooled analysis of CD 
patients. As interindividual heterogeneity does not 
affect the predictions made for individual patients, 
these calculations were performed on non-batch-cor-
rected data. DCA denoising was applied to the joint 
data, and gene annotation was translated to Entrez 
gene IDs. Thereafter, scRNA-seq data were separated 
by patient, and cells from each patient were clustered 
individually. An individual patient cluster was assigned 
a cell type based on which cluster it most resembled 
in the joined CD analysis, as measured by the number 
of shared cell identifiers. DEGs were then calculated 
between cells from sick and healthy samples. Visualisa-
tions of data were in part created using BioRender.com.

Psoriatic arthritis
Data sets were divided into one anti-TNF and one anti-
IL17 data set, including responders (R), nonresponders 
(NR) and healthy controls. We filtered out the dou-
blet and unassigned cells as well as those that did not 
meet the quality cut-off criteria (Additional file 7) and 
derived 78,610 cells with 5088 mean reads for the anti-
TNF data set and 72,472 cells with 5343 mean reads for 
the anti-IL17 data set. In both data sets, 19,415 cells 
were derived from healthy controls. Data sets were 
batch-corrected, and DCA was performed. For anti-
TNF, clustering was performed using k = 25 and resolu-
tion = 0.25. The corresponding parameters for anti-IL17 
were k = 15 and resolution = 0.45. The remaining down-
stream analysis was performed for responders and non-
responders separately, which meant that DEGs were 
calculated between responders and healthy controls 
and between nonresponders and healthy controls. For 
the anti-TNF data set, the number of DEGs ranged 
from 0 to 5989 for R and from 0 to 5877 for NR. The 
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corresponding figures for anti-IL17 were 0 to 3097 
and 0 to 3284. Next, scDrugPrio was applied to DEGS 
from anti-TNF R and NR as well as anti-IL17 R and NR 
separately.

In vitro validation of potential novel drugs
To validate the predicted novel drugs, in  vitro culture 
of murine and human B-cells upon activation with the 
indicated stimuli was employed to assess the effects of 
the predicted drugs on B-cell survival, activation, prolif-
eration, and antibody production. Three doses for each 
predicted drug were used to challenge in  vitro cultured 
B-cells (Additional file 2: Table S2). For the assessment of 
potential novel drugs on murine B-cell survival and acti-
vation, 300,000 murine naïve B-cells (Lin−B220+CD43−) 
were enriched by flow cytometric sorting and cultured 
in the presence of AffiniPure F(ab’)2 Fragment goat anti-
mouse anti-IgM (10 μg/mL, CAT: 115–006-075, Jack-
son ImmunoResearch), anti-mouse CD40 (10 μg/mL, 
Clone:1C10, Biolegend), or LPS (10 μg/mL) for 24 h. 
B-cell survival was determined by flow cytometric analy-
sis of propidium iodide (PI)+ cells. Surface CD69, CD86, 
and MHC-II were used as readouts for assaying B-cell 
activation. For the analysis of B-cell proliferation, purified 
B-cells were stained with carboxyfluorescein succinimi-
dyl ester (CFSE) (1 μM) before in vitro culture for 3 days. 
To determine the effects of the predicted drugs on anti-
body production, 200,000 purified murine naïve B-cells 
were stimulated with anti-CD40 (10 μg/mL) + IL-4 (10 
ng/mL), LPS (10 μg/mL) + IL-4 (10 ng/mL), or LPS (10 
μg/mL) + IFN-γ (10 ng/mL) for 6 days.

For the analysis of novel drugs predicted to regulate 
the biology of human B-cells, peripheral blood mono-
nuclear cells (PBMCs) were isolated from the buffy coat 
as previously described [55, 56]. Human naïve B-cells 
were subsequently preenriched by MACS sorting using a 
B-Cell Isolation Kit II (Miltenyi) and further purified by 
flow cytometric sorting of CD19+CD27− B-cells. Puri-
fied human naïve B-cells were cultured in 96-well plates 
in the presence of AffiniPure F(ab’)2 Fragment goat anti-
human IgG + IgM (5 μg/mL, CAT: 109–006-127, Jackson 
ImmunoResearch), anti-human CD40 (5 μg/mL, Clone: 
G28.5, Bio X Cell), and IL-21 (10 ng/mL, PeproTech).

B-cell survival was determined by flow cytometric 
analysis of propidium iodide (PI) +—cells. Surface CD69, 
CD86, and MHC-II were used as readouts for assay-
ing murine B-cell activation. Surface CD69 was assayed 
for the measurement of human B-cell activation. For 
the analysis of B-cell proliferation, purified B-cells were 
prestained with carboxyfluorescein succinimidyl ester 
(CFSE) (1 μM) before in vitro culture for 3 days. Murine 
IgG2a and IgG1, as well as human IgG in the supernatant, 

were determined by enzyme-linked immunosorbent 
assay (ELISA) using goat anti-mouse Ig, goat-anti-mouse 
IgG1-HRP and goat-anti-human IgG2a-HRP, goat anti-
human Ig, and goat-anti-human IgG-HRP (SouthernBio-
tech) as previously described [57].

