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Abstract 

Background  Mitochondria play essential roles in tumorigenesis; however, little is known about the contribution 
of mitochondrial DNA (mtDNA) to esophageal squamous cell carcinoma (ESCC). Whole-genome sequencing (WGS) 
is by far the most efficient technology to fully characterize the molecular features of mtDNA; however, due to the high 
redundancy and heterogeneity of mtDNA in regular WGS data, methods for mtDNA analysis are far from satisfactory.

Methods  Here, we developed a likelihood-based method dMTLV to identify low-heteroplasmic mtDNA variants. In 
addition, we described fNUMT, which can simultaneously detect non-reference nuclear sequences of mitochondrial 
origin (non-ref NUMTs) and their derived artifacts. Using these new methods, we explored the contribution of mtDNA 
to ESCC utilizing the multi-omics data of 663 paired tumor-normal samples.

Results  dMTLV outperformed the existing methods in sensitivity without sacrificing specificity. The verification using 
Nanopore long-read sequencing data showed that fNUMT has superior specificity and more accurate breakpoint 
identification than the current methods.

Leveraging the new method, we identified a significant association between the ESCC overall survival and the ratio 
of mtDNA copy number of paired tumor-normal samples, which could be potentially explained by the differential 
expression of genes enriched in pathways related to metabolism, DNA damage repair, and cell cycle checkpoint. 
Additionally, we observed that the expression of CBWD1 was downregulated by the non-ref NUMTs inserted into its 
intron region, which might provide precursor conditions for the tumor cells to adapt to a hypoxic environment. More-
over, we identified a strong positive relationship between the number of mtDNA truncating mutations and the contri-
bution of signatures linked to tumorigenesis and treatment response.

Conclusions  Our new frameworks promote the characterization of mtDNA features, which enables the elucidation 
of the landscapes and roles of mtDNA in ESCC essential for extending the current understanding of ESCC etiology. 
dMTLV and fNUMT are freely available from https://​github.​com/​sunny​zxh/​dMTLV and https://​github.​com/​sunny​zxh/​
fNUMT, respectively.
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Background
Mitochondria are essential organelles in human cells. 
The key function of mitochondria is to provide adeno-
sine triphosphate (ATP) to cells through oxidative phos-
phorylation for various life activities [1]. It has therefore 
been implicated in carcinogenesis because the disruption 
of bioenergetic homeostasis is a common feature of can-
cers [2]. In addition, mitochondria extensively participate 
in biosynthesis, metabolism, and signal transduction and 
play important roles in controlling cell cycle, differentia-
tion, and apoptosis, all of which are intrinsically linked to 
tumorigenesis and progression [3–5].

The function of mitochondria is largely programmed 
by mitochondrial DNA (mtDNA), which is a 16,569-
bp, double-strand, and circular molecule that includes 
the noncoding D-loop region and the coding regions of 
13 protein-coding genes, 22 tRNAs, and 2 rRNAs [6, 7]. 
Previous studies have shown that the mtDNA signatures, 
including variants, copy number (mtCN), and nuclear 
sequences of mitochondrial origin (NUMTs), are asso-
ciated with many cancer types [8]. Specifically, support-
ive evidence such as the somatic presence of functional 
mtDNA variants in tumor tissues have been described 
in many cancers [9–13]. The reduction of mtCN in 
tumors relative to the adjacent normal was observed in 
most cancers, while the opposite trend was found in lung 
and lymph cancers [14, 15]. Further observations have 
uncovered the association between patient survival and 
mtCN in several cancer types [15]. Additionally, NUMTs 
were demonstrated to be activated in tumors [16, 17], 
and those located on the tumor-associated genes might 
lead to tumorigenesis by disrupting the gene function 
[18]. Together, these studies confirmed the crucial role 
of mtDNA in cancers. However, as the esophageal carci-
noma (EC) samples included in the international consor-
tium were almost adenocarcinoma, the knowledge about 
the molecular profile of mtDNA as well as their contri-
bution to esophageal squamous cell carcinoma (ESCC) 
remains limited.

EC is a common gastrointestinal malignancy, ranking 
the seventh and sixth in global cancer incidence and mor-
tality, respectively [19]. ESCC is the dominant histologi-
cal subtype of EC and has the highest incidence in China 
[20]. Despite the great progress in clinical treatment and 
targeted therapies, the prognosis of ESCC is still unsat-
isfactory, largely due to the partially known molecular 
features underlying ESCC etiology [21, 22]. While the 
molecular characterization of nuclear DNA (nDNA) has 
been extensively explored [23, 24], little was known about 
the contribution of mtDNA to ESCC. Even though a few 
studies have implied the potential relevance of mtDNA 
in ESCC [25–30], they were largely limited by the sam-
ple sizes and the applied technologies such as target 

sequencing and real-time PCR, whereby the NUMTs and 
their derived false positive mtDNA variants (NUMT-FPs) 
were undetectable, impeding the comprehensive portrait 
of mtDNA in ESCC.

Whole-genome sequencing (WGS) is by far the most 
effective technology to fully characterize the molecu-
lar profile of mtDNA. However, tens of thousands of 
coverages of mtDNA in the regular WGS data result in 
extremely high redundancy and heterogeneity. In addi-
tion, the existence of sequencing errors (10–4–10–2) 
[31, 32] and polymerase chain reaction (PCR) errors 
(10–7–10–5) [33] further increases the difficulty of detect-
ing mtDNA mutations; the available tools are very limited 
and have certain restrictions. For instance, MToolBox 
[34] does not apply to data with a coverage depth greater 
than 5000 × ; Mutect2 [35] and VarScan2 [36] are not 
suitable for detecting mutations with low variant allele 
fraction (VAF). In fact, due to the lack of protective pro-
teins and damage repair mechanisms, mtDNA is the first 
sensor for the subtle changes in the cellular environment 
[5]. It is therefore essential to detect low-heteroplasmic 
mtDNA variants to reflect early changes in the organ-
ism’s environment before the onset or in the early stages 
of human diseases.

Another challenge is to identify the non-reference 
NUMTs (non-ref NUMTs) as well as the derived false 
positives (non-ref NUMT-FPs) that could confound the 
detection of mtDNA variants with low VAFs. The inte-
gration of mtDNA to nDNA is an inevitable result of 
endosymbiosis, and most of them were the products of 
long-term cellular evolution and have been recorded 
in the human reference genome (ref-NUMTs) [37]. By 
contrast, the recently occurred non-ref NUMTs, espe-
cially those present as somatic, have been demonstrated 
to affect the stability of nDNA and the expression of the 
corresponding genes in human diseases [16, 18]. Previ-
ous studies have proposed methods such as NUMTs-
detection and dinumt for detecting non-ref NUMTs from 
WGS data [38, 39]; however, tools that can simultane-
ously detect non-ref NUMTs and non-ref NUMT-FPs 
were still lacking.

Here, we propose dMTLV for detecting mtDNA vari-
ants with low VAF, and describe fNUMT, for finding 
non-ref NUMTs, as well as their derived NUMT-FPs. 
In addition, we present a sample-specific filter strategy 
for mtDNA variants based on non-ref NUMT-FPs and 
mtCN. We then applied these methods to the WGS data 
of 663 paired ESCC tumor-normal samples. Coupled 
with the RNA-seq and whole-genome bisulfite sequenc-
ing (WGBS) of the 155 ESCC pairs therein, we present 
the most comprehensive multi-omics features of mtDNA 
in ESCC, extending the current understanding of ESCC 
etiology.
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Methods
The likelihood‑based method dMTLV
dMTLV performs two rounds of likelihood tests to 
reduce the noise of sequencing and PCR errors and 
generate highly confident mtDNA variants. dMTLV is 
available from https://​github.​com/​sunny​zxh/​dMTLV 
with the details described as follows.

dMTLV takes bam files as input and constructs read 
families based on chromosome coordinates and CIGAR 
strings of pair-end read. In a read family, for each posi-
tion containing potential alternative alleles with the fol-
lowing criteria: (1) supported by both strands, (2) base 
quality > 20, and (3) mapping quality > 30, let X indi-
cate all the alleles and θ denote the allelic fraction. For 
reads covering this coordinate, xi denotes the allele on 
read i that belongs to {1,2…N}, with the correspond-
ing sequencing error represented as ei. The probability 
mass function of X is P(x|θ), with the index parameter 
of θ = (θA, θC, θG, θT)T. The parameter space of θ is Ω. 
Assuming g ∈ {A, C, G, T}, and θg represents the allelic 
fraction of g, which has θg ∈ [0, 1] and ∑θg = 1, we can 
get:

the log-likelihood function of (1) can be present as:

with the likelihood ratio test written as:

For the scenario of θg = 0, which was on the margin of 
the parameter space, we applied a previously presented 
method to fit χ2 by adjusting the test of the general likeli-
hood ratio [40]. In addition, we applied the Monte Carlo 
method to compare the p values estimated theoretically 
and empirically with the aim to explore the power of 
our model when the sequencing errors were uniformly 
distributed.

