
Introduction
Although there has been continuing discussion and 
debate over the ethical implications and clinical utility of 
a large-scale genotyping for an individual patient [1-3], 
the issue is somewhat moot. Patients are now being 
genotyped using either (i) measurement platforms run by 
several different direct-to-consumer companies that 
sequence nearly a million single nucleotide polymor-
phisms (SNPs) [4], or (ii) whole genome sequencing, 
which is beginning to be offered to selected individuals 
[5-8]. Patients are beginning to present to their healthcare 
provider before or during an evaluation, including an 
extensive genotyping scan [9]. It may appear over whelm-
ing and a nearly impossible task to take the complexity of 
genetic variation and interpret it in the context of the 
enormous amount of literature on human genetics [10], 
some of which seems mercurial and contradictory. 
However daunting, it is incumbent upon a healthcare 
provider to try to help patients make informed decisions 
in light of the information available, and to not ignore 
this genetic information.

Discussion
Although DNA variants unique to an individual, or at 
least extremely rare in the general population, may have 

major impact on personal phenotypes and may explain 
much of the ‘missing heritability’ [11,12] of common 
variants, we currently have very little power to interpret 
the impact or predictive power of these rare variants. 
Additionally, individual sequence data, which are able to 
probe for more rare variants, are not yet as common as 
parallel genotyping assays, which primarily probe 
common variants. �ere is a large body of published 
research associating common variants with disease [13]. 
Admittedly, those relationships are through association, 
which does not necessarily indicate a direct functional 
relationship for the outcome or phenotype being studied. 
However, having a direct model of mechanism has never 
been a requirement for the value of a medical test. Many 
features used in physical examinations or laboratory tests 
have an indirect relationship with the clinical phenotype 
(typically disease state) being measured. For instance, the 
well-known relationship between clubbing and impaired 
lung function is through association, not mechanism, but 
that does not reduce the predictive value. Association of 
a genotype with clinical phenotype has value as a predic-
tive tool independent of mechanism.

We envision that patients may present to a healthcare 
provider with a large panel of genotyping studies or a 
whole genome sequence (both of these are referred to 
here as DNA analysis) generally for three reasons. �e 
first might be to seek reproductive counseling, and there 
is already extensive existing methodology in this area, 
including professional certification for counselors in the 
USA and Canada by the American Board of Genetic 
Counseling. �e second might be for an individual with 
clinical complaints, and the genotyping analysis might 
have been performed with the hope of providing assis-
tance in the refinement of a diagnosis or an improved, 
personalized treatment plan. �e third might be for a 
healthy patient looking for suggestions into lifestyle 
modifi cations or information on long-term prognosis 
and early identification of potential problems; this 
situation is not unique to a genetic screen and is typically 
the goal with a well physical. Here, we are addressing 
patients presenting for the latter two reasons.

By viewing a DNA analysis as a series of multiple 
laboratory tests that each have predictive power for 
different phenotypes, it becomes clear how these fit into 
the well-established methods of evidence based medicine 
[14-16]. �e measurement of each DNA variant turns 
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into an individual test. That test provides a likelihood 
ratio for phenotype (we will focus primarily on current or 
future disease state as the phenotype of interest) based 
on the result of that test.

Armed with a reasonable assessment of pre-test odds, 
the framework of evidence based medicine, which has 
been taught in medical schools and in residency pro
grams for decades, simply multiplies the likelihood ratios 
of disease state, given the results of the tests, to produce a 
post-test odds of disease. The fact that the results of 
genotype analysis of any individual variant are extremely 
precise should not be confused with the fact that 
individual tests for disease need not be exceptionally 
accurate to have value. The DNA analysis is just a very 
large panel of such tests.

Calculation of likelihood ratios, and pre- and post-test 
probabilities
A likelihood ratio is the ratio of the probability of a 
positive test, in this case a particular genotype, in a 
diseased person to that in a non-diseased person:

Likelihood ratio = Probability of genotype in diseased person/
Probability of genotype in non-diseased person = LRi

Likelihood ratios multiplied by the pre-test odds of 
disease give the post-test odds of disease (Table  1), and 
these likelihood ratios may be chained together (Figure 1):

Pre-test odds = Probability of disease/1 - Probability of 
disease

Pre-test odds × LR1 × LR2 ×…× LRn = Post-test odds

Post-test probability = Post-test odds/Post-test odds + 1

The assumption of independence made here is that 
each test is independent of one another. Note that 
assuming independence of tests is actually a different 
assumption than assuming that each variant contributes 
independently to risk. The independence of risk 

contributions may be an accurate model if each genetic 
variant measured does causally contribute independently 
to risk, but there is only very little indication [17] that 
this is broadly the case for most genetic associations, and 
there are difficulties with many models that do assume 
independent risk contributions [18]. If we view each 
measured variant as an independent test probing disease 
state, this is arguably closer to our understanding of their 
use as markers associated with disease instead of actual 
causal variants. In this case, assuming independence as 
tests of disease is a more appropriate approximation.