In vivo validation of predicted drugs
Amrinone was tested for treating collagen-induced 
arthritis (CIA). For this, male DBA1/J mice purchased 
from GemPharmatech (China) were immunised intra-
dermally with 100 μg of chicken type II collagen (2 mg/
mL, Chondrex, USA) emulsified with complete Fre-
und’s adjuvant (CFA, 1 mg/mL) and boosted on day 21 
with 100 μg of chicken type II collagen emulsified with 
incomplete Freund’s adjuvant (IFA). Mice were i.g. given 
with diluent (n = 5) or amrinone (30 mg/kg, n = 5) daily 
from day 21 for 3 weeks. The rear paw thickness and the 
clinical arthritis score for each limb were recorded every 
other day from 0 to 4 with a maximal score of 16 for each 
mouse according to the previous protocol [58]. Mice 
were housed with a 12-h light/dark cycle and fed stand-
ard chow diets in a specific pathogen-free animal facility 
at Xuzhou Medical University.

Mice were euthanized on day 21 post drug intervention 
with carbon dioxide. Serum was collected for the analy-
sis of collagen-specific autoantibodies by enzyme-linked 
immunosorbent assay (ELISA) as previously described 
[59]. Briefly, diluted serum was incubated in a 96-well 
ELISA plate precoated with chicken type II collagen (5 
μg/mL). Goat-anti-mouse IgG1-HRP, goat-anti-mouse 
IgG2a-HRP, and goat-anti-mouse IgG-HRP (Southern-
Biotech) were used as detection antibodies. Knee joints 
were fixed in 4% formaldehyde and subsequently decalci-
fied with decalcification solution (ServiceBio, China) for 
1 week. The specimens were next embedded in paraffin, 
and sagittal Sects.  (4 µm) were cut. The sections were 
stained with haematoxylin and eosin (H&E) for the histo-
logical analysis of immune cell infiltration and Safranin-
O for the analysis of bone erosion as previously described 
[57, 59].

Comparison of scRNA‑seq‑based screening outcomes 
for rheumatoid arthritis to other data types and prediction 
methods
Briefly, we benchmarked outcomes based on the scRNA-
seq-derived DEGs against microarray data from GEO 
(GSE55235, https://​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​
cgi?​acc=​GSE55​235; GSE93272, https://​ncbi.​nlm.​nih.​
gov/​geo/​query/​acc.​cgi?​acc=​GSE93​272) [60–63], GWAS 
Catalog [64] genes and OMIM [65] genes as well as com-
binations of these data sets. scDrugPrio was compared 
to previous methods such as [1] identifying druggable 

https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55235
https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55235
https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93272
https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93272
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DEGs, targeting key enriched pathways [66], CMAP 
[67] drug predictions and the empirical drug selection of 
Kim et al. [7]. Predictions were also replicated using the 
smaller, unbiased HuRI PPIN [68] (8236 proteins, 52,150 
interactions) to ensure the absence of knowledge bias. 
More information can be found in Additional file 2.

Results
The scDrugPrio framework
Aiming to create an analytical framework for scRNA-seq-
driven drug prioritisation, we constructed scDrugPrio, 
which consists of three main modules: (1) drug candidate 
selection based on cell type-specific DEGs, (2) drug can-
didate ranking and (3) aggregated ranking of drug candi-
dates from all cell types. For this scDrugPrio requires two 
components (Fig.  1): (a) differentially expressed genes 
(DEGs) between sick and healthy samples for each cell 
type and (b) drug data, including information on gene 
drug targets and pharmacological effects.

Preprocessing includes the calculation of DEGs based 
on scRNA expression from one or more healthy and one 
or more sick samples (Additional file 1: Fig. S1). Preproc-
essing starts with quality control, batch correction (if 
needed) and data denoising of all scRNA-seq data, fol-
lowed by clustering and cell typing. DEGs are computed 
per cell type by using sick versus healthy expressions. In 
the analysis below, we computed DEGs in the two modes. 
In the first mode, we use data from groups of sick and 
healthy individuals, while in the second mode, we use 
scRNA-seq data from paired samples of sick and adjacent 
healthy tissue for personalised drug prioritisations for 
one patient of interest.

scDrugPrio starts by computing the mean closest dis-
tance between DEGs and gene targets of drugs (hence-
forth referred to as drug targets) in the protein‒protein 
interaction network (PPIN) for each cell type and each 
drug candidate. Intuitively, the “closer” the drug targets 
are to DEGs, the better is the chance for the drug to affect 
the disease-associated genes [16]. Specifically, a relative 
proximity measure (zc) capturing the statistical signifi-
cance of the observed closest distance (dc) was calculated 
based on a comparison of dc to the random expectation. 
Furthermore, scDrugPrio assumed that drugs that coun-
teract the fold-change of at least one DEG will have a 
better chance to reverse disease-associated expression 
changes in the targeted cell type (following a similar idea 
as CMap [17]). To determine whether a drug counter-
acted a DEG fold change, we considered (1) the direc-
tion of the fold change (upregulated or downregulated) 
and (2) pharmacological action (e.g. agonistic, antago-
nistic) on the targeted DEG. For each cell type, a list of 
drug candidates was derived by filtering out drugs with 
low network proximity (dc ≥ 1, zc ≥  − 1.64 corresponding 

to one-sided P < 0.05) and drugs that did not exert coun-
teracting pharmacological action against at least one tar-
geted DEG.

