
Background

In sub-Saharan Africa, over 1,300,000 pregnant women 

were living with HIV in 2007, 73,000 of which were in the 

small southern country, Malawi, landlocked between 

Tanzania, Zambia, and Mozambique, just North of 

Zimbabwe [1]. More than 300,000 children were newly 

infected with HIV in 2007, predominantly through 

mother-to-child transmission (HIV MTCT) [2]. Much of 

the risk of HIV MTCT can be reduced by treatment with 

single dose nevirapine (NVP). However, in many areas, 

mothers and their infants do not receive such regimens, 

and even in the context of prophylactic treatment, some 

infants become infected whereas others remain free of 

infection. Furthermore, HIV transmission can occur 

during pregnancy, labor and delivery, or through breast-

feeding, by mechanisms which remain to be elucidated.

Th ere is evidence for genetic variability in the mother 

and/or infant to be associated with susceptibility to HIV 

MTCT. However, a larger wealth of research describes 

genetic associations with adult HIV transmission and 

progression to AIDS. Th e following paragraphs note 

pertinent fi ndings for various modes of HIV transmission 

and disease progression.

Abstract

Background: More than 300,000 children are newly infected with HIV each year, predominantly through mother-

to-child transmission (HIV MTCT). Identifi cation of host genetic traits associated with transmission may more clearly 

explain the mechanisms of HIV MTCT and further the development of a vaccine to protect infants from infection. 

Associations between transmission and a selection of genes or single nucleotide polymorphisms (SNP)s may give an 

incomplete picture of HIV MTCT etiology. Thus, this study employed a genome-wide association approach to identify 

novel variants associated with HIV MTCT.

Methods: We conducted a nested case-control study of HIV MTCT using infants of HIV(+) mothers, drawn from a 

cohort study of malaria and HIV in pregnancy in Blantyre, Malawi. Whole genome scans (650,000 SNPs genotyped 

using Illumina genotyping assays) were obtained for each infant. Logistic regression was used to evaluate the 

association between each SNP and HIV MTCT.

Results: Genotype results were available for 100 HIV(+) infants (at birth, 6, or 12 weeks) and 126 HIV(-) infants (at birth, 

6, and 12 weeks). We identifi ed 9 SNPs within 6 genes with a P-value <5 × 10-5 associated with the risk of transmission, 

in either unadjusted or adjusted by maternal HIV viral load analyses. Carriers of the rs8069770 variant allele were 

associated with a lower risk of HIV MTCT (odds ratio = 0.27, 95% confi dence interval = 0.14, 0.51), where rs8069770 is 

located within HS3ST3A1, a gene involved in heparan sulfate biosynthesis. Interesting associations for SNPs located 

within or near genes involved in pregnancy and development, innate immunological response, or HIV protein 

interactions were also observed.

Conclusions: This study used a genome-wide approach to identify novel variants associated with the risk of HIV 

MTCT in order to gain new insights into HIV MTCT etiology. Replication of this work using a larger sample size will help 

us to diff erentiate true positive fi ndings.
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Alteration of viral entry has been implicated for several 

genes. One mechanism of cell entry involves HIV-1 

binding with the CD4 receptor and co-receptor 

chemokine (CC motif ) receptor 5 (CCR5). Th e CCR5 co-

receptor also binds with chemokines produced by CD8+ 

T cells, including RANTES (CCL5), and MIP (macro-

phage infl ammatory protein) 1α (CCL3) and 1β (CCL4). 

Higher concentrations of these ligands have been 

associated with a lower risk of HIV-1 infection and 

progression to AIDS, likely through competition with R5 

strains of HIV for binding with the CCR5 receptor, 

preventing HIV from entering the cell and replicating 

[3-8]. Genes that regulate ligands for chemokine receptor 

genes have been associated with the risk of HIV infection, 

a notable example existing for chemokine (C-C motif ) 

ligand 3-like 1 (CCL3L1). CCL3L1 copy number lower 

than population average has been associated with an 

increased risk of HIV transmission through diff erent 

modes of transmission (adult and perinatal) and across 

various ethnic groups [9-13]. CCL3L1 copy number 

varia tion has also been associated with HIV/AIDS 

progression in adults [10,14-16].

Genes regulating co-receptor availability are also 

involved in HIV susceptibility. A prominent example in 

adults is the 32-base-pair deletion in the open reading 

frame of the CCR5 gene (CCR5-Δ32), where individuals 

homozygous for the Δ32 mutation are nearly resistant to 

infection by R5 strains [5-7,17,18]. However, the mutation 

does not always signifi cantly alter susceptibility to 

maternal infection among infants [19]. Th e rarity of the 

Δ32 mutation in African populations [20], where HIV 

MTCT is more common, may account for this lack of 

association. It is possible that other CCR5 variations, such 

as the promoter polymorphisms 2459 (59029 or 

rs1799987) and 2135 (59353 or rs1799988), play stronger 

roles for HIV MTCT, when taking maternal HIV viral load 

into account [21]. CCR5-2132 (59356) has been noted for 

an increased risk of death among HIV-infected women, 

although the same study did not observe associations 

between CCR5 polymorphisms 2135 (59353), 2086 (59402 

or rs1800023), and 2459 (59029 or rs1799987) and HIV 

MTCT [22].

