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Abstract

Background: Coronary heart disease (CHD) and stroke were key outcomes in the Women’s Health Initiative (WHI)
randomized trials of postmenopausal estrogen and estrogen plus progestin therapy. We recently reported a large
number of changes in blood protein concentrations in the first year following randomization in these trials using
an in-depth quantitative proteomics approach. However, even though many affected proteins are in pathways
relevant to the observed clinical effects, the relationships of these proteins to CHD and stroke risk among
postmenopausal women remains substantially unknown.

Methods: The same in-depth proteomics platform was applied to plasma samples, obtained at enrollment in the
WHI Observational Study, from 800 women who developed CHD and 800 women who developed stroke during
cohort follow-up, and from 1-1 matched controls. A plasma pooling strategy, followed by extensive fractionation
prior to mass spectrometry, was used to identify proteins related to disease incidence, and the overlap of these
proteins with those affected by hormone therapy was examined. Replication studies, using enzyme-linked-
immunosorbent assay (ELISA), were carried out in the WHI hormone therapy trial cohorts.

Results: Case versus control concentration differences were suggested for 37 proteins (nominal P < 0.05) for CHD,
with three proteins, beta-2 microglobulin (B2M), alpha-1-acid glycoprotein 1 (ORM1), and insulin-like growth factor
binding protein acid labile subunit (IGFALS) having a false discovery rate < 0.05. Corresponding numbers for stroke
were 47 proteins with nominal P < 0.05, three of which, apolipoprotein A-II precursor (APOA2), peptidyl-prolyl
isomerase A (PPIA), and insulin-like growth factor binding protein 4 (IGFBP4), have a false discovery rate < 0.05.
Other proteins involved in insulin-like growth factor signaling were also highly ranked. The associations of B2M
with CHD (P < 0.001) and IGFBP4 with stroke (P = 0.005) were confirmed using ELISA in replication studies, and
changes in these proteins following the initiation of hormone therapy use were shown to have potential to help
explain hormone therapy effects on those diseases.

Conclusions: In-depth proteomic discovery analysis of prediagnostic plasma samples identified B2M and IGFBP4 as
risk markers for CHD and stroke respectively, and provided a number of candidate markers of disease risk and
candidate mediators of hormone therapy effects on CHD and stroke.
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Background
Blood protein concentrations provide a source for novel
disease risk markers that may be modifiable by treat-
ments or other exposures. As such, protein markers
have potential to enhance the understanding of disease
pathogenesis, and to elucidate biological processes
whereby an exposure affects disease risk.
We report here on a large-scale proteomic study that

aimed to uncover novel associations between plasma
proteins and the risk of subsequent coronary heart dis-
ease (CHD) or stroke. These diseases were key out-
comes in Women’s Health Initiative (WHI)
randomized postmenopausal hormone therapy trials of
0.625 mg/d conjugated equine estrogen (E-alone), or
this same preparation plus 2.5 mg/d medroxyproges-
terone acetate (E+P). We also sought to identify pro-
teins that both distinguished cases from controls and
were altered by E-alone or E+P as candidate biomar-
kers for elucidation of hormone therapy effects on
these diseases [1-6]. E-alone and E+P were each found
to yield an elevation in stroke risk [3,4], whereas E+P
effects were unfavorable, and unfavorable compared to
E-alone effects, for CHD [5,6]. A related research effort
is considering case versus control comparisons for
breast cancer [7,8].
We recently reported blood proteomic changes

between baseline and 1 year for 50 women assigned to
active treatment in each of the E-alone and E+P trials
[9,10]. An intact protein analysis system (IPAS) [11-14]
was used for these analyses. Under stringent criteria for
protein identification and relative quantification, 378
proteins were quantified [10]. There was some evidence
(nominal P < 0.05) of change from baseline to 1 year
with either or both of E-alone and E+P for a remarkable
44.7% of these proteins. These proteins were involved in
coagulation, inflammation, immune response, metabo-
lism, cell adhesion, growth factors, and osteogenesis;
pathways that plausibly relate to observed clinical effects
[1-8] for these regimens.
A comparatively larger number of study subjects is

needed to detect modest associations between plasma
proteins and subsequent risk of CHD or stroke.
Hence, we contrasted pools formed by equal plasma
volumes from 100 cases or from 100 pair-matched
controls, with eight such pool pairs for each of the
study diseases. We report here on proteins, and sets of
proteins, having evidence of a case-control difference
in plasma concentration for CHD or stroke, and on
the overlap of these proteins with those altered by E-
alone or E+P. Enzyme-linked-immunosorbent assay
(ELISA) replication studies in the WHI hormone ther-
apy trial cohorts were carried out subsequently for
selected proteins.