The number of free variables was two and three under 
the null and alternative hypothesis, respectively, the 
degree of freedom of the χ2 is 1, and the probability of g 
is:

in which cdf(x) denotes the cumulative density function 
of the χ2. For Pg below the threshold α, the null hypoth-
esis is rejected, and g is regarded as the alternative allele 
in the position.

(1)
P(xi|θ) = P not error|g · P(g)+ P error|not g · P(not g)

= (1− ei)θg +
ei
3
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, g = xi

(3)tg = −2{ℓ0(θ)− ℓ1(θ)} ∼ χ2
1

(4)Pg = 1− cdf
(

tg
)

Even though Pg is not the probability of H0,g being true 
and g being a sequencing error, it is a good estimation for 
the error rate of g under Pg ≤ 10–3. Following this, those 
alleles with Pg ≤ α in both strands were reserved and the 
other alleles were substituted with “N”. Then the reads 
covering the position are assembled as several consensus 
sequences.

Next, for the alleles at a consensus sequence, let Pc(g) 
represents the error rate of g. Assuming the reads cover-
ing the position were generated from n DNA templates, 
a coalescent method was applied to infer the PCR errors 
[41]. Theoretically, the frequency of a PCR error expo-
nentially decreases as the PCR cycles represented as m 
increase. Thereby, the combined PCR error rate could 
be denoted as the probability of successfully detecting a 
PCR error with frequency ≥ 2−m/n, which is equal to or 
below:

where epcr(g) indicates the coalescent PCR error rate and 
Ppcr(g) is the overall PCR error rate of all alleles within the 
consensus sequence, we can have:

As the range of PCR fidelity is (10–7–10–5), the product 
of Pc(g) and Ppcr(g) is approximately zero, and the com-
bined base quality of g on the consensus sequence is as 
follows:

The Q(g) was then transferred to an ASCII character. 
The consensus sequences and the quality of each base 
were then sorted into a BAM file, of which each posi-
tion containing potential alternative alleles went through 
another round of likelihood tests using Eqs. (1) to (3), and 
the final confident mtDNA variations, as well as the sup-
portive information, were generated. For indels, the num-
ber of consensus sequences that support the existence of 
the indel (I + , D +) were counted at each position and the 
one with the highest supporting number was chosen and 
outputted.

Generation of simulation data
Twenty single nucleotide variations (SNVs), five short 
insertions, and five short deletions were randomly gen-
erated and added to the Revised Cambridge Reference 
Sequence (rCRS, NC_012920) using a custom script. 
The two artifact-prone regions chrM:300–317 and 
chrM:16,180–16,193, as well as chrM:3107 which is “N”, 
were blacklisted when generating the simulated random 
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https://github.com/sunnyzxh/dMTLV
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variants [42]. Seven VAFs of 0.001, 0.005, 0.01, 0.05, 0.1, 
0.25, and 0.5 were simulated under the average mtDNA 
coverage of 5000 × , 10,000 × , and 20,000 × , generating a 
total of 21 datasets. Specifically, simNGS (https://​www.​
ebi.​ac.​uk/​goldm​an-​srv/​simNGS/) was applied to generate 
the pair-end 150 bp sequencing reads. For instance, when 
generating the simulation data with VAF: 0.001 and Cov-
erage: 5000 × , of which the mutated coverage is 5 × , the 
parameters and command used to produce the fasta files 
are as follows:

cat mutated_rCRS.fa | simLibrary  -x 5 -r 150 --seed 
12 > chrM_mut_5x.fasta
cat wide_rCRS.fa | simLibrary-x 4995 -r 150 --seed 
12 > chrM_wide_4995x.fasta
cat chrM_mut_5x.fasta chrM_wide_4995x.
fasta > chrM_sim_5000x_mut5x.fasta
simNGS -p "paired" -O "chrM_sim_5000x_mut5x_
PE150" -o "fastq" -s 12 runfile chrM_sim_5000x_
mut5x.fasta

Here, the runfile (s_1_0033.runfile), which was esti-
mated by AYB to describe the distribution of cluster 
intensities and noise in real life by an Illumina machine, 
was downloaded from https://​www.​ebi.​ac.​uk/​goldm​
an-​srv/​simNGS/​runfi​les5/​151cy​cPE/s_​1_​0033.​runfi​le. 
Noted that the fragment IDs, e.g., “Frag_1”, was replaced 
with “mut_Frag_1” or “wide_Frag_1” for chrM_mut_5x.
fasta or chrM_wide_4995x.fasta, respectively, to avoid 
reads ID conflict in the alignment process.

Performance evaluation of dMTLV and comparison 
with other tools
Using the above simulation data, the performance of 
dMTLV was evaluated and compared with other three 
published tools MToolBox [34], Mutect2 (“mitochon-
drial mode” of the Genome Analysis Toolkit (GATK) 
v4.1.1.0) [35, 43], and VarScan2 [36] with default param-
eters unless otherwise stated. Specifically, when using 
MToolBox, we added “-d 500000” in line 248 of the script 
“assembleMTgenome.py”, which generated the pileup 
file, to allow a maximum number of 500,000 reads to 
be included for each position because the default -d of 
8000 could miss a substantial fraction of sequencing 
reads. As MToolBox has implemented a workflow that 
used gsnap to map sequencing reads to chrM and rea-
ligned the chrM-mapped reads to the reference genome 
containing both nDNA and mtDNA to remove the ref-
NUMTs derived reads, we used the MToolBox generated 
“OUT2-sorted.bam” as the input of dMTLV, Mutect2, 
and VarScan2.

True positive rate (TPR, also called sensitivity or recall), 
positive predictive rate (PPV, also called precision), and 

their harmonic mean F1 score were used to quantify the 
performance of the above four methods and determine 
the best strategy for integrating these methods to get the 
most comprehensive and accurate results. Specifically, 
TPR was calculated by the number of detected true posi-
tive variants against the total number of simulated vari-
ants. PPV was measured by the number of detected true 
positive variants against the total number of detected 
variants. F1 score is calculated as 2 × (PPV × TPR) / 
(PPV + TPR). In addition, we evaluated the Pearson cor-
relation between the observed and the simulated VAF of 
each variant for each tool across different coverage.

Framework and performance evaluation of fNUMT
fNUMT is available at https://​github.​com/​sunny​zxh/​
fNUMT and the details were described as follows. Reads 
mapped to rCRS were aligned to reference genome con-
taining nDNA and rCRS using bwa mem with parameter 
“-t 9 -K 12 -Y” [44], and only proper paired reads were 
retained. Junction reads with one portion mapped to 
autosome and the remaining part aligned to rCRS were 
extracted and clustered to locate the mtDNA segment 
coordinates as well as the autosomal insertion site. Spe-
cifically, the mapped position of read clusters with the 
first part soft-clipped and the second part mapped to 
rCRS with CIGAR string format of “xxSxxM” is nearly 
the start coordinates of the transferred mtDNA segment; 
in contrast, the “xxMxxS” read clusters could localize the 
end positions; and the breakpoints of the insertion site 
could be localized by the mapping coordinates of all junc-
tion reads. The discordant paired reads with one read 
mapped to rCRS and the other aligned to autosome were 
also counted as supportive information of the existence 
of the non-ref NUMTs. The homozygosity or heterozy-
gosity of the non-ref NUMTs was estimated by the frac-
tion of supportive reads against the mean coverage of the 
autosome.