Depending on the viral strain [23], HIV can use the CXC 

chemokine receptor 4 (CXCR4) as a co-receptor for CD4 

for cell entry. Like CCR5, CXCR4 can be blocked by 

endogenous ligands [24,25]. Th e natural ligand for CXCR4 

is the stromal cell-derived factor 1 (SDF1) [26-28], 

encoded by SDF1 (CXCL12). SDF1-3-prime-A has been 

associated with a reduced risk of HIV-1 infection [24,25], 

but not necessarily progression to AIDS [29,30] or HIV 

MTCT in African or other ancestry groups [31,32].

Intermediary receptors on dendritic or endothelial cells 

can be used by HIV-1 [33,34], and altered susceptibility 

to infection may result from polymorphisms in the genes 

regulating such receptors. Th is includes Dendritic cell-

specifi c ICAM-grabbing non-integrin (DC-SIGN) [35-38] 

and syndecan genes such as SDC-2 [39]. High levels of 

DC-SIGN mRNA in the human placenta suggests a role 

for DC-SIGN for in utero transmission of HIV, even in 

the context of low maternal viral load [34]. Syndecans 

may be less important alone as they are when connected 

with other factors such as chemokine receptors or 

heparan sulfate. For example, the SDC-4/CXCR4 

complex binds with SDF-1 [40], which can alter HIV 

binding. Th e syndecan protein bound with heparan 

sulfate (proteoglycan) can also bind with gp120 of HIV-1 

[41], which may facilitate HIV-1 cell entry [42] or cell-

free transport [43]. Th ere are multiple genes encoding 

syndecans and heparan sulfate proteglycans that remain 

to be clearly described in relation to HIV MTCT.

Finally, genes involved in the host immune response 

can play a role in HIV/AIDS susceptibility. Th e valine to 

isoleucine substitution at codon 64 in the chemokine co-

receptor 2b gene (CCR2-V64I) demonstrates linkage 

disequilibrium with the CCR5 promoter region [44] and 

is common in populations of African ancestry [44-46]. 

Th e natural ligand of CCR2 is CCL2 (MCP-1), which 

does not bind with CCR5 or CXCR4 [47]. CCR2- V64I is 

associated with delayed disease progression in adults, but 

with variable replication [44,48-50]. It is possible that the 

CCR2 gene does not individually infl uence HIV 

progression to AIDS, but rather, acts in combination with 

other gene polymorphisms such as the variants of CCR5, 

CXCR4, and possibly human leukocyte antigen (HLA) 

gene variants [51] in promoting or preventing infection. 

It has been suggested that activation of the immune 

system rather than receptor blockage explains the 

association with HIV/AIDS [47].

A variety of HLA gene variants are associated with 

susceptibility to HIV/AIDS in adults. Th is includes HLA 

complex P5 (HCP5) rs2395029 (in strong linkage 

disequilibrium with HLA-B*5701) and HLA-C rs926942 

associated with HIV viral set point [52] in a genome-wide 

association study, HLA-Bw4 associated with a lower risk 

of heterosexual HIV transmission [53], and HLA-B*35 

alone [54,55] or in combination with HLA-Cw*04 [56] 

associated with disease progression. An epistatic 

interaction between HLA-B Bw4-80I and activating killer 

immunoglobulin-like receptors (KIR) variant KIR3DS1 

has also been associated with a protection from rapid 

progression to AIDS [57,58], likely through increases in 

natural killer cell activity, cell lysis, and subsequent 

reduc tion in viral load [57].

More pertinent to HIV MTCT are HLA variants evalu-

ated in pregnant women or maternal-fetal poly mor phism 

mismatches in HLA variants, which can protect infants 

from infection. One study found that mothers with HLA-B 

variants (*1302, *3501, *3503, *4402, *5001) transmitted 
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HIV to their infant even in the context of low viral loads, 

whereas mothers with other variants (*4901, *5301) did 

not transmit the virus despite high viral loads [59]. 

Furthermore, mother-infant pairs discordant with regards 

to the HLA-G variants 3743C/T, 634C/G, or 714insG/G 

have been shown to experience a lower risk of HIV MTCT 

compared to concordant mother-child pairs [60].

Th e MBL2 gene plays a role in the innate immune 

responses to infection and encodes the mannose-binding 

lectin (MBL) protein [61-64]. Several MBL2 poly mor-

phisms can result in MBL defi ciency, which has been 

associated with increased risk of HIV MTCT [65]. 

Apolipoprotein B mRNA Editing Catalytic Polypeptide 

3g (APOBEC3G ), inhibits HIV-1 replication [66] and is 

associated with disease progression in children [67]. 

However, the association between APOBEC3G variants 

in the risk of HIV MTCT has not been established.