In the next step, scDrugPrio computed intra- and 
intercellular centrality measures that were later used to 
aggregate the prediction and rank drugs. To compute 
intracellular centralities per cell type, scDrugPrio deter-
mines the largest connected component formed by DEGs 
in the PPIN and next computes a drug’s centrality score 
based on the centrality of the drug targets within this 
component. Intracellular centrality hence presents an 
approximation of a drug’s target relevance for disease-
associated expression changes in a cell type. For inter-
cellular centrality, scDrugPrio constructs a multicellular 
disease model (MCDM). In short, MCDMs were based 
on predicted molecular interactions between differen-
tially expressed upstream regulatory genes in any cell 
type and their downstream genes in any other cell type 
using NicheNet [24]. The resulting MCDM is a network 
in which cell types were nodes connected by directed, 
weighted ligand-target interactions. Intercellular central-
ity refers to the centrality of cell types in the MCDM.

Finally, scDrugPrio aggregates drug predictions through 
aggregation of cell type-specific drug predictions and 
intracellular and intercellular centralities into a compound 
score (Fig. 1). The resulting scores were used to rank drugs. 
Hence, overall drug ranking prioritised drugs that targeted 
key disease-associated expression changes in the most 
important cell types.

scDrugPrio development and evaluation 
in antigen‑induced arthritis
scRNA-seq data were generated from whole joints of five 
inbred AIA mice and four naïve mice. After application 
of quality criteria (Additional file 3), data included 16,751 
cells with 132,459 mean reads per cell. Data for all mice 
were denoised jointly using a deep count autoencoder 
network (DCA) [43], and 20 clusters were cell typed 
using marker gene expression (Fig. 2a; Additional file 1: 
Fig. S2). Comparison of cells from AIA and naïve mice 
identified DEGs in 17 cell types (Fig. 2; Additional file 2).

We retrieved drug target information from DrugBank 
[19] for 13,339 drugs (Additional file  3). From those 
drugs, we selected all of which had been FDA approved 
for human use and had at least one target in the human 
interactome (n = 1840). According to the indication 
information in DrugBank, 57 drugs were FDA approved 
for RA and hence treated as true positives for the calcula-
tion of precision and recall.

Applying scDrugPrio, the final list of candidates 
included 334 out of 1840 drugs; 32 drugs were estab-
lished RA drugs, of which 22 ranked among the top 
100 candidates (Fisher exact P < 10−6; Fig.  3; Additional 
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Fig. 2  Construction and analysis of a multicellular disease model (MCDM) based on scRNA-seq analysis of a mouse model of antigen-induced 
arthritis (AIA). a tSNE of cells (n = 16,751) pooled from all samples. b Cell type proportions (%) for individual AIA (S1 to S6) and control (H1 to H4) 
mice. c Heatmap of z-scores of the cluster-based means of normalised, denoised gene expression for cell type markers. d MCDM, in which cell types 
were represented by nodes connected by the predicted interactions between upstream regulatory genes in any cell type and their downstream 
target genes in any other cell type [24]. Edge width corresponds to the sum of Pearson coefficients for all interactions between two cell types, 
with arrows directed from upstream to downstream cell types. Edge colour corresponds to the upstream cell type. As indicated by more central 
positions in the MCDM, the four B-cell clusters were the most central cell types. e Bar plot depicting eigenvector cell type centrality in MCDM. 
Colours in all plots correspond to cell type colours in (a)
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file 3). To further evaluate the candidates’ relevance, we 
collected clinical trial data from clinicaltrials.gov to cap-
ture the medical community’s interest in the identified 
candidates as RA medications. We also performed a lit-
erature review of the top 100 drugs to evaluate whether 
candidates had shown promise when tested in human RA 
or murine/rat RA models. Through a literature review, 
evidence for the relevance of 40 additional drugs was 
identified, whereas three of the top 100 ranking drugs 

had not shown effects in previous trials. Hence, 62.0% 
of the top 100 ranking candidates were either approved 
or had successful experimental validation in prior litera-
ture (Fig. 3e), and 95.4% of previously studied candidates 
(among the top 100 candidates) had shown promise.

Describing scDrugPrio results in more detail, net-
work proximity selection (dc < 1, zc <  − 1.64) yielded no 
drug candidates for six cell types and an average of 67 
drug candidates (min = 1, max = 226) for the remaining 

Fig. 3  Precision and recall in relation to drug selection and ranking criteria. a, b Precision and recall at different zc cut-offs. In most cell types, 
precision increased with decreasing zc. Too stringent zc cut-offs, by contrast, led to the exclusion of almost all candidates, including approved RA 
drugs. c, d Precision and recall after stepwise application of drug selection criteria. Bars with no pattern represent a zc cut-off that Guney et al.10 
had previously found to offer good coverage of known drug-disease pairs. The dotted pattern represents precision at zc <  − 1.64 (corresponding 
to one-sided P < 0.05). The striped pattern represents precision among candidates with zc <  − 1.64 and dc < 1 (in other words, candidates passing 
network proximity-based selection). The crosshatch pattern represents candidates passing network proximity and pharmacological action selection. 
The application of selection criteria substantially increased the precision among central cell types. e Precision for approved RA drugs for which 
clinical trials had been registered for RA, and literature evidence (only for the top 100 ranking drugs) among candidates. Drug ranking included 
rank ties. Literature evidence was gathered for the top 100 ranked candidates and is presented as triangles with a dashed line. The colour legend 
for (a–d) is depicted in (f)
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fourteen cell types. Precision among cell type-specific 
candidates ranged from 0.0 to 12.8%. However, preci-
sion of cell types that were central in the MCDM, such 
as activated, immature, and plasma B-cells (12.8, 11.4, 
and 6.3%, respectively), outperformed random selection 
from the 1840 included drugs (57/1,840 = 3.1%; Fisher 
exact P < 10−12, P < 10−8, P = 0.4, respectively). Following 
network proximity calculations that were performed in 
the absence of information on a drug’s effect on the tar-
get, we found tasonermin, a synthetic version of TNF, 
among the top-ranking candidates for several B-cell sub-
types. Since overexpression of TNF has a crucial role in 
RA pathogenesis [69], this ranking supported the net-
work proximity criterion. However, because tasonermin 
mimics the effects of TNF, it could worsen the disease. 
This finding exemplified the importance of pharmaco-
logical action selection. Pharmacological action selec-
tion resulted in removal of all drug candidates in two cell 
types and an average of 43 drug candidates per cell type 
(min = 2, max = 137) in the remaining twelve cell types. 
Overall precision decreased to a median [range] of 1.56% 
[0.00–20.63], although it increased in activated, imma-
ture, and plasma B-cells (20.6, 16.1, and 9.1%, respec-
tively) as well as in T cells (Fig. 3c).