Next, both the junction reads and the rCRS mapped 
reads of the discordant read pairs were assembled using 
CAP3 [45] to generate NUMT consensus contigs which 
were then mapped to rCRS using blastn [46] for verifying 
the mtDNA segment and identifying the mismatch bases.

To evaluate the performance of fNUMT, two tumor-
normal paired samples from two ESCC patients with 
both short-read (150 bp, pair-end) and long-read (Nano-
pore) sequencing data were used. The library preparation, 
sequencing, and bioinformatics pipeline were described 
in our previous study [47]. The performance of fNUMT 
was compared with NUMTs-detection [38] and dinumt 
[39]. For dinumt, only the non-ref NUMTs classified as 
“PASS” and had mtDNA segment positions were retained 
for comparison.

https://www.ebi.ac.uk/goldman-srv/simNGS/
https://www.ebi.ac.uk/goldman-srv/simNGS/
https://www.ebi.ac.uk/goldman-srv/simNGS/runfiles5/151cycPE/s_1_0033.runfile
https://www.ebi.ac.uk/goldman-srv/simNGS/runfiles5/151cycPE/s_1_0033.runfile
https://github.com/sunnyzxh/fNUMT
https://github.com/sunnyzxh/fNUMT
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We validated the non-ref NUMTs detected from 
short-read sequencing using the long-read data of the 
same sample as follows: (i) extracted the reads mapped 
around the estimated insertion sites (± 100 bp), (ii) man-
ually inspected the reads in Integrated Genomics Viewer 
(IGV) [48] and the called non-ref NUMT was determined 
as false if no insertion marks existed (colored in purple 
with a number inside indicating the length of inserted 
sequences), and (iii) for those with insertion marks of 
comparable length against the estimated, extracted the 
insertion sequences and aligned them to the reference 
genome using blastn. We determined the called non-ref 
NUMTs to be true if the insertion sequences could map 
to the estimated positions of mtDNA.

Multi‑omics data of 663 ESCC patients and mtCN 
calculation
In this study, a total of 663 patients from Shanxi and 
Xinjiang provinces diagnosed with ESCC were included. 
None of them received any prior treatment when the 
tumor and matched normal samples were collected. All 
the samples were subject to WGS, wherein 155 were 
under additional WGBS and RNA sequencing. The 
detailed process for sample collection, DNA/RNA extrac-
tion, library preparation, sequencing, and basic data pro-
cessing were described in our previous studies [23, 24]. 
To measure the effect of oxidative damage induced dur-
ing acoustic shearing, we calculated the global imbalance 
value (GIV) score of G-T/C-A (an indicator of oxidative 
damage) for all samples using “Damage estimator” after 
sequencing alignment [49]. The mean GIV score of 1.04 
indicated that our data showed almost no oxidative dam-
age. The average autosomal sequencing coverage of WGS 
for normal and tumor samples was 29.6 × and 62.5 × , 
respectively. In this study, for each sample, all the clean 
sequencing reads were mapped to rCRS first and the 
rCRS-mapped reads were realigned to reference genome 
containing nDNA and rCRS using gsnap and bwa for 
removing/detecting ref-NUMTs and non-ref NUMTs 
and subject for mtDNA variants detection. The mean 
coverage of mtDNA for normal and tumor samples was 
11,957.1 × and 11,108.2 × , respectively. The mtCN was 
then calculated as:

The purity and ploidy of tumor samples were inferred 
using ABSOLUTE [50] whereas for normal samples the 
purity and ploidy were set as 1 and 2, respectively.

The RNA sequencing data were mapped to the refer-
ence genome GRCh37/hg19 using STAR (v2.4.2a) [51] 
and the expression level was estimated by RSEM (1.2.29) 

mtDNA coverage/mean autosome coverage× (purity × ploidy + (1− purity)× 2)

[52] using uniquely mapped reads. The methylation level 
of a certain region was calculated as the mean of the frac-
tion of reads supporting CG of each position using a cus-
tom script.

mtDNA variants filter based on non‑ref NUMT‑FPs 
and mtCN
The VAFs of non-ref NUMT-FPs were estimated as 1/
(1 + mtCN) and 2/(2 + mtCN) for heterozygous and 
homozygous non-ref NUMTs, respectively. For the ini-
tial mtDNA variants within the inserted mtDNA seg-
ment, those (1) were the identified mismatches, (2) with 
VAF near or below the inferred threshold (the differ-
ence of observed VAF to the threshold, divided by the 
threshold < 1), were supposed to be non-ref NUMT-FPs 
and were thereby removed. Of note, for non-ref NUMTs 
larger than 1  kb, the entire sequences of the inserted 
mtDNA segment may not be assembled successfully; 
therefore, the mismatches within the unassembled 
regions were undetectable. In this case, we only applied 
the above criteria (2) to remove the potential non-
ref NUMT-FPs. The initial mtDNA variants that were 
inferred mismatches but not satisfied with the criteria (2) 
may result from both non-ref NUMT-FPs and the true 
mtDNA variants and thereby be retained. For all initial 
mtDNA variants, those with VAF below 1/mtCN were 
removed.

mtDNA mutational spectrum and signature
The mutational spectrum of mtDNA variants was calcu-
lated using a custom script for both six different substitu-
tions and 96 different profiles considering the nucleotide 
context. The R package “MutationalPatterns” and “NMF” 
(non-negative matrix factorization) was applied to 
extract the mutational signatures of somatic mtDNA var-
iants and calculate the cosine similarity against Catalogue 
of Somatic Mutations in Cancer (COSMIC) single base 
substitution (SBS) signatures (v3.3-June 2022) [53].

Public databases for annotation and comparison
mtDNA variants were annotated using ANNOVAR 
with the parameter of “-buildver GRCh37_MT -dbtype 
ensGene” [54]. All the mtDNA variants were formatted 
under HGVS nomenclature [55] and interpreted fol-

lowing the ACMG/AMP guidelines specific for mito-
chondrial variations [10]. We compared the SNVs and 
Indels results of our study with the MITOMAP database 
(https://​www.​mitom​ap.​org/​foswi​ki/​bin/​view/​MITOM​
AP) [56]. Specifically, we download the mitochondrial 
general variants (VariantsControl; VariantsCoding) for 

https://www.mitomap.org/foswiki/bin/view/MITOMAP
https://www.mitomap.org/foswiki/bin/view/MITOMAP
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comparing variant frequency including SNVs and Indels. 
The frequency of MITOMAP variants was derived from 
56,910 GeneBank sequences and 78,504 Control Region 
sequences which are therefore good representations of 
the variants’ frequencies of the overall population. We 
download the somatic mutations (MutationsSomatic) 
and the curated disease-associated mutations (Mutation-
sRNA; MutationsCodingControl; ConfirmedMutations) 
for comparison in order to identify the possible func-
tional variants. Noted that we ignored the double/mul-
tiple bases substitutions (e.g., AT-CC; AGAA-AGA​AAG​
AA) and inversions recorded in the above datasets.

For the comparison of non-ref NUMTs, we downloaded 
the 1637 non-ref NUMTs identified from 66,083 human 
genomes (supplementary table S1 [38]). Among these, we 
applied the 1601 non-ref NUMTs with complete infor-
mation on mtDNA breakpoints (1610) and successful 
transfer from hg38 to hg19 (9 failed) for comparison. The 
population frequency of East Asians was used (column 
name: frequency (EastAsian)). In addition, we down-
loaded the 141 distinct non-ref NUMTs identified in 946 
low-coverage WGS data from the 1000 Genomes Project 
(1KGP) phase 1 and an additional 53 high-coverage WGS 
data from the Human Genome Diversity Project (HGDP, 
Supplementary Data: ALL.dinumt.phase1.hgdp.final.
numts.sites.vcf [39]). The population frequency of 1 KGP 
and HGDP was calculated by dividing the number of 
“SAMPLES” by 999 (946 + 53). The non-ref NUMTs from 
different studies with nuclear insertion positions within 
200 bp were determined as shared.

Statistical analysis
The correlation test was performed using Pearson or 
Spearman’s rank correlation test in R. The comparison 
between/among groups was performed using the Wilcox, 
t-test, or one-way ANOVA test. The survival analysis was 
conducted by R package survival and survminer using the 
Cox model. The p values were adjusted by the Bonferroni 
method in multiple tests.

