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Abstract 

The "missing" heritability of complex traits may be partly explained by genetic variants interacting with other genes 
or environments that are difficult to specify, observe, and detect. We propose a new kernel-based method called 
Latent Interaction Testing (LIT) to screen for genetic interactions that leverages pleiotropy from multiple related traits 
without requiring the interacting variable to be specified or observed. Using simulated data, we demonstrate that LIT 
increases power to detect latent genetic interactions compared to univariate methods. We then apply LIT to obesity-
related traits in the UK Biobank and detect variants with interactive effects near known obesity-related genes (URL: 
https://​CRAN.R-​proje​ct.​org/​packa​ge=​lit).

Background
There are many large genome-wide association stud-
ies (GWAS) available to help facilitate gene discovery 
and improve our molecular understanding of complex 
traits and diseases. In particular, recent biobank-sized 
GWAS collect massive sample sizes and a broad range of 
phenotypic data to enhance complex trait mapping and 
augment knowledge of gene functionality. There are two 
important patterns that have emerged among the mul-
titude of GWAS analyses that have been performed to 
date. First, the genetic variation of complex traits often 
involves many thousands of loci [1]. Second, for many 
traits studied, family-based estimates of heritability (i.e., 

the proportion of trait variance explained by genetic fac-
tors) tend to be substantially greater than corresponding 
heritability estimates from GWAS single nucleotide poly-
morphisms (SNP) data [2]. For example, the heritability 
estimates for body mass index (BMI) from GWAS-based 
studies are 22− 30% [3–6] compared to 40− 70% [7, 8] 
in family-based studies. While this “missing” heritabil-
ity may be due to small sample sizes, structural variants, 
and/or rare variants [6, 9–11], these sources may not fully 
explain the difference in some traits [12]. Another pos-
sible explanation is that family-based estimates of broad-
sense heritability are capturing within-family sharing of 
genetic variants with interactive effects (e.g., gene-by-
gene and gene-by-environment interactions) which are 
omitted from GWAS estimates derived from nearly unre-
lated individuals who only generally share the additive 
effects of alleles (i.e., narrow-sense heritability) [12–14]. 
Given the evidence of such interactions [15–18], discov-
ering genetic variants with interactive effects may explain 
missing heritability and broaden our understanding of 
the genetic architecture of complex traits.

There are many statistical challenges to discovering 
genetic variants with interactive effects in GWAS [19]. In 
particular, studies are typically underpowered to detect 
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interactions due to small effect sizes, a large multiple test-
ing burden, and unknown interactive variables (e.g., other 
variants or environmental factors). Consequently, it can 
be difficult to design a study to identify and accurately 
observe interacting variables. Furthermore, even when 
interacting variables are known, the mismeasurement of 
such variables can lead to power loss [20]. A strategy to 
circumvent some of these issues is to employ a genome-
wide screening procedure to identify a reduced set of 
variants with potential interactive effects that are then 
subjected to further study using conventional (regres-
sion) methods [21]. One such popular screening strategy 
is to identify variance quantitative trait loci (vQTL) using 
variance-based testing procedures, which do not require 
the interactive variable(s) to be observed [17, 22–25]. 
Intuitively, such procedures model and detect any une-
qual residual trait variation among genotype categories at 
a specific SNP (i.e., heteroskedasticity), which can indi-
cate complex non-additive biological signals (including 
interactions of the SNP with other genes and/or envi-
ronment). Therefore, a vQTL provides a straightforward 
screen for a complex biological signal, which can then 
facilitate the discovery of SNPs with genetic interactions. 
Previous work has found that variance-based testing pro-
cedures can help identify latent genetic interactions on 
complex traits, including inflammatory markers [23] and 
obesity-related traits [17, 21, 24, 25].

When there are multiple related traits measured in 
a study, researchers often apply variance-based proce-
dures on a trait-by-trait (or univariate) basis to screen for 
evidence of latent genetic interactions. However, a uni-
variate strategy ignores any biological pleiotropy among 
traits despite theoretical [26] and empirical [27, 28] sup-
port for this phenomenon. Furthermore, in the presence 
of pleiotropy, many studies have demonstrated that joint 
statistical modeling of related traits (i.e., a multivariate 
procedure) outperforms univariate procedures for gene 
mapping [29, 30]. This observation, coupled with the 
potential existence of pleiotropic interactive effects, sug-
gests that analyzing multiple traits simultaneously in a 
statistical procedure will increase power to detect latent 
genetic interactions. To this end, we propose a novel 
statistical framework, called Latent Interaction Testing 
(LIT), that leverages multiple related traits to increase 
the power to screen for latent genetic interactions. LIT is 
motivated by the observation that latent genetic interac-
tions induce not only a differential variance pattern (i.e., 
heteroskedasticity) as previously reported but also a dif-
ferential covariance pattern between traits which is clas-
sified as a covariance QTL (covQTL or correlation QTL 
[31]). We can harness the differential covariance pat-
terns to increase the power to screen for latent genetic 

interactions compared to variance-based strategies. Simi-
lar to variance-based strategies, LIT does not require the 
interactive partner(s) to be observed or specified.

The manuscript is outlined as follows. We first intro-
duce the LIT framework for detecting latent genetic 
interactions and then evaluate the performance using 
simulated biobank-sized datasets. We also compare 
LIT to univariate testing procedures and observe that 
LIT provides significant power gains to detect interac-
tive effects in GWAS. Finally, we demonstrate LIT using 
four obesity-related traits in the UK Biobank with over 6 
million single nucleotide polymorphisms from 330,868 
genotyped individuals. Our screening procedure identi-
fied multiple loci with potential interaction effects near 
known obesity genes; many of which were subsequently 
confirmed using regression procedures.

Methods
Motivation
Consider the trait Yjk for j = 1, 2, . . . , n unrelated indi-
viduals with k = 1, 2, . . . , r measurable traits. Suppose 
Yjk depends on a biallelic locus with genotype Xj denot-
ing the number of minor alleles for the jth individual, an 
unobserved (or latent) variable Mj , and a latent inter-
action XjMj . The latent variable Mj can represent any 
type of interacting partner: a genotype at another locus, 
sex, age, or an environmental factor. For clarity, we 
will discuss Mj as an environmental factor and so the 
latent interaction is a genotype-by-environment (GxE) 
interaction.

We assume that these components contribute to trait 
expression additively in the following regression model:

where βk is the effect size of the minor allele, φk is the 
effect size of the environmental variable, γk is the effect 
size of the GxE interaction, and ǫjk is an independent 
and identically distributed random error with mean zero 
and variance σ 2

k  . In this simplified setting, our goal is to 
detect the latent GxE interaction without observing the 
interacting variable Mj.

Under the above model assumptions, the latent GxE 
interaction will induce differential trait variance and 
covariance patterns that differ by genotype. Without 
loss of generality, assume the environmental variable has 
mean zero with unit variance. In Supplementary meth-
ods (Additional file 1), we show that the individual-spe-
cific trait variance (ITV) of the kth trait conditional on 
genotype is

(1)Yjk = βkXj + φkMj + γkXjMj + ǫjk ,

(2)Var Yjk |Xj = ak + bkXj + ckX
2
j ,
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where ak = φ2
k + σ 2

k  , bk = 2φkγk , and ck = γ 2
k  . We 

also show that the individual-specific covariance (ITC) 
between the kth and k ′ th trait conditional on genotype is

where ˜akk ′ = φkφk ′ , ˜bkk ′ = φkγk ′ + φk ′γk , and c̃kk ′ = γkγk ′ . 
It is evident that a latent GxE interaction in trait k 
( γk  = 0 ) not only induces a variance pattern that depends 
on genotype (Eq. 2; vQTL) but can also induce a covari-
ance pattern between traits k and k ′ from either a shared 
interaction ( γk ′ �= 0 ) or a shared environment involved 
in the interaction ( φk ′ �= 0 ; Eq. 3; covQTL). These results 
suggest that we can test for loci with latent interactive 
effects by assessing whether the individual-specific trait 
variances (ITV) and covariances (ITC) differ by genotype 
without specifying or directly modeling the interacting 
variable Mj.