Having identified drug candidates for every cell type 
individually, intra- and intercellular centrality were calcu-
lated. The use of intra- and intercellular centrality meas-
ures for composite ranking was motivated by our findings 
that (1) intercellular centrality correlated with the sig-
nificance of GWAS enrichment among cell type-specific 
DEGs (Pearson’s r [95% CI] = 0.62 [0.21–0.85]; P < 0.01), 
(2) intercellular centrality correlated with the precision 
among cell type-specific drug candidates (Pearson’s r 
[95% CI] = 0.77 [0.46–0.91]; P < 10−3; Additional file  1: 
Fig. S2j), (3) drugs that targeted more than one cell type 
were more likely to be known RA drugs (Additional file 1: 
Fig. S2k) and (4) intracellular centrality could improve 
the mean rank of known drugs more than expected by 
chance (Additional file 2).

Using the AIA and human RA data, we benchmarked 
scDrugPrio against previous methodologies (Additional 
file 2) and performed extensive additional testing, dem-
onstrating the advantage of scRNA-seq-driven analysis 
over genetic variations or bulk transcriptomics. Further-
more, we evaluated drug selection criteria and performed 
robustness analysis (Additional file 2).

Experimental validation of scDrugPrio
To further validate scDrugPrio, five high-ranking drugs 
that were not found to have any prior literature support 
for their efficacy in RA were chosen alongside the high-
est-ranking RA drug (auranofin #6) serving as a posi-
tive control. We first evaluated the five drugs by in vitro 

studies of B-cells. This cell type was selected because of 
its crucial role in the pathogenesis of RA and its central 
position in MCDM [70]. We used previously described 
in  vitro models of B-cell functions [70] measuring 
murine B-cell survival, activation, proliferation, and anti-
body production upon in vitro stimulation with selected 
drugs at various concentrations. Auranofin dramati-
cally suppressed B-cell functions, including cell viability, 
proliferation, and immunoglobulin production (Fig.  4). 
Additionally, two of the five novel drugs (#114 amrinone 
and #100 adapalene) showed concentration-depend-
ent in  vitro effects on B-cell viability, proliferation, and 
immunoglobulin production (Fig.  4). Adapalene also 
greatly inhibited murine B-cell activation (Fig.  4b). The 
other three drugs (#91 irbesartan, #98 isosorbide, and 
#134 dimethyl furamate) showed little to no effect on 
murine B-cell functions (Additional file 1: Fig. S4). Next, 
we examined the effects of drug candidates on the func-
tion of human B-cells. Similarly, auranofin, adapalene, 
and amrinone inhibited human B-cell viability, activa-
tion, proliferation, and IgG production (Additional file 1: 
Fig. S5). Thus, two out of five candidate drugs prioritised 
by scDrugPrio, namely, adapalene and amrinone, were 
successfully validated by in vitro studies.

Valid drug candidates should arguably be transpos-
able and replicable. As drug prediction was performed 
using data from the AIA model of arthritis, we deployed 
the collagen-induced arthritis (CIA) model for further 
in  vivo study. We selected only amrinone for further 
study, as adapalene was designed for topical skin use and 
not for systemic delivery. CIA mice were administered 
30 mg/kg amrinone i.g. for 3 weeks. This treatment sig-
nificantly reduced the paw thickness (Fig. 4e) and clinical 
scores of CIA mice (Fig. 4f ). Analysis of collagen-specific 
serum autoantibodies revealed a significant inhibitory 
effect (Fig. 4g). Considering that it even reduced immune 
cell infiltration (Fig. 4h) and bone erosion (Fig. 4i), in vivo 
studies confirmed the relevance of amrinone treatment 
and thereby further supported scDrugPrio.