A key advantage of considering genotyping assays by 
likelihood ratios is that this methodology directly takes 
the prior probabilities into account. Genetic features 
suggesting relatively dramatic increase in associated risk 
may still only suggest modest post-test probabilities of 
rare diseases. Variants that do not contribute dramatically 
to risk will leave common diseases as being common 
(that is, having a high post-test probability) and should 
not substantially change most current guidelines for 
preventative screening. In addition, the specific pre-test 
probabilities are also adjustable in the context of a patient 
with other clinical findings. The calculation of post-test 
probabilities in this manner will allow the results of 
genetic screens to more easily fit into discussions of the 
numbers needed to treat, numbers needed to harm, and 
many issues in cost-benefit analysis.

Considering genotyping assays by likelihood ratios and 
post-test probabilities [16] also addresses previously 
suggested ‘incidentalome’ issues [19], where incidental 
findings, even many of them, that weakly suggest 
increased likelihood of rare diseases will be largely 
irrelevant in a patient free from clinical complaints and 
with correspondingly low post-test probabilities of these 
diseases. Physicians have been taught to consider 
threshold post-test probabilities for continuing testing or 
initiating therapy, with thresholds set based on careful 
consideration of the risks and benefits of continued 
testing or initiation of therapy. If physicians are presented 
with panels of post-test probabilities, instead of being 
presented with genotypes or odds ratios, we suggest they 

Table 1. Example calculations of post-test probabilities 

Type of disease and associated variants	 Pre-test probability of disease (%)	 Likelihood ratio	 Post-test 
probability of disease (%)

Common disease, weakly associated variant	 15.0	 1.1	 16.256

Common disease, several weakly associated variants	 15.0	 1.1 × 1.1 × 1.1 × 1.1 = 1.46	 20.486

Rare disease, weakly associated variant	 0.01	 1.1	 0.011

Rare disease, strongly associated variant	 0.01	 5	 0.050

Rare disease, several weakly associated variants	 0.01	 1.1 × 1.1 × 1.1 × 1.1 = 1.46	 0.015

Rare disease, several moderately associated variants	 0.01	 2 × 2 × 2 × 2 = 16	 0.160

Post-test probabilities may be calculated for common or rare diseases with weakly and strongly associated variants using example values for likelihood ratios and pre-
test probabilities. The definition of strongly versus weakly associated is in the context of genetic associations, where likelihood ratios from large-scale studies rarely 
reach higher than 3. Many clinical laboratory tests have likelihood ratios of 10 or more.
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have the training to make the determination of future 
courses based on post-test probabilities.

Challenges
Unfortunately, much of the information necessary to 
support this method of using likelihood ratios is not 
being published in the primary publications associating 

genotypes with disease. Although many studies have 
been performed examining the association between 
common variants and disease, many of these reports still 
do not provide enough information to calculate a likeli
hood ratio from a specific genotype, do not characterize 
the sample population and the prior probability of disease 
in this population, or do not make clear what other 
variants were measured to help adjust for multiple hypo
thesis testing and other biases.

Traditionally, the published literature on genetic asso
ciations has focused on suggesting interesting variants 
with possible mechanistic involvement in the disease of 
study. Hence, authors may only report an odds ratio as a 
measure of effect size, and a P value to show that the 
variant is significantly associated with the disease. Many 
such studies do not even report the risk genotype at the 
site of the SNP; this is a particular problem because the 
relationship of the common allele in the population 
under study to a reference genome is unknown, and the 
reference genome may actually contain the risk-
associated allele. For example, a study that reports that 
having a variation at an identified location in the genome 
doubles the risk for a disease, without reporting which 
variant (A, C, T or G) is actually associated with the 
increase of risk, is failing to report essential information.