Results
A new likelihood‑based tool for heteroplasmic mtDNA 
variants detection
We developed a new likelihood-based method named 
dMTLV for detecting mtDNA variants of low VAF 
from WGS data. Briefly, dMTLV first performs a likeli-
hood test to remove sequencing errors, then constructs 
consensus sequences via local assembly, and conducts 
another round of likelihood tests to remove PCR errors, 
finally generating highly confident mtDNA variants 
(Fig. 1a, Method).

We assessed the performance of dMTLV using 30 
randomly simulated mtDNA variants under seven VAFs 
of 0.001, 0.005, 0.01, 0.05, 0.1, 0.25, and 0.5 and three 
sequencing depths of 5000 × , 10,000 × , and 20,000 × . 
Three existing tools: MToolBox, Mutect2 (“mitochon-
drial mode”), and VarScan2 were used for comparison 
using the quantifying indicators of TPR, PPV, and their 
harmonic mean F1 score. The correlation between the 
observed and the simulated VAFs of each variant for 
each tool was also compared (Methods).

Specifically, dMTLV achieved the highest TPR, PPV, 
and F1 for VAF < 0.01 across all three coverages in sim-
ulation data, but the PPV started to decrease from VAF 
of 0.1, suggesting that dMTLV is appropriate for detect-
ing ultra-low VAF below 0.01. MToolBox achieved an 
intermediate TRP, PPV, and F1 across all VAF when 
the average coverages were 5000 × and 10,000 × but had 
the lowest PPV and thus the lowest F1 when the cover-
age reached 20,000 × , which is consistent with the ini-
tial report in the paper proposing MToolBox that it is 
appropriate for data with relatively low coverage. Var-
Scan2 had the lowest TPR, PPV, and F1 when the VAF 
was 0.001, but performed intermediately when the VAF 
was larger across all coverages. Similarly, Mutect2 per-
forms poorly when the VAF is below 0.01, but achieves 
the best result when VAF > 0.01 for all coverages, which 
is in line with its original design to detect mutations 
with a VAF greater than 0.01 (Fig. 1b).

For short insertion and deletions, across all cov-
erages, Mutect2 had generally the lowest TPR for 
VAF <  0.01 but achieved a consistently high PPV for 
VAF > 0.01 for all coverages. By contrast, VarScan2 had 
the lowest PPV for both insertions and deletions across 
all coverages and VAFs. VarScan2 performed poorly 
for indels, especially for insertions. dMTLV performed 
the second best after Mutect2 for both insertions and 
deletions for all coverages and VAFs (Additional file 1: 
Fig. S1).

Mutect2 achieved the highest Pearson correlation 
for the VAFs between the simulated and the observed 
variants, followed by dMTLV and VarScan2. MToolBox 
had the lowest correlation probably due to its discard-
ing anomalous read pairs when generating pileup files 
(Fig. 1c).

Collectively, dMTLV improved the TRP without 
sacrificing PPV for detecting mtDNA variants with 
VAF < 0.01, and the improvement gets more significant 
as the sequencing coverage increases. This result sug-
gested that the integration of mtDNA variants detected 
by Mutect2 with VAF > 0.01 and those detected by 
dMTLV with VAF from 0.001 to 0.01 could capture the 
most accurate mtDNA variants covering the most com-
prehensive VAF ranges.
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A new framework for non‑ref NUMTs and NUMT‑FPs 
detection
We developed fNUMT for detecting non-ref NUMTs 
and the derived non-ref NUMT-FPs (Fig.  2a). Briefly, 
fNUMT takes the ref-NUMTs free bam file as input, of 
which the reads repetitively mapped to both nDNA and 
mtDNA were removed and extracts the soft-clipped 

reads with one portion of sequence mapped to nDNA 
and the remaining to mtDNA. These potential junction 
reads were then clustered to locate the insertion site of 
nDNA and the start and end positions of the inserted 
mtDNA segments. The latter is essential as the mtDNA 
are circular molecular with artificially defined coor-
dination, unlike the segments in nDNA, of which the 

Fig. 1  The workflow of dMTLV and the performance evaluation based on simulation data. a The workflow of dMTLV. For read family containing 
candidate alleles, dMTLV first performs a likelihood test to remove alleles likely to be sequencing errors, then constructs consensus sequences 
containing both true variants and PCR errors. Based on this, dMTLV performs a second likelihood test to eliminate PCR errors and generates the final 
result. b The TPR, PPV, and F1 of four tools: MToolBox, Mutect2, VarScan2, and dMTLV in detecting 20 randomly simulated SNVs under seven 
distinct VAFs and three different coverages. The comparison of VAF from 0.001 to 0.01 was highlighted with rectangles in light pink. c The Pearson 
correlation between the simulated and the observed VAFs by each tool across three different coverages. All the correlations were significant, 
with a p-value less than 0.01
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numerically smaller coordinate was naturally taken as the 
start position, the segments spanning the artificial break 
in the circular genome had a start position numerically 
larger than the end position. Nevertheless, the start and 
end positions were ambiguous in most previous studies, 
which confused the determination of segment size and 

the further exploration of the consequences of the non-
ref NUTMs.

Next, fNUMT extracted and assembled the mtDNA-
mapped sequences either from the potential junction 
reads or the discordant read pairs with one read mapped 
to mtDNA and the other to nDNA. The consensus 

Fig. 2  The workflow of fNUMT and the performance evaluation. a (Left) The preprocess of WGS data for downstream analysis. The WGS clean data 
were first aligned to rCRS. The mtDNA-mapped reads were then aligned to the reference containing nDNA and rCRS to remove the candidate 
ref-NUMTs covered by reads that were repetitively mapped to autosome and rCRS. The ref-NUMT free data were subsequently input to fNUMT 
for detecting non-ref NUTMs and NUMT-FPs. (Right) fNUMT searches the candidate junction reads with one end mapped to nDNA and the other 
to mtDNA. Then cluster such soft-clipped reads according to the mapping coordination and direction to locate the breakpoints of the inserted 
mtDNA segments and the insertion site on nDNA. Next, fNUMT assembly all the reads mapped to the candidate mtDNA segments and realign 
the contig to mtDNA to confirm the occurrence of the non-ref NUTMs and detect the mismatches that were the potential non-ref NUMT-FPs. b 
The number of non-ref NUMTs detected by NUMTs-detection, dinumt, and fNUMT in the four samples. c, d An illustration of the confirmation 
of the non-ref NUMTs by long-read sequencing data, taking the non-ref NUMT chrM:59–16089-chr11:49883569 as an example. c The IGV plot 
of short-read data near chr11:49883569 where the soft-clipped reads that could also map to mtDNA (colored in blue) were observed, meaning 
the presence of insertion sequences originated from mtDNA near chr11:49883569. d The IGV plot of long-read data near chr11:49883569 
where the insertion of sequences with inferred sizes of ~ 530 bp (red box) were observed. e The distance of the breakpoints estimated by NUMTs 
detection, dinumt an fNUMT over those inferred by long-read data. The p-value was measured by the Wilcox test
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sequence was then mapped to rCRS and the mismatched 
were detected as the potential non-ref NUMT-FPs.

To evaluate the performance of fNUMT, we applied 
it to the short read (150 bp, pair-end) WGS data of two 
ESCC paired tumor-normal samples and verified the 
results using the Nanopore long-read WGS data of 
the same samples [47]. The performance of fNUMT in 
detecting non-ref NUMTs was compared to the pub-
lished methods NUMTs-detection [38] and dinumt 
[39]. The mean mtDNA coverage of these four samples 
was ~ 11,054, which is approximately five times higher 
than that of ~ 2000 × in the NUMTs detection paper. 
Therefore, when applied NUMTs-detection in our data, 
proportionally, we set the minimum supported discord-
ant reads to 25 from the 5 used in the NUMTs-detection 
paper [38].