Application of scDrugPrio to multiple sclerosis
We next applied scDrugPrio to human IMIDs using 
scRNA-seq data of cerebrospinal fluid (CSF) from mul-
tiple sclerosis (MS) patients and idiopathic intracranial 
hypertension that served as controls [50]. After appli-
cation of quality cut-offs (Additional file  4), the data 
included 33,848 cells with 47,332 mean reads per cell. 
Comparing MS samples with controls, DEGs were cal-
culated from batch-corrected, normalised expression 
scores. DEGs were found in 19 of 20 cell types. scDrug-
Prio identified on average 59 (min = 1, max = 270) drugs 
in these 19 cell types (Fig.  5; Additional file  1: Fig. S6). 
Aggregated ranking of 417 drug candidates (Additional 
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file  1: Fig. S7; Additional file  4) included ten out of 17 
approved MS drugs. Among the top 100 ranking can-
didates, four approved MS drugs, as well as biosimilars 
rituximab and obinutuzumab, were identified, which out-
performed random expectation (precision 0.9%). A lit-
erature search revealed that an additional 22 of the top 
100 ranking drugs had shown effects in previous studies, 
resulting in a precision of 28.3% (Fig.  5d). Seventy-one 

drugs had not yet been validated in previous studies, and 
one evaluated drug had not shown promise in previous 
studies. Hence, 96.7% of the studied candidates (among 
the top 100 candidates) showed efficacy. Taken together, 
these data supported the potential of scDrugPrio to pre-
dict the response to drugs approved for that disease, as 
well as for repurposing other drugs.

Fig. 4  Experimental validation of amrinone in suppressing murine B-cell function and the pathogenesis of the CIA mouse model. Drug effect 
of the selected drugs and the positive control on in vitro murine (a) B-cell survival, (b) activation, (c) proliferation, and (d) immunoglobulin 
production. Colours represent the responses to diluent and different drug concentrations (low, medium, high); for specific concentrations, see 
Additional file 2: Table S2. Having successfully validated adapalene and amrinone in vitro, we conducted in vivo experiments for amrinone. Mice 
with collagen-induced arthritis (CIA) were treated with diluent (n = 5) or amrinone (30 mg/kg, n = 5) for 3 weeks. The (e) rear paw thickness, (f) 
clinical scores, and (g) collagen-specific serum autoantibodies were measured. Furthermore, drug efficacy was assessed by analysis of (h) joint 
immune cell infiltration using H&E staining and (i) bone erosion using Safranin-O staining. *P < 0.05, **P < 0.01, ***P < 0.001. Dimethyl furamate, DMF
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The value of above rank aggregation was supported 
as precision among cell type-specific drug candidates 
only ranging from 0.0 to 12.5%. The MCDM (Fig.  5c; 
Additional file 4) indicated plasma cells, mononuclear 
phagocytes, natural killer cells, and activated CD8 + T 
cells to be of central importance, which is consistent 
with the current pathophysiological understanding 
[50, 71]. Notably, the MS MCDM was more complex 
than the AIA MCDM regarding the number of cell 
types and interactions.

Application of scDrugPrio to Crohn’s disease
Next, scDrugPrio was applied to patients with Crohn’s 
disease (CD) from whom scRNA-seq data [53] from 
paired inflamed and uninflamed intestinal tissue biopsies 

were available. After application of quality criteria (Addi-
tional file 5), 77,416 cells were included with 3591 mean 
unique molecular identifiers (UMIs) per cell. Follow-
ing preprocessing, analysis was performed on batch-
corrected, pooled data from all patients in which DEGs 
were calculated through comparison of inflamed and 
uninflamed samples (Additional file 1: Fig. S8 & S9; Addi-
tional file 5). The aggregated ranking included 343 drug 
candidates, of which five were known CD drugs. These 
five consisted of sulfasalazine (#91), mesalazine (#169.5), 
rifaximin (#238), and two anti-TNF drugs (adalimumab 
and infliximab, tied rank #292.5). Apart from sulfasala-
zine, literature evidence suggested the effectiveness of 13 
additional top-ranking 100 drugs, resulting in a precision 
of 14%.

Fig. 5  scDrugPrio applied to scRNA-seq data from cerebrospinal fluid samples of MS patients and controls. a, b Clustering and cell type proportions 
(%) for CSF samples of idiopathic intracranial hypertension (IIH) and multiple sclerosis patients (MS). Cell type proportions showed significant 
interindividual differences among MS patients. c The MCDM for MS was more complex than that of AIA mice. The most central cells included 
mononuclear phagocyte 3, natural killer cells, mononuclear phagocyte 2, early activated CD8 + T cells and plasma B-cells (in order of eigenvector 
centrality). d Precision among ranked candidates for approved MS drugs, drugs that had been registered for clinical trials for MS in the ClinicalTrial.
database, and literature evidence (only for top 100 ranking drugs). Abbreviations: Tm, T memory; Tem, T effector memory
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Patient heterogeneity in human disease
An important difference between human data and mouse 
data was substantial interindividual heterogeneity in 
human patients. To illuminate such differences, we (1) 
applied chi-square test to compare cell type proportions 
among sick samples, (2) trained a flexible machine learn-
ing model (random forest) with the aim to separate cells 
from different individuals based on gene expression pro-
files, and (3) examined latent features of the non-batch-
corrected data. Mice, as expected, showed no differences 
in cell type proportions (chi-square P = 0.9919; Fig.  2c), 
gene expression (random forest, 95% CI of misclassifi-
cation rate 0.504 ~ 0.532 in the training data and 0.638–
0.655 in the test data), or latent features (Additional file 1: 
Fig. S2c). However, both MS and CD patients showed 
great interindividual heterogeneity in cell type composi-
tion (chi-square P < 10−15, respectively). Heterogeneity 
in cell type composition, although decreased, can still be 
observed in the batch-corrected data (Fig. 5b; Additional 
file 1: S7i). A patient effect was also observed in the non-
batch-corrected gene expression for MS (random forest, 
95% CI of misclassification rate 0.075–0.084 in training 
data, and 0.124–0.132 in testing data) and CD patients 
(random forest; 95% CI of misclassification rate 0.270–
0.283 in training data, and 0.378 ~ 0.385 in testing data) as 
well as latent features derived from non-batch-corrected 
data (Additional file 1: Fig. S6 & S9). Taken together, such 
patient effects necessitated batch correction for pooled 
prediction using the human data sets above.