It is possible that the genetic risk factors involved in 

HIV infection and disease progression in adults do not 

directly overlap with the HIV MTCT phenotype and that 

the mechanisms with genetic underpinnings for HIV 

MTCT await discovery. It is also likely that what we know 

about HIV MTCT genetic risk factors is only one piece of 

the puzzle. To uncover new genes associated with HIV 

MTCT, we conducted a whole genome scan for fetal 

susceptibility to maternal HIV infection using infor-

mation from consenting mother-infant pairs receiving 

antenatal care in Blantyre, Malawi, a population with a 

high burden of HIV/AIDS.

Because HIV MTCT is a rare phenotype, it is diffi  cult 

to ascertain thousands of cases in order to obtain 

adequate power for a typical genome-wide association 

study. However, genome-wide approaches for such a 

pheno type can still be fruitful for furthering our under-

standing of HIV MTCT etiology and for generating 

hypotheses. Where possible, we also report the eff ects of 

SNPs within genes known to be associated with HIV/

AIDS, for the purposes of replication in our study 

population.

Methods

Study design and population

Th e study participants were a subset of a larger pros-

pective cohort study of malaria and HIV in pregnancy 

[68,69]. Th e cohort was conducted from 2000 to 2004 

and included 3,825 consenting pregnant women admitted 

to Queen Elizabeth Central Hospital in Blantyre, Malawi, 

as previously described [69]. HIV-infected women and 

their infants received a single dose (200 mg) of NVP at 

the onset of labor or at the time of delivery, respectively. 

A total of 1,157 women tested positive for HIV, 884 of 

which delivered at Queen Elizabeth Central Hospital, 

resulting in 807 singleton live births. At delivery, 751 

infants were tested for HIV, identifying 65 HIV positive 

infants at birth. Of the 686 HIV negative infants, 179 

were lost to follow-up. Th e remaining 507 HIV negative 

infants were tested for HIV at 6 and 12 weeks, resulting 

in 89 additional HIV positive infants. Based on mother 

reports, 98.4% and 96.5% of infants were breast fed at 6 

and 12 weeks postpartum, respectively.

In order to evaluate infant susceptibility to maternal 

HIV infection, a nested case control was conducted, 

focusing on infants of HIV positive mothers. Given that 

all such infants were HIV-exposed, cases were defi ned as 

infants who became HIV positive at birth, 6 weeks, or 

12 weeks. Controls were defi ned as infants who remained 

HIV negative at all visits. Genotyping was performed for 

as many cases as possible. We fi rst evaluated samples for 

suffi  cient DNA for genome-wide genotyping, which was 

obtainable for 115 of the 154 cases. Funding and supplies 

were only available to test an approximately 1:1 

case:control ratio. We selected controls in a slightly 

higher than 1:1 case:control ratio, anticipating loss of 

samples due to insuffi  cient DNA. A total of 203 of the 

418 controls were selected using simple random selection 

in STATA version 10 [70], 153 of which had suffi  cient 

DNA. Th e controls had a similar distribution across time 

of enrollment as the cases. Th e total sample size 

subjected to genotyping was 268 infants (115 cases + 153 

controls) of HIV positive mothers. Because the control 

status of subjects was designated at the beginning of 

sample selection for the nested case control, this study 

was analyzed as a case-cohort study [71]. Mothers of 

infants could not be genotyped as the original insti-

tutional review board approval did not include this. It 

was not possible to return to study participants in order 

to obtain informed consent for maternal genotyping. 

Th us, no test of transmission disequilibrium or analyses 

involving mother-infant pairs could be conducted. Th e 

focus was infant genomic susceptibility to HIV infection, 

given an HIV positive mother. Th e original cohort study 

obtained consent from study participants to collect and 

use samples for biological measurements including but 

not limited to diagnosis of disease and for genotyping. 

Written informed consent forms were available in both 

English and Chichewa, the predominant language in 

Malawi. Th is study was approved by the Malawi College 

of Medicine Research and Ethics Committee and by the 

institutional review board at the University of North 

Carolina at Chapel Hill. Modifi cation of the original 

institutional review board approval was obtained to 

ensure the approval of large-scale genotyping of SNPs 

across the genome.

Power analysis

Power was calculated based on a genome-wide scan of 

approximately 587,000 SNPs, as over 68,000 SNPs were 

removed due to quality control. Per specifi cations of the 
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software Quanto [72], power was computed using a log-

additive model, varying allele frequency (10 to 30%), a 

baseline risk of 25% (to approximate the proportion of 

infants that became infected with HIV from HIV positive 

mothers in the genome wide association study popu la-

tion), a case to control ratio of 1:1, and an Bonferroni 

adjusted P-value of 0.05/600,000 SNPs = 1 × 10-8 to 

account for multiple testing. Power was estimated for 

varying relative risks (1.25 to 3.25).