Specifically, the number of non-ref NUMTs detected 
by fNUMT, NUMTs-detection, and dinumt differed in 
all four samples (Fig. 2b). fNUMT identified one and four 
germline non-ref NUMTs for each patient, respectively. 
We verified all the ten non-ref NUMTs by the long-read 
sequencing data wherein we observed the insertion of 
sequences with inferred sizes near the estimated break-
point of nDNA, and the inserted sequences could map to 
the coordinates of the inferred mtDNA segment (Fig. 2c, 
d, Additional file 1: Fig. S2, Additional file 2: Table S1). Of 
note, two non-ref NUMTs verified by long-read data were 
not detected by NUMTs-detection and dinumt, indicat-
ing that fNUMT had better specificity. Moreover, we 
ranked the non-ref NUMTs identified by NUMTs detec-
tion and dinumt according to the confidence decided by 
the number of supported signals and the quality score, 
separately, and observed that even the most confident 
one cannot be confirmed by the long-read sequencing 
data (Additional file 1: Fig. S3).

Taking the breakpoints of long-read data as the gold 
standard, we next evaluated the precision of break-
point estimation of fNUMT, NUMTs-detection, and 
dinumt using the eight shared non-ref NUMTs. Each 
non-ref NUMT had three (or four if the estimated two 
nDNA positions were not the same) breakpoint dis-
tances calculated by the absolute differences between 
the breakpoint estimated by each tool and the long-
read data. Overall, fNUMT predicted the most precise 
breakpoints. The mean breakpoint distances of fNUMT, 
dinumt, and NUMTs-detection were 2.31  bp, 88.63  bp, 
and 154.56  bp, respectively (Fig.  2e). Take the non-ref 
NUMTs: chrM:59–16089-chr11:49883569 in tes200124-
T-N-1 as an example, of which the inferred mtDNA seg-
ments by fNUMT was chrM:61–16089, the same with 
that estimated by long-read data while the chrM:16090–
16489 inferred by NUMTs-detection missed chrM:1–61 
and chrM:16490–16569. In terms of the insertion site 

on nDNA, the chr11:49883569–49883572 estimated 
by fNUMT was 0  bp and 2  bp away from the long-
read decided breakpoint of chr11:49883569 while the 
chr11:49883298–49883856 by NUMTs-detection were 
271 bp and 287 bp away, and chr11:49883500–49883665 
by dinumt were 69  bp and 97  bp away. More specifi-
cally, among the inferred 30 breakpoints of all 10 non-ref 
NUMTs detected by fNUMT, 11 were the same, 10 with 
the distance of 1 bp, 4 with 2 bp, 2 with 3 bp, and 2 with 
6 bp, indicating that the breakpoints inferred by fNUMT 
were very close to that identified by long-read sequencing 
data (Additional file 2: Table S1).

In addition, fNUMT identified 22, 24, 28, and 27 
potential non-ref NUMT-FPs in each of the four sam-
ples, among which two were indels present in all sam-
ples (m.16258_16259insA and m.16264_16264del) that 
accumulated in the non-ref NUMT chrM:61–16089-
chr11:49883569–49883572. As non-ref NUMT-FPs were 
not generated by NUMTs-detection and dinumt, the 
performance regarding non-ref NUMT-FPs could not be 
compared.

Multi‑omics data of ESCC and the mtCN characterization
In this study, we included the WGS data of 663 ESCC 
paired tumor-normal samples, of which the RNA-seq and 
WGBS were also available in 155 patients [23, 24]. The 
mtCN was estimated by the sequencing depth of mtDNA 
(normal: 11,957.1 × , tumor: 11,108.2 ×) and nDNA (nor-
mal: 29.6 × , tumor: 62.5 ×), which showed a significant 
positive correlation in each sample type (Fig.  3a). We 
further adjusted the mtCN in tumor samples based on 
the purity and ploidy estimated by ABSOLUTE [50]. On 
average, the mtCN of tumor samples was 412.3, signifi-
cantly lower than 808.5 in normal samples (p < 2e − 16). 
At the individual level, 592 out of 663 (89.3%) patients 
had decreased mtCN in the tumor compared to the 
paired samples, while the remaining 71 patients had the 
opposite trend (Fig. 3b).

We next evaluated the relevance of mtCN to gene 
expression and methylation. Specifically, we found a sig-
nificant positive correlation between the expression of 
MT-CO1, MT-CO3, MT-ND3, and MT-RNR2 with mtCN 
in all samples, while a negative association was found in 
MT-ND6 (Fig. 3c). Regarding the methylation level of all 
mtDNA regions, we observed a significant positive cor-
relation of the methylation level of MT-CO3, MT-RNR1, 
and five tRNAs (particularly tRNA-Thr) with mtCN in 
tumor samples; however, this was not found in normal 
and all samples (Fig. 3d).

Previous mtDNA studies in pan-cancer have shown 
that a high mtCN in tumor tissue is associated with a bet-
ter prognosis in some cancer types and an inverse trend 
in others [14]. In this study, the patients with high mtCN 
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in tumor samples tended to have worse overall survival; 
however, this was only marginally significant (p = 0.063, 
Fig. 3e).

Instead, we observed a significant association 
(p = 0.0015) between the overall survival with the TN-
ratio calculated as the ratio of mtCN between the paired 
tumor and normal sample (Fig. 3f ). Specifically, patients 
with TN-ratio > 1 had worse overall survival, suggesting 
that the tumor cells in these patients may have a bet-
ter ability to compete for individual energy than normal 
cells, thus leading to a worse prognosis. Given the differ-
ences in energy metabolism basis between individuals, 
the comparison of TN-ratio would be more reasonable 
than simply comparing the mtCN of tumor tissues among 
patients.

Interestingly, we observed that the TN-ratio increased 
with the T stage progressed (p = 0.00057), which was 
mainly ascribed to the increase of mtCN in tumor sam-
ples (p = 0.005), while the mtCN was nearly unchanged in 
normal samples (Fig.  3g). This result was similar to the 
previous finding that mtCN increased as diseases pro-
gressed from noncancerous esophageal mucosa to ESCC 
and finally to lymph node metastasis [25]. Since patients 
with high T stage tend to have a worse prognosis, this 
result supported the correlation between TN-ratio and 
overall survival from another perspective. Except for 
the T stage, we did not observe significant associations 
between TNratio with other clinical features.

We further explored the genome-wide differentially 
expressed genes between patients with TN-ratio > 1 
(group 1, patient number: 19) and those with TN-ratio < 1 
(group 2, patient number: 136; Fig.  3h). We observed 
that the up-regulated genes in group 1 were enriched in 
energy metabolism-related pathways, suggesting that 
the tumor cells in these patients had better metabolic 
capacity (Fig.  3i). On the contrary, many of the down-
regulated genes are histone modification-related genes. 
As some of the intermediates of mitochondria are the 
substrates of chromatin modification enzymes in the 

nucleus, the down-regulated expression of histone modi-
fication-related genes may be caused by the regulation of 
mitochondrial intermediates, which may increase chro-
matin accessibility and thus promote the proliferation of 
tumor cells. Other down-regulated genes were signifi-
cantly enriched in cell cycle checkpoint and DNA dam-
age repair-related pathways (Fig. 3j), suggesting that the 
tumor cells in group 1 were more capable of escaping the 
cell cycle monitoring and damage repair, which would be 
relevant with the malignant proliferation of tumor cells 
which thus lead to worse survival.

The profile of non‑ref NUMTs in ESCC
We applied fNUMT to detect the non-ref NUMTs of 663 
ESCC paired tumor-normal samples based on the short-
read WGS data. At the sample level, the average number 
of non-ref NUMTs in normal samples was 2.1, slightly 
lower than 2.4 in tumor samples (Fig. 4a). Overall, 1227 
(92.53%) had at least one non-ref NUMTs. More spe-
cifically, 1166 (87.93%) had at least one germline non-ref 
NUMTs; 249 (40.62%) tumor samples had at least one 
somatic non-ref NUMTs, and 98 (15.99%) patients had at 
least one non-ref NUMTs present in normal sample but 
absent in the paired tumor sample (loss) (Fig. 4b).

At the population level, we identified a total of 110 dis-
tinct non-ref NUMTs, 85 (77.3%) of which were < 1  kb 
and present in < 10% of 663 ESCC patients (Fig.  4c). 
On average, the size of non-ref NUMTs in tumors 
(470.47  bp) was slightly larger than in normal samples 
(443.26 bp). Interestingly, we observed that the most fre-
quent four non-ref NUMTs had small sizes (< 100  bp), 
and all were present as germline. On the contrary, the 14 
non-ref NUMTs with the largest sizes had low frequen-
cies (< 5%) and were mostly (13, 92.9%) somatic or loss. 
These results implied that the non-ref NUMTs may have 
potential roles in ESCC and thereby underwent different 
selection pressures.