Potential for individualised predictions
Even though batch correction had been applied appro-
priately, a potential limitation of the above MS and CD 
analyses was that scDrugPrio was applied to pooled 
data derived from heterogeneous patients and controls. 
Patient effects might form the bases for the responder/
nonresponder dichotomy, and we therefore evaluated 
scDrugPrios potential for individualised drug prioriti-
sation. For this, we applied scDrugPrio to individual 
CD patients, using similar preprocessing as for CD data 
above with the following exceptions: (1) data were not 
batch-corrected and (2) following denoising, cells from 
inflamed and uninflamed samples of each patient were 
clustered separately. DEGs were derived through com-
parison of individual patient inflamed and uninflamed 
cells in each cluster. DEGs showed that the eleven 
patients expressed important CD drug targets differently 
(Additional file  1: Fig. S10a, b). To investigate whether 
such molecular differences could affect drug prediction 
outcomes, scDrugPrio was applied to all patients sepa-
rately (Additional file 1: Fig. S10-12; Additional file 6).

Strikingly, individualised drug predictions of nine out 
of eleven patients (such as patient 1: 19.0%; patient 10: 

20.5%, Fig.  6; Additional file  1: Fig. S13) outperformed 
the precision of pooled patient analysis (14.0%). Among 
the top 10 candidates, precisions for individualised pre-
dictions (20–70%) outperformed precision of pooled 
patient analysis in seven patients and equalled that of 
pooled patient analysis in four patients (10%). All predic-
tions outperformed random chance (1.5%). More detailed 
analysis revealed interindividual differences in cell type 
proportions and network properties in the MCDM 
(Additional file 1: Fig. S12) as well as different drug rank-
ings (Additional file  1: Fig. S14). Taken together, these 
findings supported that scDrugPrio presents a valid strat-
egy for personalised drug prioritisation.

To exemplify the potential of scDrugPrio for individual 
patients, we next compared two patients who previously 
had been classified as an anti-TNF responder (patient 10) 
and nonresponder (patient 1) based on a cellular signa-
ture score [53]. In agreement with the previous classifica-
tion of anti-TNF response [53], TNF had a more central 
role in the MCDM of patient 10 (Additional file  1: Fig. 
S11m, n). Hence, it was not surprising that aggregated 
drug ranking ranked adalimumab (anti-TNF) higher for 
patient 10 (#15.5) than for patient 1 (#658). As expected, 
adalimumab was the highest-ranking approved CD drug 
in patient 10. For patient 1, scDrugPrio prioritised other 
immunomodulatory drugs over anti-TNF treatment, 
namely, natalizumab (#19), human intravenous immune 
globulin (#21), basiliximab (#25), sarilumab (#29), and 
other approved CD drugs, such as methotrexate (#188) 
and sulfasalazine (#202).

Application of scDrugPrio to nonresponder/responder 
data from patients with psoriatic arthritis highlighted 
the importance of local tissue samples
Since the previous analyses supported scDrugPrio’s 
potential for another case-of-use scenario, namely, to 
distinguish drug responders from nonresponders. To 
explore this potential, we collected peripheral mononu-
clear blood cells (PBMCs) from patients with psoriatic 
arthritis (PsA) as well as healthy controls. PBMCs were 
chosen because the analysis of blood samples is clinically 
more tractable than the analysis of biopsies. Samples 
were cryopreserved before treatment with either anti-
TNF or anti-IL17. Treatment response was later assessed 
by a rheumatologist according to EULAR response crite-
ria [35] (Additional file 7). We next selected 32 patients, 
of whom eight were classified as responders (R) and 
eight as nonresponders (NR) to either of the two drugs, 
as well as eight healthy controls. Cryopreserved PBMCs 
from these patients were analysed with scRNA-seq. For 
preprocessing, data were divided into two data sets by 
treatment regimen, each data set containing the cor-
responding eight R and NR along with the eight healthy 
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Fig. 6  scDrugPrio for individual drug prediction. a, b Cell type proportions differed greatly between two CD patients, as shown in the horizontally 
stacked bar plots representing paired biopsies from inflamed (infl) and uninflamed (uninfl) lesions that were taken from each patient. c, d Patients 
also show differences in the composition and interconnectivity (representing ligand interactions) of the MCDMs. Patient 1 had a cell type for which 
no ligand-target interactions could be found with any other cell types in the MCDM. e, f Precision among ranked candidates for approved CD 
drugs, drugs for which clinical trials had been registered for CD and literature evidence (only for top 100 ranking drugs). The precision for the ranked 
drug candidates for patient 1 was low for approved CD drugs, while literature evidence supported the top-ranking drugs, of which many are 
anti-inflammatory. In contrast, patient 10 had several approved CD drugs among the top 100 candidates, and a curated literature search confirmed 
the validity of many more candidates. g Precision for prediction based on pooled patient data was poor. h Venn diagram presenting the overlap 
of considered drug candidates for patients 1 and 10. i Interindividual differences between patients 1 and 10 were reflected in the prediction 
outcome, as no correlation existed between the drug rank of drugs that were candidates in both patients



Page 19 of 24Schäfer et al. Genome Medicine           (2024) 16:42 	

controls. After application of quality cut-offs, the data 
included 78,610 cells with 5088 mean reads for anti-
TNF analysis and 72,472 cells with 5343 mean reads for 
anti-IL17 analysis. Data were batch-corrected and DCA 
denoised before clusters were identified and cell-typed 
using marker genes (Additional file  1: Fig. S15 & S16; 
Additional file 7).