Methods
Study subjects and outcome ascertainment
Cases and controls were drawn from the WHI observa-
tional study, a prospective cohort study of 93,676 post-
menopausal women in the age range 50 to 79 years at
enrollment during 1993 to 1998 [15,16]. Fasting blood
specimens were obtained at baseline as a part of eligibil-
ity screening. Serum and plasma samples were shipped
to a central repository and stored at -70°C. Disease
events during cohort follow-up were initially self-
reported, followed by physician adjudication at partici-
pating WHI clinical centers, and central adjudication of
some outcomes [17]. CHD was composed of myocardial
infarction and death due to coronary disease. Cases of
hospitalized stroke were based on rapid neurologic defi-
cit attributable to obstruction or rupture of the arterial
system or on a demonstrable lesion compatible with
acute stroke. CHD and stroke cases were chosen as the
earliest 800 incident cases during cohort follow-up for
which a suitable plasma specimen was available. Each
case was 1-1 matched to a control woman who did not
develop any of the study diseases during cohort follow-
up. Cases and controls were matched on baseline age
(within 1 year), self-reported ethnicity, hysterectomy sta-
tus, prior history of the study disease, and enrollment
date (median difference 1 month). Non-overlapping sets
of controls were chosen for CHD, stroke, and breast
cancer. Diagnosis occurred an average of 2.2 and 4.5
years after blood draw for the CHD and stroke cases,
respectively.

Sample preparation, protein fractionation, and mass
spectrometry analysis
We used 3,200 patient samples (800 stroke cases, 800
CHD cases, and 1,600 controls) to form case and con-
trol pool pairs for 16 IPAS experiments (8 stroke + 8
CHD). For each IPAS experiment, a case and control
pool was created using 5 μl of EDTA plasma for each of
the 100 cases or 100 controls for proteomic analysis.
The pools were independent, with each sample used in
only one pool. The IPAS analytic methods used for this
project have been described [13] and detailed informa-
tion is available in Additional file 1. Following immuno-
depletion of the six most abundant proteins (albumin,
IgG, IgA, transferrin, haptoglobin, antitrypsin), pools
were concentrated and case and control pools were iso-
topically labeled with either the ‘light’ C12 or the ‘heavy’
C13 acrylamide. The case and corresponding control
pools were then mixed together for further analysis.
The combined sample was diluted, and each sample

was separated into eight fractions using anion exchange
chromatography, and each fraction was further sepa-
rated using reversed-phase chromatography.
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Lyophilized aliquots from the reversed-phase fractio-
nation were subjected to in-solution trypsin digestion,
and individual digested fractions from each reversed-
phase run were combined, giving a total of 96 (8 × 12
reversed-phase) fractions for analysis from each original
mixed case and control pool. Tryptic peptides were ana-
lyzed by a LTQ-FT mass spectrometer. Spectra were
acquired in a data-dependent mode in a mass/charge
range of 400 to 1,800, and the 5 most abundant + 2
or + 3 ions were selected from each spectrum for tan-
dem mass spectrometry (MS/MS) analysis.

Protein identification and case versus control
concentration assessment
The acquired liquid chromatography MS/MS data were
processed by a Computational Proteomics Analysis Sys-
tem [18]. Database searches were performed using X!
Tandem against the human International Protein Index
(IPI) using tryptic search [18]. Database search results
were analyzed using PeptideProphet [19] and Protein-
Prophet [20]. Protein identification was based on Pro-
teinProphet scores that indicate an error rate of less
than 10%.
The relative quantification of case versus control con-

centration for cysteine-containing peptides (acrylamide
label binds to cysteine) identified by MS/MS was
extracted using a script [11] that calculates the relative
peak areas of heavy to light acrylamide-labeled peptides;
see [10] for further details. Proteins from all IPAS
experiments for a specific disease were aligned by their
protein group number, assigned by ProteinProphet, in
order to identify master groups of indistinguishable pro-
teins across experiments. Ratios for these protein groups
were logarithmically transformed and median-centered
at zero for each IPAS experiment. Groups that had
fewer than four peptide ratios across all experiments for
a specific disease, groups that contained proteins that
were targeted for depletion, and groups in which all
proteins had been annotated as ‘defunct’ by IPI, were
excluded from analysis.