We also compared the 110 non-ref NUMTs with 
those (num = 1601, Methods) identified in 66,083 

Fig. 3  The multi-omics feature of mtCN in 663 ESCC paired tumor-normal samples. a The sequencing coverage of mtDNA and nDNA in the 1326 
patients. The correlations were evaluated by the Pearson test. b The mtCN in normal and tumor samples. Lines colored in blue indicate a lower 
mtCN in the tumor over the paired normal samples, otherwise in purple. The p-value was calculated by the two-sided t-test. c The Spearman 
correlation between the expression of the mtDNA coding genes with mtCN in the tumor, normal, and all samples. d The Spearman correlation 
between the methylation level of the mtDNA regions with mtCN in the tumor, normal, and all samples. e Plots of overall survival for ESCC patients 
with mtCN above and below the median value. f Plots of overall survival for ESCC patients with TN-ratio above and below 1. For both e and f, 
the shaded areas represent the 95% confidence intervals, with the risk table under the survival plot. p values were calculated by log-rank test. g The 
TN-ratio and mtCN under different T stages. The pairwise comparison was performed by the Wilcox test (* < 0.05; ** < 0.01; *** < 0.001; **** < 0.0001, 
ns not significant), and the overall p values were calculated by the one-way ANOVA test. h The differentially expressed genes of the tumor samples 
of patients with TN-ratio > 1 over those with TN-ratio < 1. p values were calculated by the Wilcox test and adjusted by the Bonferroni method. i, j The 
enriched GO terms of genes significantly (p < 0.01) upregulated (i) and downregulated (j) in the tumor samples of patients with TN-ratio > 1. The p 
values were adjusted by the Bonferroni method

(See figure on next page.)



Page 11 of 19Zhuang et al. Genome Medicine           (2024) 16:50 	

Fig. 3  (See legend on previous page.)
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human genomes from 100,000 Genomes Project in Eng-
land [38], and in 946 and 53 genomes from 1 KGP and 
HGDP, respectively [39] (Fig.  4d). Generally, the inser-
tion sites of the 110 distinct non-ref NUMTs were dis-
tributed across the whole genome; the most frequent 
non-ref NUMTs (> 10%) occurred on chr11, chr9, chr4, 
chr3, chr2, and chr1, with corresponding mtDNA region 
of D-loop, MT-COX1, MT-ND5, and MT-CYTB (shared 
by the last three), which was similar with previous find-
ing. Most (94, 85.5%) of the non-ref NUMTs were < 1 kb 
(Additional file  1: Fig. S4). Overall, 24 non-ref NUMTs 
were also identified previously. When ranking the 110 
non-ref NUMTs according to the population frequency, 
all the top 13 non-ref NUMTs (> 10%) were also found in 
previous studies with comparable population frequencies 
(Additional file  2: Table  S2). The most frequent non-ref 
NUMT, present in 69.83% of samples, was the insertion 
of the 541  bp D-loop segment (chrM:16089–61) span-
ning the artificial break to chr11:49883569, which would 
otherwise be mistaken as chrMT:61–16089 with the size 
of 16,027 if the start and end positions were not accu-
rately determined.

Noteworthy that one non-ref NUMT (chrM:12714–
14830-to-chr5:32338477 spanning MT-ND5, MT-ND6, 
and MT-CYTB) identified previously with the East-
Asian frequency of 68% and the 1 KGP and HGDP fre-
quency of 25.93% was absent in our cohort (Fig.  4d). 
This non-ref NUMT was also detected by NUMTs-
detection and dinumt in the two ESCC paired samples 
used for fNUMT performance evaluation. However, 
as indicated by the long-read sequencing data, the 
size of the sequence inserted to chr5:32338477 was 
293  bp rather than 2116  bp (Additional file  1: Fig.S5). 
Furthermore, this 293  bp sequence was the “Homo 
sapiens chr5:32338477–32338478 non-reference 
unique insertion sequence” (NCBI accession num-
ber: MH534373), of which the 1–147  bp aligned to 
chrM:14832–14987, and the 147–190  bp reversely 

aligned to chrMT:12723–12867, leading to the wrong 
identification of the insertion of chrM:12714–14830. By 
contrast, fNUMT managed to avoid such false positives 
by clustering potential junction reads according to their 
mapping orientation and filtering out candidate non-ref 
NUMTs with orientation conflict or only one type of 
orientation cluster.

Potential consequences of non‑ref NUMTs in ESCC
We next investigated the association of non-ref NUMTs 
with the previously dissected somatic structural variants 
(SVs) in the nDNA of 528 ESCC individuals (out of the 
663 in this study) [47]. Interestingly, we observed that 
the tumor samples carrying at least one non-ref NUMTs 
(num = 468) tend to have more SVs that were defined 
as complex than those without any non-ref NUMTs 
(num = 60, p = 0.013, Fig. 4e), implying that the insertion 
of mtDNA sequences to nDNA may affect the stability 
of nDNA thus leading to complex SVs. As expected, this 
trend was not found for simple SVs, meaning that the ini-
tiation of simple SVs was not affected by non-ref NUMTs 
(Fig. 4e).

Regarding the origins of non-ref NUMTs, we identi-
fied 46 distinct somatic non-ref NUMTs with a mean 
size of 952.45  bp (Fig.  4f ). The most frequent somatic 
non-ref NUMTs (present in 85 patients) was the inser-
tion of 195 bp segments in COX1 to the intronic region 
of CBWD1 (chrM:6225–6420-to-chr9-129767). Among 
the somatic non-ref NUMTs, 22 (present in 23 patients) 
were ESCC tumor-specific absent in any normal samples 
of our cohort and the previous study [38]. Five such non-
ref NUMTs were in the intron region of FAF1, PDS5B, 
RECQL5, KIF16B, and GABRA3, and 1 in the UTR3 of 
MX1 (Fig. 4g).

Among the 75 germline non-ref NUMTs (Additional 
file  1: Fig. S5), the one on the intronic region of TCF12 
(chrM:7179–7295-to-chr15:57220850, present in one 
individual) would be interesting as TCF12 is a known 

(See figure on next page.)
Fig. 4  The landscape of non-ref NUMTs in 663 ESCC patients. a The number of non-ref NUMTs per sample. The dashed lines indicate the average 
number of non-ref NUMTs per sample type. b The number of non-ref NUMTs of the germline, loss, and somatic per individual. c The correlation 
between the frequency and size of the 110 distinct non-ref NUMTs detected in all 1326 samples, with summary histograms at the edges. The 
high-frequent non-ref NUMTs may include more than one type of source indicated by different colors and shapes. The distribution of non-ref 
NUMTs with frequency < 0.2 and size < 2500 bp was zoomed in. d The circos plot of 110 distinct non-ref NUMTs. From the outside: (1) mtDNA 
genes (left) and nDNA chromosome (right); (2) frequencies of non-ref NUMTs reported in Wei W. et al. [38]; (3) frequencies of non-ref NUMTs 
reported in Dayama G. et al. [39]; (4) frequencies of non-ref NUMTs detected in this study; and (5) arrows representing the insertion of mtDNA 
segments to the breakpoints of nDNA. e The number of somatic simple (left) and complex (right) SVs in 528 tumor samples with (num = 468) 
and without (num = 60) non-ref NUMTs. p values were calculated by the Wilcox test. f The circos plot of 46 distinct somatic non-ref NUMTs. g The 
circos plot of 22 tumor specific non-ref NUMTs. The genes with non-ref NUMTs on the intron region were labeled. Only the frequency in our cohort 
was shown in f and g. h (Left, middle) The expression of CBWD1 in different sample types in patients with different sources of the non-ref NUMTs 
chrM:6225–6420-to-chr9-129767. (Right) The expression of CBWD1 in samples with and without the non-ref NUMTs. p values were calculated 
by the Wilcox test
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tumor-associated gene (COSMIC databases, [53]). Addi-
tionally, as the insertion of mtDNA to the exon region is 
very rare, one germline non-ref NUMT (chrM:11707–
11854-to-chr8-139661937, present in one individual) on 
the exon region of COL22A1 would also be appealing.