For each data set, DEGs were calculated through com-
parison of cells from healthy controls to either R or NR. 
The precision for approved PsA drugs among the top 100 
candidates in the respective aggregated ranking was 0% 
for anti-IL17 NR, 4% for anti-IL17 R, 1% for anti-TNF NR 
and 1% for anti-TNF R (Additional file 1: Fig. S15 & S16). 
Unexpectedly, anti-TNF treatment received a low rank in 
anti-TNF R but not in NR (#333 and #88, respectively), 
while anti-IL-17 was not considered a candidate in either 
R or NR.

Further analyses of our PBMC data from all R and NR 
patients showed that the TNF signalling pathway was 
significant in only 8 and 8% of clusters, respectively. 
The corresponding figures for the IL-17 signalling path-
way were 17 and 13% in the anti-IL17 R and NR groups, 
respectively. In those cell types, most pathways were 
downregulated, including those regulated by TNF and 
IL17 (Additional file  1: Fig. S17). This result contrasted 
with previous studies of skin and synovium from PsA, 
which showed increased mRNA expression of TNF and 
IL17, as well as their pathways [72, 73]. A similar dichot-
omy between local inflamed tissues and cells in the blood 
in autoimmune diseases has been previously described 
[74]. This dichotomy can be explained by the physiologi-
cal need to localise inflammatory responses to inhibit 
systemic and possibly fatal responses. The general clinical 
implication may be that drug predictions should ideally 
be based on local tissue samples [35].

Discussion
The main problem in therapeutics, which serves as the 
basis for this study, is the large number of IMID patients 
who do not respond to treatment [2, 3, 75]. Previous vir-
tual drug screening methods for inflammatory diseases 
are based on genetic variance or bulk RNA sequencing 
[16, 76, 77] and hence do not consider variations in gene 
expression across different cell types, biopharmacological 
properties, or individual variations between patients with 
the same diagnosis. While harnessing the daunting com-
plexity and heterogeneity for personalised treatment may 
seem impossible by health care standards today, this chal-
lenge should be put in the context of the suffering and 
costs resulting from ineffective drug treatment. Many 
IMIDs cause life-long morbidity and increased mortal-
ity. The yearly cost of treating an individual IMID patient 

may be hundreds of thousands of dollars for drugs and 
hospital care [1].

Recent efforts for drug toxicity screening [8, 78] sup-
port the feasibility of scRNA-seq to capture relevant cel-
lular information. However, systematic solutions for drug 
prioritisation for IMIDs based on scRNA-seq remain to 
be devised. We therefore propose a computational frame-
work, scDrugPrio, that extends on existing bioinformatic 
tools [6, 16, 24] by providing a framework for data inte-
gration, enabling drug ranking based on a multifaceted 
understanding of cell type-specific disease mechanisms, 
altered cellular crosstalk and pharmacological effects. We 
demonstrate that scDrugPrio yields relevant and robust 
drug prioritisations, outperforms previous methods 
[7, 67], and holds potential for individualised as well as 
pooled drug prioritisation and repurposing.

An important advance of scDrugPrio is that it can 
be applied to scRNA-seq data. The importance lies in 
the fact that complex diseases each involve differential 
expression of thousands of genes across multiple cell 
types [6]. A previous case report [7] described one suc-
cessful example of treating an individual patient with 
immunological diseases based on scRNA-seq data. How-
ever, the drug choices were empirical rather than sys-
tematic. Because scRNA-seq allows transcriptome-wide 
analyses in each of thousands of cells, it is possible to 
infer disease-associated changes in individual patients 
preferably by comparisons with noninflamed samples 
from the same individual or to groups of healthy indi-
viduals. Thus, scDrugPrio has the potential to personal-
ise the treatment of individual patients. The importance 
of this advance is highlighted by our results and previous 
findings [53, 79] showing great interindividual differences 
in the molecular and cellular composition of human dis-
eases. For example, we showed that scDrugPrio ranked 
anti-TNF treatment high in a CD patient who was clas-
sified as a responder but not in a nonresponding patient. 
In the latter patient, other immunomodulatory drugs, 
such as natalizumab, received high ranks. Natalizumab 
is mainly used in MS but has, in previous studies, shown 
positive effects in CD [80], making it a viable recom-
mendation. These examples emphasise that successful 
drug screening will need to consider variations between 
patients with the same diagnosis.