Statistical analysis of case versus control protein
concentrations
Data analysis was based on log(base2) concentration
ratios from case versus control pools. The log-ratios for
a particular protein were analyzed using linear models
that included a disease-specific mean parameter plus a
variable defined as 1 if the heavy acrylamide label was
assigned to the case group and -1 otherwise. A weighted
moderated t-test [21], implemented in the R package
LIMMA [22], was used to examine whether there was
evidence of a disease-specific mean parameter that dif-
fers from zero, after adjusting for any labeling effect.
The log-ratios were weighted by the number of

quantified peptides for each protein. Log-ratios for all
three diseases were used to jointly estimate model para-
meters (the heavy acrylamide label was randomly
assigned to the case or control pool for both stroke and
breast cancer, and to the case pools for CHD), and to
increase the degrees of freedom for log-ratio variance
estimation. One of the breast cancer pool pairs gave
log-ratios that were comparatively highly variable, and is
excluded from all analyses. Benjamini and Hochberg’s
method [23] was used to accommodate multiple testing,
through the calculation of estimated false discovery
rates (FDRs), separately for each study disease.

Biological pathway analyses
A regularized Hotelling T2 procedure was used to iden-
tify sets of proteins, defined by biological pathways, that
differ in concentrations between cases and controls for
each study disease. This testing procedure takes advan-
tage of the correlation structure among the log-ratios
for proteins in a given set. Protein sets were defined
using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database [24,25].

ELISA replication analyses
Selected protein associations with disease risk were
further evaluated by ELISA testing of CHD and stroke
cases and controls drawn from the non-overlapping
WHI hormone therapy trial cohorts. Baseline plasma
samples were evaluated for women who developed CHD
or stroke during the first year following randomization,
along with 1-1 matched disease-free controls. Matching
variables included age, randomization date, hysterect-
omy status, and prevalent study disease. Assays were
performed according to manufacturer’s direction, for
beta-2 microglobulin (B2M; Genway San Diego, CA,
USA) and insulin-like growth factor binding protein 4
(IGFBP4; R & D Systems Minneapolis, MN, USA). All
samples were assayed with sample characteristics
blinded and in duplicate.

Results
Plasma protein risk markers
Additional file 2 provides information on baseline char-
acteristics for the 800 CHD and 800 stroke cases and
their non-overlapping 1-1 matched controls. All women
were postmenopausal and in the age range 50 to 79 years
at recruitment. Most were white. About two-thirds were
overweight or obese. There were few current cigarette
smokers. Sixteen percent of CHD cases had experienced
a myocardial infarction and 15% of stroke cases had
experienced a stroke prior to WHI enrollment.
Case versus control concentration ratios were deter-

mined following application of stringent standards for
identification and quantification (see Methods).
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Following application of an additional requirement that
proteins were quantified for at least two of the pool
pairs for a disease, 346 proteins for CHD and 366 pro-
teins for stroke were included in statistical analyses. Of
these, a total of 37 proteins have nominal significance
levels of P < 0.05 for CHD cases versus controls, com-
pared to 17.3 expected by chance; and 47 have P < 0.05
for stroke cases versus controls, compared to 18.3
expected by chance. These proteins are listed in Tables
1 and 2 along with their mean log-intensity ratios,
P-values, and FDRs.

Proteins having small FDRs are likely to be associated
with disease risk. Three proteins, B2M, alpha-1-acid gly-
coprotein 1 (ORM1), and insulin-like growth factor
binding protein, acid labile subunit (IGFALS) have a
FDR < 0.05 for association with CHD risk; and three
proteins, apolipoprotein A-II precursor (APOA2), pepti-
dyl-prolyl isomerase A (PPIA), and IGFBP4 have a FDR
< 0.05 for association with stroke risk. Six other proteins
have a FDR < 0.20 for CHD association, and 14 have a
FDR < 0.20 for stroke association. Figure 1 shows pep-
tide coverage and case versus control concentration

Table 1 Proteins having some evidence (P < 0.05) of difference in concentration between coronary heart disease cases
and controls

Protein Description Log(base2) case vs control ratio P-valuea FDRa

B2M Beta-2-microglobulin. 0.212 5.07e-05 0.0176

ORM1 Alpha-1-acid glycoprotein 1 0.120 0.000182 0.0315

IGFALS Insulin-like growth factor-binding protein complex acid labile chain -0.112 0.000384 0.0443