Latent Interaction Testing (LIT) framework
Our strategy builds from the above observations and esti-
mates the ITV and ITC to detect non-additive biological 
signals that can be induced by latent genetic interactions. 
To derive estimates of these quantities, we first remove the 
additive genetic effect from the traits to ensure that any 
variance and covariance effects are not due to the additive 
effect. Let us denote the trait residuals as ejk = Yjk − βkXj  
where we assume the effect size is known for simplicity.  
We can then express the ITV and ITC as a function  
of these residuals: the ITV of trait k and the ITC between 
traits k and k ′ is defined as Var

[

Yjk |Xj

]

=E
[

e2jk |Xj

]

 and  
Cov

[

Yjk ,Yjk ′ |Xj

]

= E
[

ejk ejk ′ |Xj

]

 , respectively (Additional file 1).  
Thus, we can estimate the ITV by squaring the residuals, 
e2jk , and estimate the ITC between traits k and k ′ by the 
pairwise product of the residuals (i.e., the cross products), 
ejkejk ′ . Aggregating the ITV and ITC estimates across  
all individuals, we denote the cross product (CP) terms  
in the n× s matrix ZCP where the jth row vector is 
Z
CP
j =

[

ej1ej2, ej1ej3, . . . , ej,r−1ejr
]

 , and the squared resid-
ual (SQ) terms in the n× r matrix ZSQ where ZSQ

jk = e2jk.
Our inference goal is to assess whether the SNP, 

Xn×1 = [X1,X2, . . . ,Xn]
T , is independent of the squared 

residuals and cross products,

where “ · ” denotes all the rows (or individuals) and “ ⊥⊥ ” 
denotes statistical independence. In the above regres-
sion model, this corresponds to testing the global null 
hypothesis H0 : γ1 = γ2 = . . . = γr = 0 versus the 
alternative hypothesis H1 : γk �= 0 for at least one of 

(3)Cov
[

Yjk ,Yjk ′ |Xj

]

= ˜akk ′ +
˜bkk ′Xj + c̃kk ′X

2
j ,

(4)
Z
CP
·q ⊥⊥ X for q = 1, 2, . . . , s, and

Z
SQ

·k ⊥⊥ X for k = 1, 2, . . . , r,

the k = 1, 2, . . . , r traits. While a regression model can 
be directly applied to the squared residuals and cross 
products to test the global null hypothesis (see Addi-
tional file 1 for mathematical details), a univariate model 
approach does not adequately leverage pleiotropy and 
requires a multiple testing correction which reduces 
power.

To address these issues, we develop a new multivari-
ate kernel-based framework, Latent Interaction Testing 
(LIT), that captures pleiotropy across the ITV and ITC 
terms to increase power for detecting latent interactions. 
There are three key steps in the LIT framework (Fig. 1): 

1.	 Regress out the additive genetic effects and any other 
covariates from the traits. Additionally, adjust the 
traits and genotypes for population structure.

2.	 Calculate estimates of the ITV and ITC for each 
individual using the squared residuals and the cross 
products of the residuals, respectively.

3.	 Test the global null hypothesis of no latent interac-
tion by comparing the adjusted genotype(s) to the 
ITV and ITC estimates.

We expand on the above steps in detail below.
Step 1: In the first step, LIT standardizes the traits and 

then regresses out the additive genetic effects, population 
structure, and any other covariates. This ensures that any 
differential variance and/or covariance patterns are not 
due to additive genetic effects or population structure. 
Suppose there are l1 measured covariates and l2 princi-
pal components to control for structure. We denote these 
l = l1 + l2 variables in the n× l matrix H . After regress-
ing out these variables and the additive genetic effects, 
the n× r matrix of residuals is e = ˜Y − X̂β −H ̂A , where 
˜Y  is the standardized trait matrix, ̂β is a 1× r matrix of 
effect sizes, and ̂A is a l × r matrix of coefficients esti-
mated using least squares. We also regress out popula-
tion structure from the genotypes which we denote by ˜X.

The above approach only removes the mean effects 
and does not correct for variance effects from population 
structure which can impact type I error rate control [32]. 
A strategy to adjust for the variance effects is to stand-
ardize the genotypes with the estimated individual-spe-
cific allele frequencies (IAF), i.e., the allele frequencies 
given the genetic ancestry of an individual. However, it 
is computationally costly to standardize the genotypes 
for biobank-sized datasets as it requires estimating the 
IAFs of all SNPs using a generalized linear model [33, 
34]. Therefore, in this work, we remove the mean effects 
from structure and then adjust the test statistics with the 
genomic inflation factor to be conservative. Our software 
includes an implementation to standardize the genotypes 
using the IAFs for smaller datasets.
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Step 2: The second step uses the residuals, e , to reveal 
any non-additive biological signals by constructing esti-
mates of the ITV and ITC. For the jth individual’s  
set of trait residuals, the ITVs are estimated by squaring 
the trait residuals while the ITCs are estimated by  
calculating the cross products of the trait residuals. We 
express the squared residuals as ZSQ

j =
[

e2j1, e
2
j2, . . . , e

2
jr

]

 , 
and the s =

(r
2

)

 pairwise cross products as Z
CP

j =
[

ej1ej2, ej1ej3, . . . , ej,k−1ejr
]

 . Importantly, when the studen-
tized residuals are used, then ZSQ

j  and ZCP
j  represent an 

unbiased estimate of the ITVs and ITCs, respectively. We 
aggregate these terms across all individuals into the 
n× (r + s) matrix Z =

[

Z
SQ

Z
CP

]

.
Step 3: In the last step, we test for association between 

the adjusted SNP and the squared residuals and cross 
products (SQ/CP) using a kernel-based distance covari-
ance framework [35–37]. Specifically, we apply a ker-
nel-based independence test called the Hilbert-Schmidt 
independence criterion (HSIC), which has been previ-
ously used for GWAS data (see, e.g., [38–41]). The HSIC 
generalizes many well-known testing procedures in sta-
tistics; for example, depending on the kernel function 
choice, the RV coefficient [42], distance covariance [43], 
and multivariate distance matrix regression (MDMR) 
[44] can be expressed as special cases of the HSIC. Due 
to such flexibility, it is implemented in many testing 
procedures in genetics (e.g., SKAT [40]). The HSIC con-
structs two n× n similarity matrices between individu-
als using the SQ/CP matrix and genotype matrix, then 
calculates a test statistic that measures any shared signal 

between these similarity matrices. To estimate the simi-
larity matrix, a kernel function is specified that captures 
the similitude between the jth and j′ th individual.