Genotyping

Infant genotyping was performed at Duke University 

Genotyping Core Laboratories, by using Illumina’s 

HumanHap650Y Genotyping BeadChip. Th is BeadChip 

enables whole-genome genotyping of over 655,000 

tagSNPs derived from the International HapMap Project 

[73] and over 100,000 tag SNPs selected based on the 

Yoruban Nigerian HapMap population. Th e BeadChip 

contains over 4,300 SNPs with copy number poly-

morphism regions of the genome, 8,000 non-synonymous 

SNPs, 1,800 tag SNPs in the major histocompatibility 

complex important for immunological relevance, 177 

mitochondrial SNPs, and 11 Y-chromosome SNPs.

Quality control

Th e quality control for genotyping error was performed 

at Duke University Genomic Laboratories as previously 

described [52]. Briefl y, all samples were brought into a 

BeadStudio data fi le and clustering of samples was 

evaluated in order to determine random clustering of 

SNPs. Samples with very low call rates (<95%) or insuf-

fi cient DNA concentration were excluded. Subsequent 

reclustering of undeleted SNPs and additional exclusion 

by call rate was performed [52]. SNPs with a Het Excess 

value between -1.0 to -0.1 and 0.1 to 1.0 were evaluated 

to determine if raw and normalized data indicated clean 

calls for the genotypes [52].

Statistical quality control was performed at the Univer sity 

of North Carolina at Chapel Hill. Individuals missing more 

than 10% of marker data, SNPs missing more than 10% of 

genotypes, SNPs with a minor allele frequency (MAF) 

≤0.01, and SNPs out of Hardy-Weinberg equilibrium 

(HWE) (P < 0.001) in the control group were excluded. 

Gender verifi cation was completed for all subjects to ensure 

that gender recorded in the covariate dataset matched with 

gender based on genetic data. For mismatched or missing 

gender, gender was imputed based on the X chromosome 

(N = 9). Related individuals were identifi ed by fi rst esti-

mating identity by descent (IBD). A minimal list of 

individuals with estimated genome-wide IBD proportions 

>  0.05 with at least one included subject were removed 

(N = 5). Statistical quality control was performed in PLINK 

version 1.05 [74]. Analyses were run without exclusions due 

to HWE in order to assess the diff erence in results.

Statistical analysis

Assuming an additive genetic model, logistic regression 

was performed where the outcome of interest was HIV 

status of the infant (positive or negative). Th e null hypo-

thesis was that the SNP of interest was not associated 

with HIV MTCT: Ho: β1 = 0, compared to the alternative 

hypothesis, that the SNP was associated with HIV MTCT: 

Ha: β1 ≠ 0. All SNPs were assumed to be independent, and 

Bonferroni correction was used to adjust for multiple 

testing. Odds ratios (ORs) were obtained to approximate 

the risk ratios. Th ese statistical analyses were conducted in 

PLINK version 1.05 [74] and the results were visualized in 

WGAViewer version 1.26F [75].

Logistic regression was adjusted for maternal viral load 

(MVL), as it is a key risk factor for HIV MTCT. MVL 

could not be evaluated for eff ect measure modifi cation 

because of the small sample size. Logistic regression 

results were presented for both unadjusted and MVL 

adjusted analyses. We also investigated maternal syphilis 

for signifi cant confounding, although the number of 

infants of HIV positive mothers who also had syphilis 

was small (N = 20). We did not evaluate maternal malaria 

for confounding as it was not associated with the 

outcome, HIV MTCT [68,69]. In order to evaluate 

population stratifi cation, principal components analysis 

was performed by using EIGENSOFT version 2.0 [76,77]. 

Principal component(s) (PCs) were then evaluated for 

association for SNPs associated with HIV MTCT. PCs 

were determined to represent potential confounders if 

they were associated with both the SNP of interest and 

HIV MTCT. If necessary, logistic regression was repeated 

adjusting for confounding PCs.

In order to evaluate the consistency of associations by 

mode of transmission, we evaluated each SNP for asso-

ciation with intrauterine and intrapartum trans mission. 

Intrauterine transmission was estimated by infant HIV 

status at birth. Intrapartum transmission was assigned to 

infants who were HIV negative at birth but who became 

HIV positive at week 6. Transmission through breast-

feeding was estimated at week 12. For each mode of 

transmission, the results for SNPs within key genes 

previously associated with HIV/AIDS were summarized.

Results

Quality control and power analysis

  A total of 246 infants (114 cases, 132 controls; 116 males, 

121 females, 9 with imputed gender) passed laboratory 

quality control. Statistical quality control removed 15 

individuals for low genotyping and 5 who had estimated 

genome-wide IBD proportions > 0.05 with at least one 

included subject. Th is resulted in a total of 226 

individuals (100 cases, 126 controls; 112 males, 114 

females). Of the 655,352 SNPs tested, 68,671 failed 

statistical quality control due to HWE P < 0.001 in the 
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controls (N = 425), low genotyping rate (N = 21,589), or 

for MAF <0.01 (N = 53,477), where some overlap of SNPs 

across exclusion criteria existed. Results are summarized 

for 586,681 SNPs.