THBS1 Thrombospondin-1 -0.632 0.00133 0.0749

LPA Apolipoprotein(A) 0.347 0.00138 0.0749

CFD Complement factor D preproprotein 0.210 0.00141 0.0749

PRG4 Isoform C of proteoglycan 4 0.232 0.00152 0.0749

GPX3 Glutathione peroxidase 3 -0.224 0.00308 0.133

IGFBP1 Insulin-like growth factor-binding protein 1 0.423 0.00381 0.146

MST1 Hepatocyte growth factor-like protein homolog -0.306 0.00592 0.205

ITIH2 Inter-alpha-trypsin inhibitor heavy chain H2 -0.140 0.00786 0.247

ENO1 Isoform alpha-enolase of alpha-enolase -0.418 0.00950 0.255

C9 Complement component C9 0.0827 0.00989 0.255

SFTPB Pulmonary surfactant-associated protein B precursor 0.551 0.0112 0.255

FHL1 cDNA FLJ55259 highly similar to four and a half lim domains protein 1 -0.481 0.0116 0.255

CRISP3 cDNA FLJ75207 0.147 0.0118 0.255

SERPIND1 Serpin peptidase inhibitor clade D (heparin cofactor) member 1 0.210 0.0176 0.334

CD5L CD5 antigen-like 0.152 0.0181 0.334

SOD3 Extracellular superoxide dismutase [Cu-Zn] 0.453 0.0183 0.334

TPI1 Triosephosphate isomerase 1 isoform 2 -0.144 0.0232 0.401

C1QB Complement component 1 Q subcomponent B chain precursor -0.106 0.0271 0.407

ATRN Isoform 1 of attractin -0.151 0.0274 0.407

INHBE Inhibin beta E chain 0.384 0.0284 0.407

CHRDL2 Isoform 2 of chordin-like protein 2 -0.647 0.0287 0.407

LIMS1 cDNA FLJ55516 highly similar to particularly interesting new Cys-His protein -0.412 0.0318 0.407

VASP Vasodilator-stimulated phosphoprotein -0.499 0.0356 0.407

C8A Complement component C8 alpha chain 0.170 0.0359 0.407

C2 Complement C2 (fragment) -0.230 0.0361 0.407

CD14 Monocyte differentiation antigen CD14 0.105 0.0361 0.407

GC Vitamin D-binding protein -0.0451 0.0364 0.407

MTPN Myotrophin -0.240 0.0372 0.407

SERPINF2 Serpin peptidase inhibitor, clade F, member 2 -0.110 0.0383 0.407

ACTA2 Actin aortic smooth muscle -1.22 0.0388 0.407

TAGLN2 Transgelin-2 -0.186 0.0426 0.433

FERMT3 Isoform 2 of fermitin family homolog 3 -0.560 0.0462 0.454

F12 Coagulation factor XII -0.147 0.0472 0.454

AFM Afamin -0.0764 0.0490 0.458
aP-value = significance level for no difference in protein concentration; FDR = estimated false discovery rate.
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Table 2 Proteins having some evidence (P < 0.05) of difference in concentration between stroke cases and controls

Protein Description Log(base2) case vs
control ratio

P-
valuea

FDRa

APOA2 Apolipoprotein A-II -0.120 2.71e-05 0.00991

PPIA Peptidyl-prolyl cis-trans isomerase A 0.194 7.68e-05 0.0141

IGFBP4 Insulin-like growth factor-binding protein 4 0.409 0.000320 0.0391

F2 Prothrombin (fragment) -0.0732 0.000702 0.0642

IGF2 Isoform 1 of insulin-like growth factor II -0.0694 0.00225 0.138

C6 Complement component 6 precursor -0.140 0.00227 0.138

LILRA3 Leukocyte immunoglobulin-like receptor subfamily a member 3 0.316 0.00341 0.177

HPX Hemopexin -0.0448 0.00407 0.177

IGFBP6 Insulin-like growth factor-binding protein 6 0.667 0.00435 0.177

LOC650157 Similar to peptidyl-pro cis trans isomerase 0.237 0.00510 0.187

IGFBP2 Insulin-like growth factor-binding protein 2 0.480 0.00609 0.189

GC Vitamin D-binding protein -0.0532 0.00699 0.189

CADM1 Isoform 1 of cell adhesion molecule 1 -0.199 0.00762 0.189

PIN1 Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 0.190 0.00767 0.189

CTSD Cathepsin D 0.490 0.00776 0.189

COL1A1 Collagen alpha-1(I) chain 0.195 0.00826 0.189

F13B Coagulation factor XIII b chain 0.121 0.00903 0.194

MANSC1 MANSC domain-containing protein 1 -0.962 0.0102 0.207

COL6A3 Isoform 1 of collagen alpha-3(VI) chain 0.828 0.0109 0.210

GRN cDNA FLJ13286 fis clone OVARC1001154 highly similar to Homo sapiens clone 24720
epithelin 1 and 2 mRNA