Since our primary application is biobank-sized data, 
we use a linear kernel so that LIT is computationally effi-
cient. The linear similarity matrix is defined as 
Kjj′ := k

(

˜Xj , ˜Xj′

)

= ˜Xj
˜Xj′ for the genotype matrix and 

Ljj′ := k
(

Z j ,Z j′
)

= Z jZ
T
j′  for the SQ/CP matrix. The lin-

ear kernel is a scaled version of the covariance matrix 
and, for this special case, the HSIC is related to the RV 
coefficient. While our theoretical results indicate that 
the variance (Eq.  2) and covariance (Eq.  3) models 
include a quadratic term for the genotypes, the expected 
effect size of an interaction in a GWAS suggests that the 
linear term will dominant the variance and/or covari-
ance signal compared to the quadratic term. Therefore, 
we only consider the linear term in this work. We note 
that one can choose other options for a kernel function, 
such as a polynomial kernel, projection kernel, and a 
Gaussian radial-basis function that can capture non- 
linear relationships [41, 45].

Once the similarity matrices K  and L are constructed, 
we can express the HSIC test statistic as

which follows a weighted sum of chi-squared ran-
dom variables under the null hypothesis, i.e., 
T | H0 ∼

∑n
i,j

1
n�K ,i�L,jv

2
ij , where �K ,i and �L,j are the 

(5)T =
1

n
tr(KL),

Fig. 1  Overview of the Latent Interaction Testing (LIT) framework. Given a set of r traits, Y  , and m0 SNPs, X  , the goal is to detect a latent 
genetic interaction involving the SNPs. The trait squared residuals (SQ) and cross products (CP), Z , are calculated while adjusting for linear 
effects from the genotypes and any other covariates. The traits and genotypes are also adjusted for population structure. A similarity matrix 
for the genotypes, KX ′ , and the SQ and CP, KZ , are calculated to construct a test statistic, T, which measures the overlap between the two matrices. 
Large values of T are evidence of a latent genetic interaction
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ordered non-zero eigenvalues of the respective matrices 
and vij ∼ Normal(0, 1) . Intuitively, the test statistic meas-
ures the "overlap" between two random matrices where 
large values of T imply the two matrices are similar (i.e., 
a latent genetic interactive effect) while small values of 
T imply no evidence of similarity (i.e., no latent genetic 
interactive effects). We can approximate the null distri-
bution of T using Davies’ method, which is computation-
ally fast and accurate for large T [40, 41, 46].

For the linear kernel considered here, we implement a 
simple strategy to substantially improve the computa-
tional speed of LIT. We first calculate the eigenvectors 
and eigenvalues of the SQ/CP and genotype matrices to 
construct the test statistic. Since the number of traits, r, 
is much smaller than the sample size, n, we can perform a 
singular value decomposition to estimate the subset of 
eigenvectors and eigenvalues in a computationally effi-
cient manner [47–49]. This allows us to circumvent 
direct calculation and storage of large n× n similarity 
matrices. Let L = V LDLV

T
L  and K = VKDKV

T
K  be the 

singular value decomposition (SVD) of the similarity 
matrices where the matrix D is a diagonal matrix of 
eigenvalues and V  is a matrix of eigenvectors of the 
respective kernel matrices. We can then express the test 
statistic in terms of the SVD components as 
T = 1

n
tr
(

DKRDLR
T
)

 , where R = V
T
KV L is the outer 

product between the two eigenvectors. Thus, for a single 
SNP, the test statistic is T = 1

n tr

(

DKRd1×d2DLR
T
d2×d1

)

 , 
where d1 = r + s is the rank of the SQ/CP matrix, d2 = 1 
is the rank of the genotype matrix, and  d1, d2 ≪ n.

Aggregating different LIT implementations using the Cauchy 
combination test
We explore an important aspect of the test statistic in 
Eq. 5, namely, the role of the eigenvalues in determining 
statistical significance. The above equations suggest that 
the eigenvalues of the kernel matrices are emphasizing 
the eigenvectors that explain the most variation in the 
test statistic. While this may be reasonable in some set-
tings, the interaction signal can be captured by eigenvec-
tors that explain the least variation and this can be very 
difficult to ascertain beforehand [50]. In this case, the 
testing procedure will be underpowered. Thus, we also 
consider weighting the eigenvectors equally in LIT, i.e., 
T = 1

n tr
(

RR
T
)

= 1

n

∑n
i=1 D

2
R,i , where DR are the eigen-

values of the outer product matrix. In this work, we 
implement a linear kernel (scaled covariance matrix) and 
so, in this special case, weighting the eigenvectors equally 
is equivalent to the projection kernel.

In summary, there are two implementations of the LIT 
framework. The residuals are first transformed to calcu-
late the SQ and CP to reveal any latent interactive effects. 

We then calculate the weighted and unweighted eigen-
vectors in the test statistic which we refer to as weighted 
LIT (wLIT) and unweighted LIT (uLIT), respectively. 
We also apply a Cauchy combination test (CCT) [51] to 
combine the p-values from the LIT implementations to 
maximize the number of discoveries and hedge for vari-
ous (unknown) settings where one implementation may 
outperform the other. More specifically, let pc denote the 
p-value for the c = 1, 2 implementations. In this case, the 
CCT statistic is T ′ = 1

2

∑2
c=1 tan {(0.5− pc)π} , where 

π ≈ 3.14 is a mathematical constant. A corresponding 
p-value is then calculated using the standard Cauchy 
distribution. Importantly, when applying genome-wide 
significance levels, the CCT controls the type I error rate 
under arbitrary dependence structures. We refer to the 
CCT p-value as aggregate LIT (aLIT).

Incorporating multiple loci in LIT
We can extend LIT to assess latent interactions within a 
genetic region (e.g., a gene) consisting of multiple SNPs. 
In the first step, we regress out the joint additive effects 
from the multiple SNPs along with any other covariates 
and population structure. In the second step, we calculate 
the squared residuals and cross products using the corre-
sponding residual matrix. Finally, in the last step, we con-
struct the similarity matrices and perform inference 
using the HSIC: the linear similarity matrix for the 
n×m0 genotype matrix ˜X is Kjj′ = k

(

˜X j , ˜X j′

)

= ˜X j
˜X
T

j′  

and our test statistic is T = 1
n tr

(

DKRd1×d2DLR
T
d2×d1

)

 
where d2 = m0 is the rank of the genotype matrix.

Compared to the previous section, this extended ver-
sion of LIT is a region-based test for interactive effects 
instead of a SNP-by-SNP test. A region-based test is 
advantageous to reduce the number of tests compared 
to a SNP-by-SNP approach and enable testing of rare 
variants [41]. However, in this work, we perform a SNP-
by-SNP genome-wide scan with LIT to demonstrate the 
scalability.

Simulation study
We evaluated the performance of LIT using simulated 
data with the following assumptions. Let the individual-
specific minor allele frequencies of t = 1, 2, . . . ,m bial-
lelic genotypes be denoted by πjt . Of the m SNPs, m− 1 
SNPs had no interacting partner and a minor allele fre-
quency drawn from a Uniform(0.1, 0.4) . The SNP with an 
interacting partner had a minor allele frequency of 0.25. 
We fixed this MAF to remove stochastic variation in the 
observed power induced by simulations differing only 
by the MAF of the interacting SNP. The genotypes were 
then drawn from a Binomial distribution with param-
eter πjt , i.e., Xjt ∼ Binomial(2,πjt) . In total, there were 
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n = 300,000 individuals simulated to reflect biobank-
sized GWAS.