We next explored the potential effect of non-ref 
NUMTs on the expression of the host or nearest genes. 
We evaluated the 11 non-ref NUMTs present in at 
least 5 samples of 155 patients with available RNA-
seq data. The result showed that the non-ref NUMT 

Fig. 4  (See legend on previous page.)
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chrM:6225–6420-to-chr9-129767 on the intron region of 
CBWD1, present in 153 out of 310 samples (21 somatic, 
126 germlines, and 6 loss), downregulated the expres-
sion of CBWD1 particularly in normal samples (Fig. 4h). 
Regardless of whether this non-ref NUMT exists, the 
expression of CBWD1 was significantly lower in tumors 
(34.24) than in normal samples (42.09). However, this 
non-ref NUMT further reduced the expression of 
CBWD1 in normal samples from 46.36 to 36.75, with the 
latter comparable to that of tumor samples. Moreover, 
the expression of CBWD1 was further reduced in tumor 
samples with the non-ref NUMTs. In fact, CBWD1 ena-
bles ATP binding activity and is active in the cytoplasm 
[57], which may be the reason of the high frequency of 
this non-ref NUMT. The downregulation of CBWD1 
may affect the ATP binding activity and the subsequent 
ATP production, which may modulate the cellular energy 
metabolism, and thereby providing conditions for tumor 
cells to adapt to a hypoxic environment.

The landscape of mtDNA variants in ESCC
We applied dMTLV and Mutect2 to detect mtDNA vari-
ants of the 663 ESCC paired tumor-normal samples from 
the ref-NUMT free bam files described in Fig.  2a. We 
obtained an average of 1070 initial mtDNA variants per 
sample by integrating mtDNA variants with VAF > 0.01 
detected by Mutect2 and those with VAF from 0.001 to 
0.01 detected by dMTLV. In addition, we identified an 
average of 76 potential non-ref NUMT-FPs (Additional 
file 1: Fig. S6; Method) for each sample. After removing 
non-ref NUMT-FPs, we observed a strong negative cor-
relation between the number of mtDNA variants with 
VAFs ranging from 0.001 to 0.01 and mtDNA coverage 
(R =  − 0.34, p < 2.2e − 16, Additional file  1: Fig. S7), sug-
gesting the existence of depth-related false positive vari-
ants among these low-frequent mtDNA variants. As 
the variants should theoretically appear in at least one 
mitochondrion, those with VAF below 1/mtCN were 
supposed to be false positives. After removing these 

variants, the number of variants with VAF from 0.001 to 
0.01 was in proportion with mtDNA coverage (R = 0.26, 
p < 2.2e − 16, Additional file  1: Fig. S7), consistent with 
the rationale that the increase of sequencing coverage 
improves the chance of identifying low-frequent altered 
alleles. As expected, the detection of mtDNA variants 
with VAF above 0.01 was rarely affected by mtDNA cov-
erage, indicated by the similar R score before and after 
mtCN-based filtering (Additional file 1: Fig. S7).

The above pipeline of mtDNA variants detection 
and filtering resulted in an average of 214.5 variants in 
tumors, significantly lower than 521.9 in normal samples 
(p < 2e − 16, Fig.  5a), consistent with the hypothesis that 
tumor cells were able to eliminate defective mitochondria 
(with mtDNA variants) to keep energy homeostasis to 
survive the changing micro-environment during tumor 
initiation and progression [58]. Additionally, the number 
of mtDNA variants was in proportion with mtDNA cov-
erage, suggesting the robustness of the mtDNA variants.

At the population level, we identified 24,347 distinct 
mtDNA variants. The hotspot regions include D-loop, 
MT-ND1, MT-ND4, and MT-ND5 regardless of the 
source of the variants (germline, loss, or somatic, Fig. 5b). 
Among these, 10,316 (42.4%) variants were also reported 
in MITOMAP database (the overall population cohort), 
and 700 (2.88%) were previously identified as disease-
associated variants, of which 73 were experimentally 
confirmed. Interestingly, 640 (2.63%) were reported as 
somatic variants of many cancer types wherein three var-
iants in D-loop (215A > G, 16304 T > C, 16324 T > C) have 
been observed in EC. The somatic variants identified in 
our cohort and those found in cancers of MITOMAP 
both showed enrichment on D-loop and MT-ND4, while 
our results were additionally enriched on MT-ND1 and 
MT-ND5 (Fig. 5b). Additionally, we identified 126 ESCC 
tumor-specific variants (62 SNVs, 49 short insertions, 
and 15 short deletions) present in at least two tumors but 
not in any normal samples nor MITOMAP general popu-
lations (Additional file 2: Table S3).

Fig. 5  The profiling of mtDNA variants in ESCC. a The correlation between the number of mtDNA variants and coverage in normal and tumor 
samples, with the summary boxplot in the margin. The relation coefficients and p values were calculated by the Pearson test. b The circos plot 
of the population frequency of the 24,347 distinct mtDNA variants detected in the 1326 samples. From the outside: (1) the position of the mtDNA; 
(2) the regions of mtDNA; (3) the frequency of all, germline, loss, and somatic mtDNA variants; and (4) the frequency of somatic mtDNA 
variants in the MITOMAP database. c The correlation between the max VAF of truncating mutations with mtCN in tumor and normal samples, 
with the summary boxplot showing in the margin. The relation coefficients and p values were calculated by the Pearson test. d Plots of overall 
survival for patients with mean VAF of truncating mutations of tumor sample above and below the median value. The colored areas indicate 
the 95% confidence intervals, with the risk table under the survival plot. p value was measured by log-rank test. e The proportion of six mutational 
types under different VAFs, with the mean number per type shown on the right. f Five mutation signatures extracted from the somatic mtDNA 
variants. g The cosine similarity between the five signatures in our cohort with COSMIC single base substitution signatures. h The correlation 
between the number of truncating mutations with the contribution of the five mutation signatures. The relation coefficients and p values were 
calculated by the Pearson test

(See figure on next page.)



Page 15 of 19Zhuang et al. Genome Medicine           (2024) 16:50 	

Fig. 5  (See legend on previous page.)



Page 16 of 19Zhuang et al. Genome Medicine           (2024) 16:50 

We next evaluated the potential contribution of trun-
cating mutations (stop-gain and frameshift indels) to 
ESCC. We observed that the per-sample max VAF of 
truncating mutations (t-VAF) in tumors was signifi-
cantly higher than in normal samples (mean: 0.044 ver-
sus 0.0068, p = 2.25e − 19). Moreover, samples with max 
t-VAF above 0.11 were all tumors (num = 55), imply-
ing that tumor cells were more capable of accumulating 
mtDNA variants that were functionally advantageous 
while eliminating the damaged mtDNA, with the latter 
indicated by the reduced mtCN in tumors (Fig. 5c). More 
interestingly, we observed that patients with higher mean 
t-VAF in the tumor samples had better overall survival 
(p = 0.008, Fig.  5d), suggesting that tumors with more 
comprehensive elimination of dysfunctional mtDNA 
tended to have better survival.

The primary mutation types of mtDNA SNVs in our 
cohort were T > G, T > C, and C > T, with the mean pro-
portion of 32.14%, 27.83%, and 23.89%, respectively 
(Fig.  5e, Additional file  1: Fig. S8, Additional file  1: 
Fig. S9a), which was different with other cancer types 
reported in previous studies wherein the C > T and T > C 
had the first and second largest proportion and T > G 
account only for a small proportion [14]. As this previous 
study only reported mtDNA variants with VAF > 0.01, we 
further analyzed the mutation types under different VAFs 
and observed that the mutation types of variants with 
VAF > 0.01 were also dominant by C > T and T > C, and 
the percentage continued to increase for variants with 
VAF > 0.05 and 0.1 (Fig.  5e). Interestingly, we observed 
worse overall survival for patients with a higher number 
of low-frequent T > G variants in tumor samples (p = 0.01, 
Additional file 1: Fig. S9b), indicating that these large per-
cent T > G variants in our cohort may reflect the instabil-
ity of mtDNA and thereby affect the prognosis of ESCC.