0.316 0.0130 0.238

RNASE1 Ribonuclease pancreatic 0.582 0.0143 0.243

MTPN Myotrophin 0.249 0.0146 0.243

GLIPR2 Golgi-associated plant pathogenesis-related protein 1 0.623 0.0168 0.265

ADAMTSL2 ADAMTS-like protein 2 0.205 0.0184 0.265

ITIH4 Isoform 2 of inter-alpha-trypsin inhibitor heavy chain H4 -0.238 0.0187 0.265

HLA-DRB5b Non-secretory ribonuclease 0.784 0.0188 0.265

KLKB1 Plasma kallikrein -0.115 0.0202 0.270

CD59 CD59 glycoprotein 0.866 0.0208 0.270

CD14 Monocyte differentiation antigen CD14 0.104 0.0214 0.270

CSF1R Macrophage colony-stimulating factor 1 receptor 0.259 0.0223 0.272

GRB2 Isoform 1 of growth factor receptor-bound protein 2 1.58 0.0235 0.278

CD5L CD5 antigen-like 0.147 0.0253 0.289

B2M Beta-2-microglobulin 0.0728 0.0280 0.310

SERPINC1 Antithrombin-III -0.0631 0.0312 0.325

FCN3 Isoform 1 of ficolin-3 0.132 0.0323 0.325

HGFAC Hepatocyte growth factor activator -0.592 0.0324 0.325

RBP4 Retinol-binding protein 4 0.0478 0.0346 0.325

CFHR5 Complement factor H-related 5 -0.0800 0.0348 0.325

PRDX2 Peroxiredoxin-2 -0.533 0.0361 0.325

C8A Complement component C8 alpha chain -0.179 0.0373 0.325

ADAMTSL4 Isoform 1 of ADAMTS-like protein 4 -0.130 0.0373 0.325

QSOX1 Isoform 1 of sulfhydryl oxidase 1 0.370 0.0376 0.325

CPB2 Isoform 1 of carboxypeptidase B2 -0.228 0.0381 0.325

FETUB Fetuin-B 0.0662 0.0410 0.332

PPIF Peptidyl-prolyl cis-trans isomerase mitochondrial 0.318 0.0414 0.332

LCN2 Neutrophil gelatinase-associated lipocalin 0.172 0.0417 0.332

DSC1 Isoform 1B of desmocollin-1 -0.265 0.0438 0.341
aP-value = significance level for no difference in protein concentration; FDR = estimated false discovery rate. bThe DRB5 protein group also includes ZNF749,
LOC100133811, LOC100133484, LOC100133661, HLA-DRB1, HLA-DRB4, RNASE2, and HLA-DRB3.
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ratios for B2M, ORM1, PPIA, and IGFBP4 separately for
each plasma pool pair. Additional files 3 and 4 show
P-values and FDRs for the entire set of proteins quanti-
fied separately for the CHD and stroke analyses. These
tables also provide information on the number of pep-
tides and unique peptides identified, and on the number
of peptides and unique peptides quantified for each
listed protein. IPI numbers corresponding to the gene/
protein are also listed.

Protein levels that are also affected by postmenopausal
hormone therapy
Table 3 shows the subset of Table 1 proteins that
appeared to have concentrations affected (P < 0.05) by
one or both of E+P or E-alone in earlier proteomic dis-
covery work [10], while Table 4 provides this informa-
tion for the corresponding subset of Table 2. Five of the

6 proteins having a FDR < 0.05 for disease association
are influenced by hormone therapy. In addition to these,
certain other IGF binding proteins are evidently influ-
enced by hormone therapy and may be related to CHD
(IGFBP1) or stroke (IGFBP2, IGFBP6).