We simulated the trait expression value Yjk for 
k = 1, 2, . . . , r traits under the polygenic trait model with 
two risk environmental variables Mj and Wj . Specifically, 
there were r = 5, 10 traits and m = 100 genotypes simu-
lated with an additive genetic, environmental, and GxE 
components:

where the intercept, αk , follows a normal distribution 
with a standard deviation of 5; the effect sizes of the GxE 
interaction, γk , interacting environment, φk , and addi-
tive genetic component, βtk , follow a normal distribution 
with mean zero and standard deviation of 0.01; the two 
environmental variables were generated from a stand-
ard normal distribution where only one interacts with 
the risk allele; and the error term was generated from a 
standard normal distribution. Using the above model, 
we considered different types of pleiotropy. First, we 
assigned the effect size direction of the additive genetic 
component, interacting environment, and the GxE inter-
action to be the same in each trait. We then considered 
cases where the effect size for the shared GxE interaction 
is in the same direction (i.e., |γk | ) and random directions 
across traits. These settings represent positive pleiot-
ropy and a mixture of positive and negative pleiotropy, 
respectively. We also considered a variation of the above 
settings where the direction of the effect size for the GxE 
interaction is opposite of the interacting environment.

We transformed the components in the model using 
the function f (x) =

x − µ̂x

σ̂x
 , which takes a vector x and 

standardizes it by the estimated mean and standard devi-
ation. We scaled each component to set the baseline cor-
relation between traits (ignoring the risk factor, 
interactive environment, and GxE interaction) as 0.25, 
0.50, and 0.75. In particular, the percent variance 
explained of the non-interactive environment was 15% 
and the additive genetic component (minus the risk fac-
tor) was 10% , 35% , and 60% , which represents a 0.25, 0.50, 
and 0.75 baseline correlation between traits, respectively. 
We then assigned the percent variance explained for the 
additive genetic risk factor as 0.2% , the interactive envi-
ronment as a uniformly drawn value from 0.5 to 2.0% , the 
GxE interaction as a uniformly drawn value from 0.1 to 
0.15% , and the remaining variation as noise.

In our simulation study, we also varied the proportion 
of traits with an interaction term. For r traits, let τr denote 
the proportion of traits with a shared GxE interaction 
signal. We varied this proportion as τr = 1

r ,
2
r , . . . , 1 . At 

(6)

Yjk = αk + β1kXj1 + φkMj + γkMjXj1 +

m
∑

t=2

βtkXjt +Wj + ǫjk ,

each combination of baseline trait correlation, number 
of traits, and proportion of null traits, we generated data 
from the above polygenic trait model 500 times for each 
pleiotropy setting. We calculated the empirical power by 
averaging the total number of times the p-values were 
below a significance threshold of α = 5× 10−8 . Under 
the null hypothesis of no GxE interaction, we assessed 
the type I error rate at α = 1× 10−3 using 50 simulated 
datasets with 10,000 SNPs where the traits do not have 
a GxE interaction. We also considered cases where the 
random error follows a Chi-squared distribution with 
five degrees of freedom and a t-distribution with three 
degrees of freedom under the null hypothesis.

UK Biobank
The UK Biobank is a collaborative research effort to 
gather environmental and genetic information from half 
a million volunteers 40–69 years old in the UK. The data 
was collected across 22 assessment centers from 2006 to 
2010 where participants were given a general lifestyle and 
health questionnaire, a physical examination, and a blood 
test that provided genetic data [52, 53]. See ref.  [54, 55] 
for detailed information on the study design.

We applied LIT to four obesity-related traits, namely, 
waist circumference, hip circumference, body mass index, 
and body fat percentage. We restricted our analysis to 
unrelated individuals with British ancestry and removed 
any individuals with a sex chromosome aneuploidy. Using 
the imputed genotypes (autosomes only), SNPs were fil-
tered in PLINK [56] with the following thresholds: a MAF 
of >0.05 , a genotype missingness rate of <0.05 , Hardy-
Weinberg equilibrium (defined as >10−5 ), and an INFO 
score of >0.9 . The traits were adjusted for age and the top 
20 principal components provided by the UK Biobank to 
account for ancestry. We removed individuals with meas-
urements that were four standard deviations above the 
average and then standardized the traits by sex. After fil-
tering, there were 329,146 individuals and 6,186,503 SNPs 
in our analysis. To calculate the genomic inflation factor 
of our LIT analyses, we identified a subset of 34,643 “inde-
pendent” SNPs using the argument —index-pairwise 
500 5 0.05 in PLINK.

To demonstrate our procedure controls the type I error 
rate using the UK Biobank data, we implemented the 
double Kolmogorov-Smirnov (KS) testing framework as 
proposed by Leek and Storey (2011) [57] as a diagnostic 
tool. The double KS test is implemented as follows. For 
100 permutations of the phenotypes, we apply the LIT 
framework to calculate the p-values for all of the “inde-
pendent” SNPs (used to estimate the genomic inflation 
factor) under the null hypothesis. We then evaluate the 
joint behavior of the set of p-values within each permuted 
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dataset by applying a KS test to assess how “close” the 
observed p-values are to a uniform distribution. Under 
the null hypothesis for a well-behaved testing procedure, 
the p-values of this first KS test follow a uniform distri-
bution across the 100 permutations. The next step is to 
implement a second KS test on the 100 KS test p-values 
to test how “close” the set of 100 KS test p-values are to 
a uniform distribution. Under the null hypothesis, the 
joint behavior of the KS test p-values across the permu-
tations will also follow a uniform distribution. The dou-
ble KS test simultaneously assesses the joint behavior of 
the p-values within each permutation and the marginal 
p-values across permutations.

Results
Overview
As illustrated in Fig. S1 (Additional file 1), a SNP with a 
latent interaction induces a genotype effect on the trait 
variances (vQTL) and on the covariance between traits 
(covQTL). We can assess this interaction effect by relat-
ing an individual’s genotype to individual-specific trait 
variances and covariances (Additional file 1: Fig. S2). We 
estimate individual-specific trait variances using squared 
residuals (SQ) for each trait after adjusting for addi-
tive (and possibly dominance) effects and likewise esti-
mate individual-specific covariances by multiplying the 
residuals of different pairs of traits together to form cross 
products (CP; see ref.  [31]). Using a kernel-based dis-
tance covariance (KDC) statistic (Fig. 1) [35–37], we then 
assess evidence of a latent genetic interaction by testing 
whether the elements of a matrix comprised of pairwise 
similarity of SQ/CP terms in the sample is independent 
of the elements of a second matrix comprised of pairwise 
genotype similarity. To measure the similarity between 
variables, we apply a user-defined kernel function such 
as a linear kernel (analogous to scaled covariance) or a 
projection kernel [41, 45]. We show later that the opti-
mal kernel choice depends on the complexity of the 
interaction signal. Researchers have previously applied 
variations of the KDC statistic, which yields a p-value 
testing the global null of no association between the ele-
ments of two matrices, in genetic analyses for studies of 
both common [38, 39, 45] and rare [40, 41, 58] variation.

The traditional KDC statistic utilizes the correspond-
ing eigenvectors (directions of maximal variation) and 
eigenvalues (weights emphasizing eigenvectors) derived 
from the SQ/CP similarity matrix for inference. In the 
process, the traditional KDC statistic emphasizes sig-
nals explaining the most variation in this matrix. While 
we show this emphasis is suitable under certain pleiot-
ropy settings, there are other settings where the interac-
tion signal is not captured by the top eigenvectors of the  
similarity matrix and so the test may not be optimal [30, 50].  