We recently curated 2,174 articles reporting primary 
data on gene-disease associations of variants in the 
National Center for Biotechnology Information (NCBI) 
SNP database (dbSNP) [20]. Of these publications, only 
46% contained information on actual genotype-asso
ciated risk, enabling the calculation of a likelihood ratio 
yielding a total of 2,092 disease-variant associations. 
Although any particular genetic association study may 
not be intended for use in informing a clinical diagnostic 
test or interpretation, information on the actual pro
portion/frequency of subjects with each associated geno
typic variant in the relevant phenotype categories (such 
as with and without disease) should be made available for 
use in further studies and meta-analyses. This informa
tion aids in attempts at replication of results and in 
calculating overall estimates of the power of a particular 
genotype to predict disease state. The prostate cancer 
study by Duggan and colleagues [21] contains a particu
larly illuminating example of this kind of detailed 
reporting in Table  2 of the article. At a bare minimum, 
the actual risk allele should be reported; this is something 
not explicitly required by current guidelines [22].

One reason that additional data specifying the exact 
proportion of individuals of each genotype in each 
disease category is not given in publications is possibly 
due to the concern in being able to identify a patient’s 
disease class if detailed data from the study are made 
available [3]. However, such re-identification of disease 
state does still require that one has the patient’s genotype. 

Figure 1. Nomogram for likelihood ratios. The pre-test and 
post-test probabilities and likelihood ratios of any diagnostic test, 
including a genetic test, can be visualized using a nomogram familiar 
to most physicians and medical students. The nomogram shown 
is derived from the Fagan nomogram [14], and modified from one 
generated using a web-based tool [28]. The left side of the figure 
indicates a hypothetical pre-test probability of disease of 27%. Three 
lines represent the three possible genotypes, from top to bottom: 
homozygous risk alleles with a likelihood ratio of 1.61, heterozygous 
alleles with a likelihood ratio of 1.26, and homozygous protective 
alleles with a likelihood ratio of 0.83. The right side of the figure 
indicates three possible post-test probabilities resulting from the 
three genotypes. Multiple such tests can be ‘chained’ together serially, 
if they describe independent risks and cover the same pre-test 
assumptions.
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Having an individual’s genotype at thousands of phenotype-
associated loci by itself enables you to know a con
siderable amount about that individual, independent of 
their involvement in any association studies. As 
knowledge of human genetics increases, possession of an 
individual’s genetic sequence will continue to be the level 
at which invasion of individual rights and privacy must 
be protected. Thus, the potential re-identification of a 
patient into a study group should not dissuade researchers 
from reporting detailed information in genome-wide 
association studies.

Many genetic association studies still do not report 
information about the characteristics of the population 
studied, such as age, gender and ethnicity. This infor
mation would substantially increase the clinical relevance 
of the study, and it is a key part of using literature in 
evidence based medicine [23]. Analyses showing asso
ciation of a single biomarker with disease typically report 
very detailed characteristics of the populations studied; 
this is radically different from typical genetic association 
studies, which often report almost nothing about the 
subjects.

Another challenge in applying likelihood ratios from 
genetic tests is that there are very few sources available 
that provide enough information to calculate the pre-test 
probabilities of disease states, particularly in the same 
populations under genetic study or populations resemb
ling many presenting patients. A concerted effort to 
calculate prevalence and incidence statistics, and report 
them both in genetic association studies and as general 
epidemiological features, will improve the quality of the 
clinical interpretation of genotyping dramatically.

Finally, there are many established techniques for 
addressing many of the biases in reporting results of many 
statistical tests, and the ‘winner’s curse’ is a well-known 
phenomenon [24,25]. Genetic studies that combine a 
discovery for a significant association with disease with an 
estimate of associated risk are strongly biased to over
estimate the level of risk [26]. However, if it is clear which 
associations are measured and what the overall results are, 
we can attempt to address these biases and apply the 
appropriate correction to the estimated effect size, in this 
case predicted risk with a confidence estimate [27].

Conclusions
In summary, we suggest that the methods for using a 
personal genotype to improve clinical evaluation already 
exist. For many diseases, actual genotypes and their asso
ciated risks are currently being collected in high volumes, 
and as more of these data are presented in publications, 
our ability to assess a patient through genotype will be 
greatly enhanced. If we have reasonable estimates of the 
pre-test probability of disease for a patient, by using 
careful methods of meta-analysis to combine the results 

of studies that report genotype level risk to compute 
good estimates of likelihood ratios, we can provide post-
test probabilities that a physician can use in assessment 
and a patient could use for potential lifestyle 
modification.

Abbreviation
SNP, single nucleotide polymorphism.
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