There are several limitations of scRNA-seq-based 
drug predictions in IMIDs. Many of these depend on 
the challenges involved in harnessing complex and het-
erogeneous disease-associated changes with an emerging 
technology such as scRNA-seq. An analogy to a historical 
example may illustrate how such limitations may drive 
scientific progress. In 1970, Needleman‒Wunsch [81] 
and 1981, Smith‒Waterman [82] published algorithms 
for global and local sequence alignment, which were 
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widely used. The limitations of those algorithms were that 
they were mainly useful for nucleotide but not protein 
sequence analyses because of limited protein sequence 
data and no scoring system that modelled protein evolu-
tion. During the next two decades, these problems were 
resolved by increasingly accurate data and methods [83]. 
Importantly, 42  years after publication of the Smith‒
Waterman algorithms for proteins, these algorithms can 
generate very accurate results when combined with scor-
ing systems that were later developed [83]. We propose 
that the limitations of scRNA-seq that we face today will 
lead to a similar development of increasingly accurate 
technologies. One obvious limitation of scRNA-seq is 
that mRNA and protein levels may be poorly correlated, 
which can limit biological interpretability. From this per-
spective, the use of DEGs for scDrugPrio’s pharmacologi-
cal predictions is a relative strength, as DEGs have been 
shown to correlate significantly better with protein levels 
[84] compared to mRNA levels alone and hence increase 
the biological relevance of our predictions. Inherent 
limitations of scDrugPrio also derive from the use of 
current interactomes, which are not comprehensive in 
terms of proteins, interactions, and variations across cell 
types [85] and are prone to investigative biases. While it 
is impossible to address all these concerns, we explored 
whether network proximity-based drug selection was 
influenced by investigative bias through replication of key 
results in a smaller yet unbiased interactome. We found 
that precision among candidates was slightly lower, partly 
due to missing drug targets in the interactome, but that 
results were comparable. Additionally, scDrugPrio might 
benefit from systematic parameter optimisation, which is 
currently not possible due to the limited amount of suit-
able scRNA-seq data sets.

Predictions were based on drug-target effects which 
are complex and potentially incompletely characterised 
[86] which could explain why some of the drug predic-
tions could not be validated experimentally. The need for 
better characterised drug effects and the relative impor-
tance of drug targets is exemplified by etanercept, which 
inhibits TNF and its receptors but may activate IgG 
receptors. The TNF-inhibitory effects are beneficial in 
PsA, while those on IgG receptors are not clearly defined. 
However, because all these targets were downregulated 
in PBMCs from nonresponding PsA patients, etanercept 
(counteracting IgG downregulation) received a higher 
rank than in patients responding to anti-TNF treatment. 
While unexpected, this highlights the need for system-
atic information about the relative importance of drug 
targets. Future efforts aiming to address these limitations 
might find that the predictive capability of scDrugPrio 
can be further enhanced by integration of multiple other 

factors, such as binding affinity (e.g. BindingDB) or bio-
activity (e.g. ChEMBL), especially if data become more 
comprehensive. However, it should be emphasised that 
treatment decisions ultimately depend on informed dis-
cussions between patients and physicians. Future clini-
cal studies are warranted to determine which variables 
should be included in a drug prediction tool like scDrug-
Prio, and which variables should be analysed separately 
depending on the specific disease-context or questions 
arising from patient-physician discussions.

The above example of etanercept in PsA highlights 
an important clinical concern, which to our knowledge 
has not been recognised in the context of drug predic-
tion methods. While analyses of blood samples are often 
more tractable in routine clinical practice, disease-
associated mechanisms may vary greatly between cells 
in blood and inflamed tissues. Our scRNA-seq analy-
ses of PBMCs from PsA patients who did or did not 
respond to treatment with either anti-TNF or anti-IL-17 
showed that predicted activation of TNF and IL-17 
induced pathways was found only in a small portion of 
the PBMC cell types and, in fact, was downregulated in 
both responders and nonresponders. In contrast, pre-
vious studies [72, 73] of synovium from PsA patients 
have shown consistent upregulation of both signalling 
pathways. Additionally, one previous study also showed 
differences between synovium and skin from the same 
patients [72]. Thus, scDrugPrio should ideally be applied 
to local, inflamed tissue samples of the relevant tissue.

Despite these limitations, the translational relevance of 
scDrugPrio was supported by analyses of precision/recall 
for drugs that were approved for the studied diseases, as 
well as by in vitro and in vivo experiments. Those experi-
ments implied two drugs, namely, adapalene (used for 
acne vulgaris) and amrinone (used for congestive heart 
failure), that had not been previously described as candi-
dates for RA treatment. However, both have anti-inflam-
matory effects and could, therefore, be effective [87, 88]. 
This potential was supported by in  vivo experiments in 
which CIA mice were treated with amrinone (adapalene 
is a topical skin drug and hence is not suitable for sys-
temic treatment in this experimental system). This exam-
ple also suggests a potentially important pharmacological 
application of scDrugPrio, namely, virtual drug repurpos-
ing by systematic screening of thousands of drugs across 
several inflammatory diseases, as well as in patients who 
do not respond to standard treatment.

Conclusions
Here, we show that scDrugPrio has the potential for 
individualised drug predictions. We have made data and 
tools freely available for this purpose. However, further 
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parameter optimisation and controlled, prospective clini-
cal studies are needed for clinical translation. If success-
ful, this approach could lead to a radical change in health 
care, which today is largely based on treating groups of 
patients with the same diagnosis with a limited number 
of drugs based on a limited understanding of the under-
lying molecular complexity and heterogeneity with lim-
ited population-based efficacy [89].
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RA	� Rheumatoid arthritis
R&D	� Research and Development
scRNA-seq	� Single-cell RNA sequencing
SNP	� Single-nucleotide polymorphism
TNF	� Tumour necrosis factor
UMI	� Unique molecular identifier
VCF	� Variant Call Format
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