No evidence of population stratifi cation was present 

(Eigen value range: 0.817 to 1.20, mean = 0.995, genomic 

infl ation factor based on median χ2 = 1.023, mean χ2 = 

1.013). Th e power analyses estimated that with a P-value 

of 1 × 10-8, a baseline risk of 25%, and an allele frequency 

of 10%, our power was ≤32% and 58% for a relative risk 

(RR) of ≤3.0 and 3.5, respectively. For an allele frequency 

of 20%, this changed to 10%, 50%, 85%, and 97%, for RR = 

2.0, 2.5, 3.0, and 3.5, respectively. And for an allele 

frequency of 30%, this changed to 22%, 75%, 96%, and 

99%, for RR = 2.0, 2.5, 3.0, and 3.5, respectively. Th is 

implies that our genome-wide association dataset with a 

sample size of 226 is powered to detect large eff ects of 

very common variants, but underpowered to detect small 

eff ects of rare variants. Because additional cases could 

not be obtained, we were unable to increase sample size 

in order to boost power. Rather, limited genome-wide 

statistical signifi cance was noted.

Association results

Although no genome-wide signifi cant SNPs were detected 

(P < 1 × 10-7), we identifi ed nine SNPs within six genes 

with a P-value <5 × 10-5 in either unadjusted analyses 

and/or analyses adjusted by MVL (Table 1). Adjustment 

by maternal syphilis made little impact on the eff ect 

estimates or statistical signifi cance (data not shown). 

Several of the 50 most signifi cant SNPs were located 

within interesting genes, including 7 SNPs near or within 

genes involved in pregnancy and development (Table 2). 

An additional 7 SNPs were located near or within genes 

with immunological function and/or HIV-1 protein 

interactions (Table 3). One of the top SNPs corresponding 

to functional interest was rs8069770, located within the 

gene heparan sulfate (glucosamine) 3-O-sulfotransferase 
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Table 1. HIV MTCT association results for SNPs, selected by P-value

     Unadjusted  Adjusted OR  
CHR SNPtype A1 A2 MAF OR (95% CI) P (95% CI) P Nearest gene

17 rs12306a A G 0.23 0.33 (0.20, 0.55) 2.02E-05 0.34 (0.20, 0.57) 3.92E-05 WD repeat and SOCS box-containing 1 (WSB1)

8 rs476321a T C 0.27 2.55 (1.65, 3.92) 2.15E-05 2.50 (1.62, 3.87) 3.42E-05 Protein coding, protein info: transcription factor 

         CP2-like 3, deafness, autosomal dominant 28, 

         grainyhead-like 2 (Drosophila) (GRHL2)

6 rs2268993a C G 0.27 2.71 (1.71, 4.28) 2.20E-05 2.70 (1.70, 4.28) 2.65E-05 Solute carrier family 35 (CMP-sialic acid transporter), 

         member A1 (SLC35A1)

18 rs8084223b T C 0.15 0.26 (0.14, 0.49) 3.41E-05 0.26 (0.14, 0.50) 4.21E-05 AC104961.7

23 rs5934013a G A 0.15 4.18 (2.12, 8.24) 3.61E-05 4.09 (2.08, 8.06) 4.68E-05 FERM and PDZ domain containing 4 (FRMPD4)

8 rs9314565b G C 0.47 0.42 (0.27, 0.63) 4.13E-05 0.41 (0.27, 0.63) 3.64E-05 AC019176.4

3 rs4234621b C T 0.28 0.39 (0.25, 0.61) 5.03E-05 0.38 (0.24, 0.60) 4.58E-05 Pyrin domain containing 2 (PYDC2)

14 rs2287652a C A 0.2 0.32 (0.19, 0.56) 5.15E-05 0.33 (0.19, 0.57) 7.12E-05 aarF domain containing kinase 1 (ADCK1)

9 rs1889055b C N/A 0.24 2.52 (1.61, 3.93) 5.21E-05 2.48 (1.59, 3.87) 6.32E-05 RP11-48L13.1

7 rs216743a A G 0.1 4.22 (2.09, 8.53) 6.16E-05 4.23 (2.08, 8.61) 6.89E-05 cAMP responsive element binding protein 5 (CREB5)

7 rs216744a G G 0.1 4.22 (2.09, 8.53) 6.16E-05 4.23 (2.08, 8.61) 6.89E-05 cAMP responsive element binding protein 5 (CREB5)

22 rs131817a T G 0.23 0.37 (0.22, 0.60) 6.68E-05 0.36 (0.22, 0.59) 6.62E-05 Non-SMC condensin II complex, subunit H2 

         (NCAPH2)

7 rs4722999a C C 0.32 2.46 (1.58, 3.84) 7.07E-05 2.38 (1.52, 3.72) 1.49E-04 Corticotropin releasing hormone receptor 2 (CRHR2)

17 rs8069770a T G 0.14 0.27 (0.14, 0.51) 7.17E-05 0.25 (0.13, 0.49) 3.79E-05 Heparan sulfate (glucosamine) 3-O-sulfotransferase 

         3A1 (HS3ST3A1)