We next investigated the mutational signature of all 
somatic variants, which could be classified into five dis-
tinct signatures by the NMF method (Fig. 5f ). The cosine 
similarity against COSMIC single base substitution (SBS) 
signatures (v3.3-June 2022) showed that Signature_MT3 
significantly correlated with SBS28 (unknown) with a 
cosine similarity of 0.857, Signature_MT4 associated 
with SBS32 (Azathioprine treatment), SBS30 (Defective 
DNA base excision repair due to NTHL1 mutations), 
and SBS11(Temozolomide treatment), with similarity 
of 0.887, 0.839, and 0.805, respectively; Signature_MT2 
marginally correlated with SBS22 (aristolochic acid 
exposure) with similarity of 0.594 and Signature_MT5 
marginally associated with SBS37 (unknown) with simi-
larity of 0.635. Signature_MT1 was supposed to be novel 
without obvious correlation with any COSMIC SBS sig-
natures (Fig.  5g). Interestingly, we found that the num-
ber of truncating mutations was in proportion with the 

contribution of Signature_MT2 and Signature_MT4 
(Fig.  5h), reflecting the potential association of mtDNA 
truncating mutation with aristolochic acid exposure, 
DNA base excision repair, azathioprine, and temozolo-
mide treatment, all of which were relevant to tumorigen-
esis and treatment response.

Discussion
In this study, we describe two new methods dMTLV and 
fNUMT to overcome the current challenges in mtDNA 
study, which could be broadly applied to the accumu-
lated large-scale short-read WGS data to investigate the 
contribution of mtDNA to human diseases. Leveraging 
the new methods, we provide the most comprehensive 
characterization of mtDNA in ESCC and uncover some 
potential ESCC-associated biomarkers. Importantly, this 
work could serve as a paradigm for the mtDNA study of 
other phenotypes.

The dMTLV is distinctive from the existing state-of-
the-art mtDNA variants detection tools in its utilization 
of a likelihood-based model and construction of consen-
sus sequences for reducing the noise of sequencing and 
PCR errors, which achieved the best performance for 
detecting mtDNA variants with VAF < 0.01. Such low-
heteroplasmic mtDNA is essential for investigating the 
functional mutations present before the onset or in the 
early stage of diseases. Indeed, the mtDNA variants with 
VAF < 0.01 account for a large proportion (81.8%) of all 
mtDNA variants in our cohort. The growth in mtDNA 
variants allowed for signature mining of the mutational 
spectrum to explore the underlying mechanism of dis-
ease etiology, which was unanalyzable in previous stud-
ies [14]. Of note, the reads repetitively mapped to both 
mtDNA and nDNA reference genomes should be dis-
carded to remove the artifacts introduced by ref-NUMTs 
before being subjected to dMTLV. As dMTLV depends 
heavily on the result of reads alignment, the improve-
ment in reads mapping algorithms in the future would 
also facilitate the performance of dMTLV.

The detection of low-heteroplasmic variants was also 
confounded by mtCN and non-ref NUMT-FPs, i.e., given 
the same VAF, variants in samples with lower mtCN 
have fewer supportive reads and are therefore less cred-
ible (Fig.  1b), and the variants accumulated on non-ref 
NUMTs in the nDNA were often mistaken as mtDNA 
variants due to reads misalignment. As a consequence, 
the previous mtDNA study of pan-cancer or large-scale 
cohorts only reported the most confident mtDNA vari-
ants with VAF > 0.01 [14] or even 0.1 [42], limiting the 
comprehensive profiling of the landscape of mtDNA 
variants. Here, we propose that the pipeline integrating 
dMTLV and Mutect2, coupled with the sample-specific 
filtering strategy for excluding non-ref NUMT-FPs and 
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coverage-related artifacts, could generate the most com-
prehensive spectrum of mtDNA variants with satisfac-
tory robustness.

To our knowledge, fNUMT is the first method that can 
simultaneously detect non-ref NUMTs and the derived 
non-ref NUMT-FPs, which is essential for investigating 
the interaction between nDNA and mtDNA and improv-
ing the accuracy of mtDNA variants detection. Regarding 
the non-ref NUMTs, the advantages of fNUMT over the 
current methods NUMTs-detection and dinumt in false 
positive rates and breakpoint precision lie in the conduc-
tion of local assembly of soft-clipped reads, coupled with 
the full consideration of their mapping direction [38, 39] 
The latter is essential for determining the start and end 
coordinates of the inserted mtDNA segments, which 
could otherwise be mistaken as 16,569 minus the true 
size since mtDNA is a circular molecular. Moreover, the 
direct output of non-ref NUMT-FPs by fNUMT could 
be filtered out from the initial mtDNA variants, which is 
time and cost-efficient.

The accumulation of the WGS data of 663 ESCC 
tumor-normal samples provides the opportunity for 
investigating mtDNA in ESCC. Moreover, the RNA-seq 
and WGBS data help reveal the underlying consequences 
of mtDNA alterations. The analysis of mtCN demon-
strated the association between TN-ratio and overall sur-
vival in ESCC. Given the different metabolic basis among 
patients, this is more reasonable than previous studies 
that compared the mtCN of tumors among individuals 
[15]. The identification of the increases of TN-ratio with 
the progression of T stages, due to the mtCN increase 
in tumors, was consistent with the previous finding that 
mtCN increased as the disease progressed from noncan-
cerous esophageal mucosa to ESCC and metastatic lymph 
nodes [25]. Further investigation of the differentially 
expressed genes and the enriched pathways suggested 
that tumor cells were probably more capable of striving 
for energy, escaping cell cycle surveillance, and DNA 
damage repair than the normal cells in the TN-ratio > 1 
patients. These may help tumor cells to survive and adapt 
to the changing micro-environment during tumor initia-
tion and progression, which results in poorer survival of 
the TN-ratio > 1 patients. Importantly, this finding is eas-
ily transformable in clinical practice to predict patient 
survival and help therapeutic decision-making since real-
time PCR could efficiently measure the mtCN.

The analysis of non-ref NUMTs demonstrated a nega-
tive selection pressure of the large-size non-ref NUMTs 
in ESCC. Additionally, we observed the downregulation 
of CBWD1 expression by a non-ref NUMT located on its 
intron region, which may subsequently affect ATP bind-
ing activity and provide conditions for tumor cells to 
adapt to a hypoxic environment. This non-ref NUMT is 

also present in the general population (46.8% of the East-
Asian population, Additional File 2: Table S2). The reflec-
tion on the association of a common non-ref NUMT with 
ESCC would be interesting. However, further studies are 
needed to verify the detailed functional effect of this non-
ref NUMT on ESCC.

The identification of low-heteroplasmic mtDNA vari-
ants provides enough power to predict the mutational 
signature whereby we observed a positive relationship 
between the number of truncating mutations with the 
contribution of signatures linked to aristolochic acid 
exposure, defective DNA base excision repair, and aza-
thioprine and temozolomide treatment, suggesting the 
essential roles of mtDNA variants in tumorigenesis and 
treatment response. The variants with VAF > 0.01 showed 
the C > T and T > C transitions dominant mutation spec-
tra consistent with a previous pan-cancer study [14]. In 
addition, we observed that the large percent T > G vari-
ants with VAF < 0.01, which recently occurred and not yet 
accumulated in cells, were associated with ESCC progno-
sis. This may portray a form of mtDNA instability, pre-
sented as a large number of low-frequent T > G variants, 
which may be relevant to the progress and prognosis of 
ESCC. Moreover, the mutational signature of mtDNA 
variants differs from that of nDNA highly linked to aging 
[23], highlighting the importance of studying mtDNA in 
extending the current understanding of ESCC etiology.

Conclusions
This study proposes two newly developed methods to 
overcome the current challenge in characterizing the 
molecular features of mtDNA based on the short-read 
WGS data, with the potential to promote the research of 
mtDNA in human diseases. In addition, the multi-omics 
profiling of mtDNA in ESCC, as well as the newly iden-
tified ESCC-associated mtDNA features, extend the cur-
rent understanding of ESCC etiology and may pave the 
foundation for the early screening and therapeutic deci-
sion-making of ESCC.
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