Therefore, we also consider weighting eigenvectors  
equally in our test statistic to increase power to detect 
interaction signals captured by the lower eigenvectors 
of the similarity matrix. We refer to the implementation 
that weights eigenvectors by corresponding eigenvalues 
(i.e., the traditional KDC framework) as weighted LIT 
(wLIT) and refer to the implementation that weights 
eigenvectors equally as unweighted LIT (uLIT). Since the 
pleiotropic genetic architecture of a trait is unknown a 
priori, we maximize the performance of LIT by aggregat-
ing the p-values from wLIT and uLIT using the Cauchy 
combination test (CCT) [51], which has proven valuable 
in a variety of genetic settings [59]. We refer to the CCT 
of the wLIT and uLIT p-values as aggregate LIT (aLIT). 
For simplicity, we primarily focus on implementing wLIT, 
uLIT, and aLIT on a SNP-by-SNP basis to test for inter-
active effects but discuss extensions to handling multiple 
SNPs simultaneously within the “Methods”  section (see 
the “Incorporating multiple loci in LIT” section). Finally, 
to improve computational efficiency for biobank-sized 
datasets, we apply a linear kernel in wLIT and so uLIT is 
equivalent to using a projection kernel.

Power and type I error rate control
We simulated r = 5, 10 related traits for 300,000 observa-
tions (reflecting sample sizes for biobank datasets) under 
the polygenic trait model with additive genetic, environ-
mental, and GxE interaction components. The baseline 
correlation between traits was either 0.25, 0.50, or 0.75 
which represents different correlation strengths from 
shared genetic and environmental effects. We then simu-
lated a genetic risk factor, an environmental factor, and 
a GxE interaction that explains 0.2% , a randomly drawn 
value from 0.5 to 2.0% , and a randomly drawn value from 
0.1 to 0.15% of the trait variation, respectively. To assess 
the performance of LIT under different sparsity settings, 
we varied the proportion of traits with a shared GxE inter-
action as 1r ,

2
r , . . . , 1 . We considered three types of pleiot-

ropy in our study, namely, the GxE interaction effect size 
is positive across traits (positive pleiotropy), a mixture of 
positive and negative across traits (positive and negative 
pleiotropy), and a variation of these two settings where 
the direction is opposite of the interacting environment.

We found that the LIT implementations provide type 
I error rate control at significance level 10−3 , including 
when the trait distribution is skewed or heavy trailed 
(Additional file  1: Figs. S3, S4). We also found that LIT 
controls the type I error rate when applied to multiple 
SNPs (5 total; Additional file  1: Fig. S5). We then com-
pared the power across various configurations of number 
of traits, baseline correlation, proportion of traits with 
shared interaction effects, and direction of the interac-
tion effect (Fig.  2A, B). In comparing wLIT with uLIT, 
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neither method is optimal across all settings as expected. 
As mentioned in the “Overview”  section, wLIT empha-
sizes the high-variance (i.e., large eigenvalues) eigen-
vectors of the SQ/CP kernel matrix while uLIT weights 
them equally. Under a simulation model where the signal 
would reside on the top eigenvector, we expect wLIT to 
outperform uLIT. Conversely, we expect uLIT to outper-
form wLIT when the signal resides on the lower-variance 
eigenvectors of the SQ/CP kernel matrix.

To illustrate how the interaction signal can reside on 
different eigenvectors of the SQ/CP kernel matrix, we 
performed an association test between the eigenvec-
tors and genotype under the positive pleiotropy setting 

with 10 traits (Additional file  1: Fig. S6). We find that 
the power to detect the latent interaction signal at each 
eigenvector depends on the proportion of traits with 
shared interaction effects (sparsity level), baseline trait 
correlation, and the proportion of variation explained 
by the genotype (denoted as R2 ). More specifically, for 
small baseline correlations, the high-variance eigenvec-
tor generally captures the signal for most sparsity set-
tings (which explains why wLIT outperforms uLIT in 
these situations). As the baseline correlation increases, 
the power of the high-variance eigenvector can decrease 
rapidly (even if the proportion of traits with shared inter-
action effects is high) due to the reduction in R2 (see top 

Fig. 2  Power comparisons of aggregate LIT (aLIT; black), unweighted LIT (uLIT; blue), and weighted LIT (wLIT; green) under A positive pleiotropy 
and B a mixture of positive and negative pleiotropy. The simulation study varied the correlation between traits (columns), the number of traits 
(rows), and the proportion of traits with an interaction term (x-axis) at a sample size of 300,000. The points represent the average across 500 
simulations with a significance threshold of 5× 10

−8
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right panels of Additional file  1: Fig. S6). On the other 
hand, an increase in baseline correlation coupled with a 
decrease in the proportion of traits with shared interac-
tion effects (i.e., increase in sparsity), results in the inter-
action signal being separated out from the high-variance 
eigenvector and becoming detectable in the low-variance 
eigenvectors.

Given the above insights, we can delineate the per-
formance between uLIT and wLIT by assessing which 
eigenvectors capture the interaction signal. In the posi-
tive pleiotropy setting with 10 traits and a baseline cor-
relation of 0.5 (bottom center panel of Fig.  2A), as the 
proportion of traits with shared interaction effects 
increases from 0 to 0.6, the power of uLIT increases 
whereas the power of wLIT is constantly negligible. 
When the proportion of traits with shared interac-
tion effects increases from 0.6 to 1, the power of uLIT 
decreases whereas the power of wLIT increases and 
overtakes uLIT when this proportion exceeds 0.8. These 
power trends are due to the low-variance eigenvectors 
capturing the interaction signal when the proportion 
of traits with shared interaction effects is small (which 
favors uLIT) to the high-variance eigenvectors when this 
is high (which favors wLIT; Additional file  1: Fig. S6). 
Furthermore, when the baseline correlation increases 
from 0.5 to 0.75 (bottom right panel of Fig.  2A), uLIT 
follows a similar power curve while the power of wLIT 
now remains negligible across all sparsity settings. In 
this case, the R2 is low in the high-variance eigenvectors 
when the baseline correlation is high (Additional file 1: 
Fig. S6) and so wLIT has little power in these situations. 
In general, we find that wLIT tends to outperform uLIT 
when the baseline correlation is modest (i.e., 0.25) and 
the proportion of traits with shared interaction effects is 
high, otherwise uLIT is the optimal method.

In the setting where there is a mixture of positive and 
negative pleiotropy, uLIT outperforms wLIT across all 
settings (Fig. 2B). Intuitively, in our simulations, the high-
variance eigenvector is the weighted sum of the squared 
residuals and cross products where the weights have the 
same sign. When the effect sizes are in different direc-
tions (positive and negative pleiotropy), the high-vari-
ance eigenvector may dampen the interaction signal, and 
thus it will also be captured by the low-variance eigen-
vectors. Since uLIT weights the eigenvectors equally, we 
observe a large increase in power compared to wLIT. We 
also considered a variation of the above two pleiotropy 
scenarios where the effect size for the GxE interaction is 
opposite of the interacting environment. While we find 
similar results, the overall power is reduced for all meth-
ods (Additional file 1: Fig. S7).