5 rs6884962c G A 0.49 2.18 (1.48, 3.21) 7.31E-05 2.15 (1.46, 3.17) 1.07E-04 AC008412.8

12 rs12579934a T A 0.46 2.24 (1.49, 3.36) 9.59E-05 2.48 (1.63, 3.78) 2.45E-05 Branched chain aminotransferase 1, cytosolic (BCAT1)

9 rs12376718b T A 0.15 3.07 (1.75, 5.39) 9.79E-05 2.97 (1.69, 5.20) 1.47E-04 RP11-48L13.1

16 rs6540013b G C 0.39 0.45 (0.30, 0.68) 1.16E-04 0.44 (0.29, 0.66) 8.99E-05 AC010531.8

16 rs12598821a T T 0.48 0.45 (0.30, 0.68) 1.20E-04 0.43 (0.28, 0.65) 6.65E-05 AC010333.7

1 rs3861824b A G 0.11 0.23 (0.11, 0.50) 1.98E-04 0.20 (0.09, 0.44) 6.29E-05 Disabled homolog 1 (Drosophila) (DAB1)

Top 20 most signifi cant SNPs based on P-values from crude and/or adjusted by maternal HIV viral load analyses, sorted by unadjusted P-value. CHR, chromosome; 
SNPtype, SNP and type, where type refers to the position of the SNP relative to the closest gene (aintronic, bintergenic, cupstream); A1, risk allele designated by PLINK; 
A2, major allele; MAF, minor allele frequency; OR, odds ratio; 95% CI, 95% confi dence interval of the OR; Adjusted OR, OR from analyses adjusted by maternal HIV viral 
load.



3A1 (HS3ST3A1; Figure 1). Analyses run including SNPs 

out of HWE in the control group gave similar results 

(data not shown). None of the ten PCs evaluated were 

associated with rs8069770 (P = 0.763, 0.977, 0.715, 0.447, 

0.320, 0.714, 0.523, 0.958, 0.696, 0.902). Th us, subsequent 

adjustment by PCs was not necessary.

For the top 20 most signifi cant SNPs summarized in 

Table 1, we evaluated the eff ect estimates and statistical 

signifi cance for intrauterine and intrapartum HIV trans-

mission (Additional fi le 1). We were unable to include 

results for transmission through breastfeeding because 

the outcome was too rare. For all SNPs described, the 

direction of eff ect (higher risk or lower risk of HIV 

transmission) was consistent across mode of transmission 

(Additional fi le 1). Th e results for SNPs within 10 kb of 

key genes of interest were also reported (Additional fi le 2). 

We were unable to report results specifi c to the marker 

for the CCL3L1 copy number variation, rs72248989, but 

we report the eff ects of SNPs in this region (Additional 

fi le 2).

Discussion

We conducted a genome-wide association study to 

identify genetic variants that may infl uence HIV MTCT. 
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Table 2. Top SNPs in or near genes with roles in pregnancy and development

CHR SNPtype P Nearest gene Presumed gene function

17 rs8069770a 3.79E-05 Heparan sulfate (glucosamine)  Abundant expression in placenta; HIV-1 requires the gene product heparan sulfate

   3-O-sulfotransferase 3A1 (HS3ST3A1) proteoglycans for uptake in trophoblasts (cells forming the placental barrier); 

    involved in biosynthesis of an entry receptor for herpes simplex virus 1

17 rs12306a 3.92E-05 WD repeat and SOCS  Unknown protein function induced by Hedgehog signaling in embryonic structures

   box-containing 1 (WSB1) during chicken development

4 rs1433666a 1.00E-04 Glutamate receptor, ionotropic,  Homozygosity for this mutation in mice results in death shortly after birth, related to

   delta 2 (GRID2) the loss of mid- and hindbrain neurons during late embryogenesis

5 rs6884962b 1.00E-04 NK2 transcription factor related,  Regulates tissue-specifi c gene expression essential for tissue diff erentiation; 

   locus 5 (Drosophila) (NKX2-5) regulates temporal and spatial patterns of development

7 rs4722999a 1.00E-04 Corticotropin releasing hormone  Detected in placenta, myometrium, decidua, and fetal membranes; expression is

   receptor 2 (CRHR2) down-regulated in uterine tissues during pregnancy, most pronounced in laboring 

    cervix; suggested paracrine role in birth process (for example, eff ects on 

    macrophages and endothelial cells)

2 rs2677510b 3.00E-04 GLI-Kruppel family member  Role during embryogenesis, DNA binding, and Sonic hedgehog (Shh) signaling to

   GLI2 (GLI2) oncogenes in embryonal carcinoma cells

6 rs2268447a 4.00E-04 Pleiomorphic adenoma  Mutations associated with congenital abnormalities, potential role in ovarian and

   gene-like 1 (PLAGL1) other types of cancer; genetically imprinted in neonatal diabetes

The sources of the presumed gene function are NCBI Entrez Gene and OMIM [88,94]. CHR, chromosome; SNPtype, SNP and type, where type refers to the position of the 
SNP relative to the closest gene (aintronic, bintergenic); P, adjusted by maternal HIV viral load P-value.