Protein set (pathway) analyses
For each disease, we focused attention on KEGG path-
ways for which relative quantification was available for
three or more proteins and tested for evidence of a case
versus control difference in plasma concentrations for
the set of quantified proteins. For CHD there were two
pathways having P < 0.05, namely a mitogen-activated
protein kinase (MAPK) signaling pathway (P = 0.02),
which included six quantified proteins (NTRK2, FLNA,
CD14, TGFB1, FGFR1, and CACNA2D1), and a glycoly-
sis and gluconeogenesis metabolic pathway (P = 0.03),

Figure 1 Identification and quantitative analysis of peptides in plasma. From CHD cases and controls in eight experiments for (a) beta-2
microglobulin (B2M) and (b) alpha-1-acid glycoprotein 1 (ORM1); and from stroke cases and controls in eight experiments for (c) peptidyl-prolyl
isomerase A (PPIA) and (d) insulin-like growth factor binding protein 4 (IGFBP4). Tryptic peptides from the amino terminus (1) to the carboxyl
terminus are shown at the top. S, C and G indicate signal peptide, cysteine-containing and glycosylated peptides, respectively. Peptides
identified, but which lack cysteine for quantification, are shown in gray. The log2 case/control ratio is shown for cysteine-containing peptides
with the number of MS events for that peptide shown in parentheses. The number of plasma fractions where each peptide was quantified is
indicated.
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which included nine quantified proteins (LDHB, LDHA,
PKM2, ALDOA, ALDOC, TPI1, GAPDH, ENO1,
PGK1). The FDRs were 0.09 for both pathways.
In comparison, there were six pathways having P <

0.05 for stroke; four of which had a FDR < 0.05. These
four were a hematopoietic cell lineage pathway (CD44,
GP1BA, C5F1R, CD59, CD14), a purine metabolism
pathway (AK1, AK2, PKM2), a peroxisome proliferator-
activated receptor signaling pathway (APOA2, FABP4,
FABP1), and a glycolysis and gluconeogenesis pathway
having a set of quantified proteins (PKM2, ALDOA,
ALDOC, ALDOB, TPI1, ENO2, GAPDH, ENO1, PGK1)
that strongly overlaps that listed above for CHD. Figure
2 shows the substantial peptide coverage of glycolytic
pathway proteins in the stroke IPAS experiments.

ELISA replication studies
B2M is of specific interest for CHD in view of higher levels
in cases versus controls, and higher levels following 1-year
of use of either E+P or E-alone (Table 3). IGFBP4 is of
specific interest for stroke for these same reasons (Table
4). Hence, these proteins were selected for ELISA replica-
tion studies in the WHI hormone therapy trial cohorts.

Based on individual plasma samples from 106 CHD
cases occurring during the first year following randomi-
zation in the hormone therapy trials, and from 1-1
matched controls, ELISA evaluation yielded B2M con-
centrations that were 17.9% higher (P < 0.001) in cases
versus controls (geometric mean of log-ratios of 1.179
with 95% confidence interval (CI) of 1.107 to 1.290),
very similar to the 15.8% (20.212 = 1.158) higher concen-
tration in cases compared to controls from the IPAS
analyses of Table 1. Further analysis of case versus con-
trol log-ratios, which included the matching variables
and several other CHD risk factors to control for possi-
ble confounding, produced similar findings (geometric
mean of 1.275 with 95% CI of 1.122 to 1.450).
Based on individual plasma samples from 68 stroke

cases occurring during the first year following randomi-
zation in the hormone therapy trials, and from 1-1
matched controls, ELISA evaluation yielded IGFBP4
concentrations that were 16.6% higher (P = 0.005) in
cases versus controls (geometric mean of log-ratios of
1.166 with 95% CI of 1.050 to 1.295). The ELISA case
versus control ratio was little altered by additional con-
trol for several other potential stroke confounding

Table 3 Proteins having some evidence (P < 0.05) of concentration difference between CHD cases and controls that
are altered (P < 0.05) by postmenopausal hormone therapy

CHD E+P E-alone

Protein Description Log(base2) case
vs control ratio

P-
valuea

FDRa Log(base2) case
vs control ratio

P-
valuea

Log(base2) case
vs control ratio

P-
valuea

B2M Beta-2-microglobulin 0.212 5.07e-05 0.0176 0.208 0.00205 0.230 0.00110

IGFALS Insulin-like growth factor-binding
protein complex acid labile chain

-0.112 0.000384 0.0443 0.151 0.00785 0.143 0.0282

CFD Complement factor D preproprotein 0.210 0.00141 0.0749 -0.246 0.00871 -0.0472 0.620