In summary, even though the top eigenvectors explain 
the largest amount of variation, it does not imply that 

they are the ones most correlated to genotype. The 
interaction signal may be captured by the high-variance 
eigenvectors or the low-variance eigenvectors depending 
on the number of traits, baseline correlation, R2 at each 
eigenvector, proportion of traits with shared interaction 
effects, and type of pleiotropy. Since the particular eigen-
vectors that are most powerful can vary widely and are 
unknown a priori, we applied aLIT to the p-values from 
the above LIT implementations to maximize the num-
ber of discoveries. We find that aLIT controls the type 
I error rate (Additional file 1: Figs. S3-S4) while making 
more discoveries than each individual implementation 
(Fig. 2; Additional file 1: Fig. S7). More specifically, aLIT 
has similar power to wLIT when the signal is captured by 
the high-variance eigenvectors and similar power to uLIT 
when the signal is captured by the low-variance eigen-
vectors. Therefore, we implement aLIT in subsequent 
analyses.

aLIT increases power compared to marginal testing 
procedures
Using the same simulation configuration as in the 
“Power and type I error rate control”  section, we con-
sidered two competing procedures for identifying 
latent genetic interactions using multiple traits. The 
first procedure performs an association test between 
the squared residuals and a SNP (Marginal (SQ)), while 
the second procedure additionally includes the cross 
product terms (Marginal (SQ/CP)). More specifically, 
Marginal (SQ) tests the squared residuals for all r traits 
and selects the minimum p-value from these r different 
tests. We note that Marginal (SQ) outperformed Lev-
ene’s test which has been previously applied to detect 
vQTLs (Additional file  1: Figs. S8, S9) [23, 24]. Mar-
ginal (SQ/CP) adds tests for the 

(r
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 cross products and 
selects the minimum p-value from the r +

(r
2

)

=
(r+1

2

)

 
individual tests. Because we are testing the global null 
hypothesis of no latent genetic interaction, the mar-
ginal testing procedures require a Bonferroni correc-
tion for the total number of tests, i.e., α′ := α/K  where 
α is the significance threshold and K is chosen to be the 
number of principal components that explains 95% of 
the variation. We then threshold the minimum p-value 
by α′ to determine statistical significance. Across all 
power simulations (Fig.  3; Additional file  1: Fig. S9), 
we observed that Marginal (SQ/CP) was more power-
ful than Marginal (SQ), suggesting that the inclusion of 
cross products improves performance to detect latent 
interactions. Given these findings, we compare the per-
formance of aLIT to Marginal (SQ/CP) for the remain-
der of this work.

In the positive pleiotropy setting with a low base-
line correlation, aLIT increases the power to detect 
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GxE interactions when there are a higher proportion 
of traits with shared interaction effects compared to 
Marginal (SQ/CP) (Fig.  3A). Furthermore, the dif-
ference is more pronounced as the number of traits 
increases. For example, when the baseline correlation 
is 0.25, and the proportion of traits with shared inter-
action effects is 0.8, the empirical power of aLIT is 53% 
and 94.8% for five and ten traits, respectively. On the 
other hand, the empirical power of Marginal (SQ/CP) 
is 26% and 48.6% , respectively. While aLIT provides 
substantial increases in power when the proportion of 
traits with shared interaction effects is high, Marginal 
(SQ/CP) can outperform aLIT when the proportion of 

traits with shared interaction effects is low in the posi-
tive pleiotropy setting (see lower left panel of Fig. 3A). 
Intuitively, when there is little correlation between 
traits due to shared interactions, selecting the mini-
mum p-value across traits slightly outperforms com-
bining information between the traits.

The difference in power between aLIT and Mar-
ginal (SQ/CP) is also evident across baseline corre-
lations. Interestingly, the improvement in power of 
aLIT compared to Marginal (SQ/CP) reduces when 
the baseline correlation increases from 0.25 to 0.50. 
This observation agrees with our simulation results 
from Fig. S6 (Additional file 1) which suggest that the 

Fig. 3  A comparison of aLIT (black) to a marginal testing procedure using the squared residuals (SQ; light gray) and a marginal testing procedure 
using the squared residuals and cross products (SQ/CP; dark gray) under A positive pleiotropy and B a mixture of positive and negative pleiotropy. 
The simulation study is identical to Fig. 2 where the empirical power is calculated as a function of the proportion of traits with an interaction term 
(x-axis), the number of traits (rows), and trait correlation (columns)
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power to detect an interaction signal at any particu-
lar eigenvector decreases as the baseline correlation 
increases from 0.25 to 0.50. Alternatively, when the 
baseline correlation increases to 0.75, aLIT provides 
drastic increases in power for most sparsity settings. 
For example, when there are 10 traits where the pro-
portion of traits with shared interaction effects is 0.5, 
aLIT’s power increases from 30.8 to 93.8% at a baseline 
correlation of 0.50 and 0.75 while Marginal (SQ/CP) 
decreases from 11.6 to 4.6% , respectively. However, in 
this same example, Marginal (SQ/CP) slightly outper-
forms aLIT when all traits have an interaction.

Overall, while our results suggest that aLIT outper-
forms Marginal (SQ/CP) for most baseline correla-
tions and sparsity settings under positive pleiotropy, 
there are some rare cases where Marginal (SQ/CP) has 
similar (or improved) performance. Meanwhile, under 
the simulation setting where there is a mixture of posi-
tive and negative pleiotropy (Fig.  3B) or the direction 
of GxE effect sizes are opposite of the interactive envi-
ronment (Additional file  1: Fig. S9), the increase in 
power from aLIT over Marginal (SQ/CP) is substantial 
across all settings. Note that aLIT outperformed Mar-
ginal (SQ) across all power simulations.

aLIT applied to the UK Biobank data
We applied the LIT framework to screen for shared latent 
genetic interactions in four obesity-related traits from 
the UK Biobank, namely, waist circumference (WC), hip 
circumference (HC), body mass index (BMI), and body 
fat percentage (BFP). After preprocessing, there were 
329,146 unrelated individuals that have measurements 
for all traits and 6,186,503 SNPs (the “UK Biobank” sec-
tion). The correlation between traits ranged from 0.75 
(BMI and BFP) to 0.87 (BMI and WC). The total compu-
tational time of LIT was approximately 3.3 days using 12 
cores of a 3.2-GHz Intel Xeon W-3245 processor.

In each implementation of LIT, after filtering for LD 
and significant SNPs, the genomic inflation factor of 
wLIT and uLIT was 1.14 (Additional file  1: Fig. S10a). 
Additionally, we also observed inflated test statistics 
with the Marginal (SQ) approach (Additional file 1: Fig. 
S11). While the test statistics are inflated, it is difficult to 
distinguish the factors driving inflation, e.g., bias due to 
unmodeled population structure versus biological sig-
nal under polygenic inheritance. Interestingly, we found 
that the genomic inflation factor increases as a function 
of minor allele frequency which may suggest there are 
vQTLs/covQTLs that are still underpowered to be dis-
covered at current sample sizes (Additional file  1: Fig. 
S12) [60]. To rule out bias within the LIT framework 
driving inflation, we implemented a double Kolmogorov-
Smirnov (KS) test [57] (detailed in “UK Biobank” section) 

to assess LIT’s p-values under the null hypothesis. We 
found that the double KS test p-values are p = 0.56 and 
p = 0.76 for uLIT and wLIT, respectively, and thus LIT 
demonstrates the characteristics of a well-behaved test-
ing procedure on the UK Biobank data (Additional 
file 11: Fig. S13). However, it remains plausible there are 
other sources of bias (see the “Discussion” section) driv-
ing covariance/variance-specific effects, and to be con-
servative, we adjusted the significance results of each 
approach by the corresponding genomic inflation factor 
(Additional file  1: Fig. S10b). These adjusted p-values 
were then combined in aLIT to detect latent genetic 
interactions (Fig. 4).