Table 3. Top SNPs in or near genes with immunological function or HIV-1 protein interactions

CHR SNPtype P Nearest gene Presumed gene function

6 rs3131036a 2.00E-04 Discoidin domain receptor family,  Proximal to HLA genes; interacts w/collagen to up-regulate IL-8 and infl ammatory

   member 1 (DDR1) macrophages.

10 rs3124199b 2.00E-04 Mitogen-activated protein kinase  Promotes production of TNF-alpha and IL-2 during T lymphocyte activation; 

   kinase kinase 8 (MAP3K8) promotes proteolysis of cytokine activator NFKB1 in rats.

4 rs1358594b 3.00E-04 Interleukin 8 (IL8) HIV-1 Nef, Tat, and Vpr regulate IL-8 expression. IL-8 protein mediates infl ammatory 

    response including CD4+ response to HIV-1 infection.

7 rs10254544c 3.00E-04 Nucleoporin like 2 (NUPL2) Interacts with HIV-1 Rev to mediate nuclear import of viral DNA and inhibit nuclear 

    export of HIV-1 mRNA.

9 rs302923d 3.00E-04 General transcription factor IIIC,  HIV-1 Tat upregulates RNA polymerase III transcription by activating this gene.

   polypeptide 4, 90kDa (GTF3C4)

20 rs6037908b 3.00E-04 Prion protein (p27-30) (Creutzfeldt- HIV-1 Tat binds to a stem-loop structure in the mRNA of PrP, upregulating

   Jakob disease, Gerstmann-Strausler- expression.

   Scheinker syndrome, fatal familial

   insomnia) (PRNP)

7 rs6951646b 4.00E-04 Sp4 transcription factor (SP4) Activates the HIV-1 LTR promoter, possibly enhancing HIV-1 Tat-mediated 

    transactivation of the viral promoter.

The sources of the presumed gene function are NCBI Entrez Gene and OMIM [88,94]. CHR, chromosome; SNPtype, SNP and type, where type refers to the position of the 
SNP relative to the closest gene (aintronic, bintergenic, cupstream, ddownstream); P, adjusted by maternal HIV viral load P-value.



Although limited by sample size and the power to detect 

genome-wide statistical signifi cance, we were powered to 

detect large genetic eff ects for common variants (eff ect 

estimate >3.0, MAF >20% or eff ect estimate >2.5, allele 

frequency >25%). No such genome-wide statistically 

signifi cant genetic eff ects were detected. Nonetheless, 

several fi ndings were notable and may off er supportive 

data for other studies of the genetics of HIV MTCT.

Several SNPs with biological signifi cance were noted. 

One of these is the SNP rs8069770, located within the 

gene HS3ST3A1. Th is gene encodes the enzyme 3-O-

sulfotransferase, which catalyzes the biosynthesis of a 

specifi c subtype of heparan sulfate (HS), 3-O-sulfated 

heparan sulfate. Th is HS subtype has specifi c functional 

signifi cance for herpes simplex virus-1 [78,79]. Although 

HS has been shown to be involved in HIV infection 

[80-83], to our knowledge, no sub-type-specifi c investi-

ga tions of HS have been conducted for association with 

HIV MTCT. Furthermore, HIV-1 virus [41,84] and the 

chemo kine RANTES [41,85,86] have been noted to bind 
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Figure 1. Map of the HS3ST3A1 gene on chromosome 17. Position and -log(p) of SNPs in the region are displayed, including the SNP rs8069770 

with the highest -log(p). Triangle display of linkage disequilibrium across SNPs corresponds to r2 estimates. Plot constructed using WGAViewer 

software version 1.26F.

rs8069770



to syndecans, which are core transmembrane proteins 

capable of carrying HS [87]. It is possible that specifi c or 

multiple components of HS proteoglycans, which consist 

of the bound core protein attached to HS, are involved in 

HIV MTCT. We suggest two possible mechanisms: the 

attachment of HS proteoglycans to HIV could prevent 

the virus from crossing the placenta and possibly facili-

tate viral sequestration in the placenta; or, HS 

proteoglycans binding with RANTES could leave CCR5 

receptors available to bind with HIV virus and facilitate 

transmission across the placenta. Th e former mechanism 

would agree with the direction of eff ect we observed for 

rs8069770. However, much more research is needed in 

order to more clearly develop mechanistic hypotheses 

involving HS, at both the genetic level regulating the 

biosynthesis of HS subtypes, and at the protein level. We 

observed that the frequency of the minor allele of 

rs8069770 among cases/controls was similar across 

transmission type: case/control frequencies were 

0.07/0.19, 0.07/0.16, and 0.09/0.18 for cumulative HIV 

MTCT, intrauterine transmission, and intrapartum trans-

mission, respectively. Th e direction of eff ect was also 

consis tent across transmission category (Additional fi le 1), 

suggesting that the mechanism may not be specifi cally 

localized to the placenta.