PRG4 Isoform C of proteoglycan 4 0.232 0.00152 0.0749 0.0735 0.181 0.128 0.0327

IGFBP1 Insulin-like growth factor-binding
protein 1

0.423 0.00381 0.146 0.528 0.00242 1.270 3.66e-06

MST1 Hepatocyte growth factor-like
protein homolog

-0.306 0.00592 0.205 0.530 0.0100 0.633 0.00195

C9 Complement component C9 0.0827 0.00989 0.255 0.101 0.0645 0.179 0.00858

SERPIND1 Serpin peptidase inhibitor clade D
(heparin cofactor) member 1

0.210 0.0176 0.334 0.450 0.0240 0.156 0.344

C1QB Complement component 1 Q
subcomponent B chain precursor

-0.106 0.0271 0.407 0.0113 0.465 0.0480 0.0125

ATRN Isoform 1 of attractin -0.151 0.0274 0.407 -0.190 0.000213 -0.126 0.00366

INHBE Inhibin beta E chain 0.384 0.0284 0.407 0.258 0.0723 0.520 0.00734

CHRDL2 Isoform 2 of chordin-like protein 2 -0.647 0.0287 0.407 -0.301 0.0415 -0.000906 0.993

C8A Complement component C8 alpha
chain

0.170 0.0359 0.407 -0.206 0.000163 -0.202 0.000121

C2 Complement C2 (fragment) -0.230 0.0361 0.407 0.334 0.00371 0.291 0.0107

GC Vitamin D-binding protein -0.0451 0.0364 0.407 0.231 3.10e-06 0.237 2.75e-06

SERPINF2 Serpin peptidase inhibitor, clade F,
member 2

-0.110 0.0383 0.407 0.0922 0.148 0.166 0.0247

F12 Coagulation factor XII -0.147 0.0472 0.454 0.261 0.000102 0.252 0.000219

AFM Afamin -0.0764 0.0490 0.458 0.0580 0.119 0.177 0.000330
aP-value = significance level for no difference in protein concentration; FDR = estimated false discovery rate.
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factors (geometric mean of 1.149 with 95% CI of 1.008
to 1.309 following this control).
Figure 3 shows the B2M assessments for individual

CHD cases and controls and the IGFBP4 assessments
for individual stroke cases and controls in these replica-
tion studies.

Discussion
The proteomic discovery and replication studies pre-
sented here show plasma B2M to be a risk marker for
CHD in postmenopausal women. B2M is an amyloido-
genic protein that is elevated in hemodialysis patients
and in patients having bone disease [26,27]. B2M has
been reported to be associated with CHD risk factors,

and an inverse association with HDL cholesterol [28].
Positive associations with peripheral arterial disease [29]
and with total mortality among elderly Japanese men
and women [30] have also been reported.
Our finding of B2M elevation in plasma obtained

months or years prior to CHD diagnosis appears to be
novel. Logistic regression analysis of ELISA B2M data
yield odds ratios (95% CI) for the second, third, and
fourth quartile of B2M, compared to the first, of 1.28
(0.46, 3.53), 1.77 (0.63, 4.96), and 3.40 (1.23, 9.35), with
a trend test having P = 0.002, in analyses that control
for case-control matching factors as well as hormone
therapy randomization assignment, hysterectomy status,
ethnicity, and history of myocardial infarction. From

Table 4 Proteins having some evidence (P < 0.05) of concentration difference between stroke cases and controls that
are altered (P < 0.05) by postmenopausal hormone therapy