Using the aLIT p-values, we discovered 2252 candidate 
SNPs that are either a vQTL or covQTL in 11 distinct 
regions. Table  1 shows the most significantly associated 
(lead) SNP in each region. As a comparison, we also applied 
Marginal (SQ/CP) and detected 2099 SNPs. Of those 
found by Marginal (SQ/CP), aLIT’s results overlapped 
with ≈98% of the detected SNPs and had substantially 
smaller p-values at most loci (Additional file 1: Fig. S14). 
Although Marginal (SQ/CP) detects a few regions that 
are not found by aLIT, the aLIT p-values are comparable 
in magnitude at these regions (Additional file 1: Table S1). 
On the other hand, there are three distinct regions found 
by aLIT (rs2821230, rs11030066, and rs157845) where the 
p-values are substantially smaller than the p-values from 
Marginal (SQ/CP) (Table 1). Thus, in agreement with our 
simulation results, depending on the type of pleiotropy at 
a particular locus, there are regions where the significance 
results of aLIT are substantially more powerful than Mar-
ginal (SQ/CP), and other regions where Marginal (SQ/CP) 
is slightly more or as powerful than aLIT.

There are a couple of challenges for interaction tests 
that do not require observing the interactive variable(s). 
The first is that false positives are possible due to link-
age disequilibrium (LD) with a SNP that has a large addi-
tive effect (see, e.g., [24]). To address this issue, for each 
lead SNP, we first identified nearby SNPs (within 1 Mb 
and correlation >0.1 ) with significant additive effects 
using the multivariate testing procedure, GAMuT [41]. 
We then applied the LIT implementations to the lead 
SNPs while regressing out nearby significant SNPs and 
found all of the lead SNPs remain significant (Table  1). 
The second challenge is that departures from linearity 
due to dominance or misspecification of the trait scale 
will induce a variance effect [17, 25]. To be conservative 
and help distinguish interactive effects, we removed the 
non-linear genetic signal within a locus by fitting a two 
degree of freedom genotypic model. After removing the 
dominance/scaling effects, the lead SNP rs9469860 on 
chromosome 6 was above the genome-wide significance 
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threshold (Table 1). In general, while the significance of 
a few loci were impacted (nearly all on chromosome 6 
and a few on chromosome 18; Additional file 1: Fig. S15), 
most of the lead SNPs remained significant.

After evaluating the significant SNPs found by aLIT, we 
focused on ten lead SNPs that remained significant after 
accounting for LD and dominance/scaling issues. Using 
the Variants to Genes (V2G) measure on Open Targets 
Platform [61], we assigned the lead SNPs to the highest 
ranked genes (Table  1). A few of these genes are found 
in other GWAS of obesity-related traits. In particular, the 
FTO gene is a known obesity-related gene that is asso-
ciated with type 2 diabetes (see, e.g., [62–64]). While 
V2G score assigned rs5935988 to COBLL1 (198,262 bp), 
it was also close to GRB14 (23,935 bp) which has been 

associated with body fat distribution and may be involved 
in regulating insulin signaling [65–67]. Other genes that 
were assigned to lead SNPs are involved in regulating 
satiety and energy homeostasis (MC4R; [68]), adiposity 
(LYPLAL1; [69, 70]), and metabolic diseases such as type 
2 diabetes (KLF14; [71, 72]).

We then searched for evidence of known interacting 
variables using the significant SNPs identified by aLIT. 
We focused our analysis on various lifestyle (alcohol 
frequency and smoking status) and socio-demographic 
(age at recruitment, sex, and household income before 
tax) environmental factors. We fit a multivariate regres-
sion model and found evidence of multiple genotype-
by-environment interactions at a false discovery rate of 
0.05 (Fig. 5; Additional file 1: Table S2). In particular, the 

Fig. 4  Manhattan plot of aLIT p-values using obesity-related traits (waist circumference, hip circumference, body mass index, and body fat 
percentage) in the UK Biobank. The red line represents the genome-wide significance threshold of 5× 10

−8 . Note that p-values below 0.1 are 
removed from the plot

Table 1  aLIT and Marginal (SQ/CP) significance results of the lead SNPs from the UK Biobank analysis. There are two other p-values 
reported to help assess statistical significance in aLIT: (i) accounting for significant SNPs in linkage disequilibrium with the lead SNP 
(labeled “LD”) and (ii) removing dominance and/or scaling effects (labeled “Dom.”)

Chr. Gene Lead SNP MAF p-value (aLIT) p-value (SQ/CP) p-value (LD) p-value (Dom.)

16 FTO rs11642015 0.402 1.08× 10
−46

2.73× 10
−40

1.23× 10
−46

1.28× 10
−46

2 COBLL1 rs5835988 0.406 5.30× 10
−14

1.08× 10
−9

1.29× 10
−13 5.32× 10

−14

1 LYPLAL1 rs2820444 0.299 1.17× 10
−13

2.64× 10
−13

1.27× 10
−13

1.19× 10
−13

6 PRSS16 rs13212921 0.136 1.78× 10
−13

3.40× 10
−12

1.90× 10
−12

4.85× 10
−9

18 MC4R rs35614134 0.234 3.95× 10
−12

9.34× 10
−12 1.39× 10

−11
3.97× 10

−12

1 ATP2B4 rs2821230 0.474 9.45× 10
−11

1.19× 10
−5

1.02× 10
−10 9.38× 10

−11

7 KLF14 rs972284 0.389 1.43× 10
−10

2.43× 10
−9

1.25× 10
−10

1.43× 10
−10

11 LIN7C rs11030066 0.143 6.38× 10
−10

5.03× 10
−6

6.97× 10
−10

6.62× 10
−10

6 ILRUN rs9469860 0.146 1.01× 10
−9

4.47× 10
−9

7.72× 10
−9 3.62× 10

−7

12 FAIM2 rs7132908 0.384 8.85× 10
−9

4.22× 10
−9

8.49× 10
−9

8.96× 10
−9

5 MAP3K1 rs157845 0.253 1.03× 10
−8 2.39× 10

−4
1.30× 10

−8
1.03× 10

−8
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strongest genotype-by-environment signals involved sex 
as an interactive variable: rs5835988 ( p = 1.32× 10−51 ; 
COBLL1/GRB14), rs972284 ( p = 2.39× 10−14 ; KLF14), 
rs2820444 ( p = 7.23× 10−23 ; LYPLAL1), and rs35613134 
( p = 6.18× 10−5 ; MC4R). These results agree with pre-
vious work that has found sex-specific effects of variants 
in GRB14, KLF14, LYPLAL1, and MC4R [67, 72–74]. 
Thus, a subset of variants screened by LIT provide evi-
dence of a genotype-by-sex interaction while also being 
nearby genes that have been implicated to have sex-spe-
cific effects from previous studies. It is also worth noting 
that there were significant interactions at the FTO locus 
with alcohol frequency ( p = 6.54 × 10−5 ) and smoking 
( p = 1.32× 10−3 ), which has been previously found in 
other work [24, 75].