Two SNPs were located within genes involved in 

embry onic development in animal models [88]: rs12306 

(P = 3.29 × 10-5) within the WD repeats and SOCS box-

containing 1 (WSB1) gene, and rs1433666 (P = 0.0001) 

within the Glutamate receptor, ionotropic, delta 2 

(GRID2) gene. Th e role of WSB1 in human embryonic 

development or in the risk of HIV MTCT is not well 

described. GRID2 has been noted as a large region of 

genomic instability (fragile site) and has been associated 

with cancer and neural development [89,90]. Subsequent 

studies of these genes in humans would be valuable, in 

particular for probing roles in viral infection.

Th ere were two SNPs (rs216743 and rs216744) with P-

values <7 × 10-5 identifi ed in the cAMP response 

element binding protein 5 gene (CREB5). Th e CREB5 

product is part of the CRE (cAMP response element)-

binding protein family. One member of this family, 

CRE-BP1, is involved in mediating the adenovirus E1A-

induced trans-activation [91]. CREB5 has also been 

noted to serve as an integration site for xenotropic 

murine leukemia virus-related virus (XMRV) in prostate 

cancer tissue from patients homozygous for a reduced 

activity variant of the antiviral enzyme RNase L [92]. 

Another SNP, rs1358594 (P = 0.0003), was of interest as 

it is within IL8, which mediates infl ammatory response 

to HIV-1 infection [88]. Six other SNPs were found 

within genes that play a role in HIV infection. Th is may 

be suggestive of similar roles for such genes in HIV 

MTCT.

Th e Illumina 650Y BeadChip methodology provides 

genotypes of predominantly biallelic SNPs that are 

approximately evenly spaced across the genome rather 

than selected based on known functional signifi cance. 

Th is limited our ability to replicate associations between 

some regions of interest (that is, CCR5) and HIV MTCT 

in this study. We were also unable to directly evaluate 

some key copy number variations (that is, CCL3L1) for 

association with HIV MTCT. However, we do describe 

the results for SNPs within 10 kb of the key genes 

associated with HIV/AIDS, including the association 

between SNPs close to the marker for the CCL3L1 copy 

number variation rs71148989 (Additional fi le 2). Our 

small sample size may also have limited our ability to 

detect statistically signifi cant associations in some 

regions of interest, in particular for small eff ects.

We did not describe the most statistically signifi cant 

SNPs (potentially diff erent sets of top SNPs) by mode of 

transmission because of the small number of cases by 

transmission type. Rather, we compare the results for top 

SNPs from cumulative HIV MTCT analyses across other 

modes of transmission (intrauterine/intrapartum; Addi-

tional fi le 1) to assess consistency. Because the number of 

transmission events through breastfeeding was very rare 

(N = 10), we were unable to report the associations specifi c 

to postpartum transmission. We observed consistent 

direction of eff ects (higher/lower risk of HIV MTCT) 

across mode of transmission, which suggests that the 

eff ects of the top SNPs are not specifi c to biological 

events taking place in utero. However, for some SNPs, the 

strength of eff ect diff ered across transmission type. For 

example, rs5934013 of FERM and PDZ domain 

containing 4 (FRMPD4) was associated with a higher risk 

of HIV MTCT (MVL-adjusted OR = 4.09, 95% confi dence 

interval (CI) = 2.08, 8.06), also found for intrauterine 

transmission (MVL-adjusted OR = 1.83, 95% CI = 0.96, 

3.47), and intrapartum transmission (MVL-adjusted 

OR = 3.39, 95% CI = 1.46, 7.85). Th e stronger eff ect size 

for intrapartum compared to intrauterine transmission is 

interesting, possibly useful for developing mechanistic 

hypotheses, but warrants caution with interpretation due 

to sample size.

We previously noted that all mothers in the study 

received NVP, in accordance with the HIVNET 012 

protocol [93]. Th is may limit the generalizability of our 

fi ndings to populations with diff erent drug treatment or 

with no drug treatment during pregnancy or after 

delivery. It may also have limited our ability to replicate 

or identify novel SNP associations with HIV MTCT that 

are only present in the absence of treatment. However, 

because NVP treatment was administered to all subjects, 

this study may more clearly illustrate the genetic eff ects 

that are strong enough to maintain association with HIV 

MTCT even in the context of NVP. Such eff ects may be 
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of greater interest for therapeutic applications or for 

pharmacogenomic research eff orts.

Due to the nature and frequency of this rare HIV 

MTCT phenotype, we were unable to ascertain a suffi  -

cient number of cases to be powered to establish 

genome-wide statistical signifi cance. However, this study 

did provide some new insights into the genetics of HIV 

MTCT and aims to facilitate future genetic studies for 

this phenotype.

Conclusions

Th is study evaluated over 586,000 SNPs for association 

with HIV MTCT in a set of HIV-exposed infants from 

Blantyre, Malawi. Although we were unable to detect 

genome-wide statistically signifi cant eff ects, several SNPs 

with P-values <5 × 10-5 with biological signifi cance were 

noted. Replication of this work using a larger sample size 

will help us to diff erentiate true positive fi ndings.
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