Discussion
It is challenging to identify, observe, accurately measure, 
and then detect genetic interactions in a GWAS study. 
While there are methods to screen for interactions that 
do not require specifying the interactive partner(s) [17, 
23–25], these approaches only consider a single trait. To 
increase statistical power, our proposed kernel-based 
framework, Latent Interaction Testing (LIT), leverages 
the shared genetic interaction signal from multiple related 

traits (i.e., pleiotropy) while maintaining the flexibility of 
single trait approaches. In our simulation study, we found 
that the optimal implementation between wLIT and uLIT 
depends on the genetic architecture. We also found that 
combining the p-values from both approaches in aLIT 
maximized the number of discoveries while controlling the 
type I error rate. Furthermore, aLIT increased the power 
to detect latent genetic interactions compared to marginal 
testing procedures, and the difference was drastic for cer-
tain genetic architectures. We then applied the LIT frame-
work to four obesity-related traits in the UK Biobank and 
found many loci with potential interactive effects, includ-
ing evidence of vQTLs/covQTLs that are still underpow-
ered to be discovered at current sample size.

While we emphasized the linear and projection ker-
nels in our study, aLIT can incorporate multiple kernel 
choices (e.g., Gaussian) which may increase the power 
to detect complex interaction signals. However, includ-
ing additional kernel functions will also increase the 
computational complexity which may be time prohibi-
tive for biobank-sized datasets. In particular, calculating 
non-linear kernels such as a Gaussian kernel is compu-
tationally demanding for large sample sizes. One prom-
ising direction for implementing non-linear kernels is 
to project the data onto a randomized low-dimensional 

Fig. 5  SNP-by-environment interaction results in UK Biobank for lead SNPs in genes detected by LIT. Asterisk denotes tests significant at a false 
discovery rate threshold of 0.05
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subspace to approximate the kernel function [76, 77]. We 
explored this approximation in aLIT using a Gaussian 
kernel and found comparable performance to the linear 
kernel (Additional file  1: Figs. S16-S17; see Fig. S18 for 
computational time comparisons). Because the accuracy 
of this approximation depends on the chosen dimension-
ality, a two-stage procedure can be implemented where a 
crude approximation (very low dimensionality) is applied 
genome-wide and then a subset of tests below some sig-
nificance threshold are selected to calculate an improved 
kernel approximation (larger dimensionality) [77]. This 
two-stage strategy can substantially reduce the computa-
tional time when extending the LIT framework to non-
linear kernels for biobank-sized datasets.

LIT is designed to screen for vQTLs/covQTLs in 
genome-wide data to identify loci with complex non-
additive genetic signals. While these non-additive genetic 
signals may be due to interactions with other genes or 
environment (which is our main focus), we note that 
other phenomena can induce non-additive genetic sig-
nals. From a biological perspective, variants demonstrat-
ing parent-of-origin effects can also present as vQTLs/
covQTLs [78, 79]. In addition, non-additive genetic effects 
can also result from non-biological origins; for example, 
a vQTL/covQTL could be due to an indirect effect of the 
variant on phenotype mediated through an environmen-
tal factor. While LIT (and other vQTL methods) cannot 
distinguish the source of the non-additive genetic effect, it 
is a valuable tool to detect loci to use in follow-up investi-
gation where the multiple testing burden will be reduced 
when considering multiple environmental (and genetic) 
factors. For example, in our applied analysis, we tested 
sex as a potential interaction partner of the lead SNPs and 
found loci in GRB14, KLF14, LYPLAL1, and MC4R with 
significant interactive effects. Additionally, the subset of 
screened loci can also be used for other purposes such as 
constructing improved estimates of polygenic risk scores 
(PRS) in PRS-by-environment testing [18]. It is this type 
of follow-up analysis that we anticipate will make LIT use-
ful for researchers.

There are some caveats when interpreting the signifi-
cance results of LIT or, more generally, any approach that 
does not require observing the interactive variable(s). 
Type I error rate control is impacted by loci with large 
additive effects and trait scaling issues. To address the 
former issue, we performed inference using all SNPs in 
LD with the lead SNPs and found it did not impact sig-
nificance. Previous work has found that the test statis-
tic inflation from common variants in LD with a strong 
additive effect is small for a single trait [24]. While it is 
likely that using multiple traits will increase the inflation 

compared to a single trait, we demonstrate in our applied 
analysis that it is simple to account for a LD region with 
LIT. A related issue is that the true causal SNP may not 
be tagged but this is unlikely an issue in this work since 
there is dense coverage with the imputed genotypes. We 
also assessed model misspecification due to an incorrect 
trait scaling by fitting a genotypic model to flexibly cap-
ture non-linear genetic signals. Interestingly, we found 
that our significance results were primarily impacted at 
loci located on chromosome 6 (outside the MHC). While 
this strategy can help identify the extent of genome-wide 
inflation due to dominance/scaling, it cannot determine 
whether the latent interactive effects are an artifact of the 
scale, even though our simulations suggest that detec-
tions by LIT are robust to deviations from normality. 
When presented with traits that follow a non-normal dis-
tribution, a rank-based inverse normal transformation is 
typically applied so a trait “appears” as a standard normal 
distribution. However, for screening latent interactions, 
we recommend against such practice as it does not cor-
rect for the mean-variance relationship and can lead to 
invalid inference [25]. In general, model misspecification 
from an incorrect scaling is problematic for any popula-
tion genetic analysis and may require other approaches 
such as goodness-of-fit testing to help identify an appro-
priate variance-stabilizing transformation.

There are also several important considerations when 
applying LIT to genetic data. Importantly, in this work, we 
assume that individuals are unrelated and traits follow a 
multivariate normal distribution. While LIT assumes the 
data follows a multivariate normal distribution, our simu-
lation study suggests that it is robust to violations of this 
assumption. In general, the computational time of LIT 
increases as the number of traits and sample size increases 
(Additional file 1: Fig. S18). Therefore, in order to analyze 
biobank-sized datasets, LIT uses multiple cores to distrib-
ute SNPs (e.g., on the same chromosome) for interaction 
testing to be computationally more efficient. Because cal-
culating the residual cross products for a large number of 
traits is computationally intensive ( 

(r
2

)

 increase in com-
putational time per SNP), LIT provides a user option to 
only use the squared residuals. However, as demonstrated 
in simulation and in the UK Biobank dataset, employing 
this option is likely to reduce power. Finally, while a dis-
covery in LIT suggests evidence of a non-additive effect, 
LIT does not identify the trait, or subset of traits, driv-
ing that result, and, consequently, does not distinguish 
whether the variant is a vQTL and/or covQTL. To do so, 
investigators might consider running Marginal (SQ/CP) 
at the “lead” SNP to rank/identify individual traits with 
non-additive effects (squared residuals; vQTLs) and pairs 
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of traits with shared non-additive effects (cross products; 
covQTLs, although, see the “Methods” section).

Conclusions
For many complex traits, there is strong discrepancy 
between GWAS-based estimates of heritability (which 
explicitly assume additive effects of genetic variation) and 
family-based estimates (which may incorporate non-addi-
tive effects and higher-order interactions). For GWAS-
based estimates of heritability, the large multiple testing 
burden, coupled with small interaction effect sizes, has 
made it very difficult to discover such effects. With recent 
biobank-sized datasets, we can begin to screen for loci 
with non-additive genetic variation that contribute to this 
missing heritability while understanding its role in the eti-
ology of complex traits. As biobank-sized datasets become 
more prevalent, we anticipate that computationally scal-
able approaches that leverage information across multiple 
traits, such as LIT, will become increasingly important to 
discovering non-additive genetic loci.
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