Stroke E+P E-alone

Protein Description Log(base2) case
vs control ratio

P-
valuea

FDRa Log(base2) case
vs control ratio

P-
valuea

Log(base2) case
vs control ratio

P-
valuea

APOA2 Apolipoprotein A-II -0.120 2.71e-05 0.00991 0.212 0.000532 0.302 1.75e-05

PPIA Peptidyl-prolyl cis-trans isomerase
A

0.194 7.68e-05 0.0141 0.381 0.00899 0.201 0.126

IGFBP4 Insulin-like growth factor-binding
protein 4

0.409 0.000320 0.0391 0.179 0.102 0.511 0.000697

F2 Prothrombin (fragment) -0.0732 0.000702 0.0642 0.0633 0.00366 0.0282 0.138

C6 Complement component 6
precursor

-0.140 0.00227 0.138 -0.123 0.00151 -0.171 0.000123

LILRA3 Leukocyte immunoglobulin-like
receptor subfamily A member 3

0.316 0.00341 0.177 -0.237 0.00874 -0.281 0.000277

HPX Hemopexin -0.0448 0.00407 0.177 0.123 6.65e-05 0.117 0.000124

IGFBP6 Insulin-like growth factor-binding
protein 6

0.667 0.00435 0.177 0.0868 0.235 0.207 0.0158

IGFBP2 Insulin-like growth factor-binding
protein 2

0.480 0.00609 0.189 -0.420 0.00477 -0.287 0.0317

GC Vitamin D-binding protein -0.0532 0.00699 0.189 0.231 3.10e-06 0.237 2.75e-06

CADM1 Isoform 1 of cell adhesion
molecule 1

-0.199 0.00762 0.189 -0.0139 0.875 0.180 0.0249

COL1A1 Collagen alpha-1(I) chain 0.195 0.00826 0.189 -0.896 5.40e-07 -0.575 8.80e-05

COL6A3 Isoform 1 of collagen alpha-3(VI)
chain

0.828 0.0109 0.210 -0.197 0.00852 -0.0134 0.834

RNASE1 Ribonuclease pancreatic 0.582 0.0143 0.243 0.0346 0.311 0.0953 0.0427

ITIH4 Isoform 2 of inter-alpha-trypsin
inhibitor heavy chain H4

-0.238 0.0187 0.265 0.458 0.000733 0.374 0.00495

KLKB1 Plasma kallikrein -0.115 0.0202 0.270 0.252 0.00208 0.230 0.00187

B2M Beta-2-microglobulin 0.0728 0.0280 0.310 0.208 0.00205 0.230 0.00110

SERPINC1 Antithrombin-III -0.0631 0.0312 0.325 -0.196 5.05e-06 -0.143 5.50e-05

FCN3 Isoform 1 of ficolin-3 0.132 0.0323 0.325 0.0351 0.0287 0.0357 0.0333

HGFAC Hepatocyte growth factor activator -0.592 0.0324 0.325 -0.191 0.0979 -0.308 0.00765

RBP4 Retinol-binding protein 4 0.0478 0.0346 0.325 0.167 0.000117 0.177 0.000262

CFHR5 Complement factor H-related 5 -0.0800 0.0348 0.325 0.179 0.000264 0.241 2.76e-05

PRDX2 Peroxiredoxin-2 -0.533 0.0361 0.325 0.691 0.0201 -0.0266 0.925

C8A Complement component C8 alpha
chain

-0.179 0.0373 0.325 -0.206 0.000163 -0.202 0.000121

FETUB Fetuin-B 0.0662 0.0410 0.332 0.783 1.09e-09 0.741 1.02e-09
aP-value = significance level for no difference in protein concentration; FDR = estimated false discovery rate.
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Table 3 we see that B2M levels increased by an esti-
mated 15.5% (20.208 = 1.155) following E+P use and by
17.3% (20.230 = 1.173) following E-alone use. A 16% ele-
vation in B2M projects a CHD odds ratio (95% CI) of
1.30 (1.11, 1.54) based on a logistic regression analysis
with a linear term in log B2M, as determined by ELISA,
and these same confounding control variables. Hence,
the B2M elevation resulting from hormone therapy use
could contribute importantly to an explanation for
observed early elevations in CHD risk. The fact that
CHD elevations evidently dissipate with longer-term
hormone therapy use [5,6] could, for example, reflect
concurrent favorable changes in plasma cholesterol frac-
tions, especially for E-alone.
Our proteomic discovery work also suggests (Table 4;

P = 0.03) higher B2M levels in stroke cases versus con-
trols, so that this marker may help to understand
adverse effects of hormone therapy on cardiovascular
disease more generally. The B2M we identified in pre-
diagnostic plasma samples likely differs from modified
forms in non-osteotendinous fibrils or insoluble cardiac
deposits [31]. However, B2M may provide a valuable
focus for studies of disease mechanism and therapeutic
intervention in spite of uncertainties about the relation-
ship of plasma levels and pathophysiologic effects within
tissue.

The discovery and replication studies presented here
also show IGFBP4 to be a risk marker for stroke in
postmenopausal women, which appears to be a novel
finding. Logistic regression analyses that include a linear
term in log IGFBP4 along with the case-control match-
ing variables, hormone therapy randomization assign-
ment, systolic and diastolic blood pressure, body mass
index, and indicator variables for cigarette smoking, dia-
betes, and prior hormone therapy use yield a P-value of
0.018 for an association of IGFBP4 with stroke risk. A
20% increase in IGFBP4, as is consistent with the effects
of E-alone and E+P on IGFBP4, projects an odds ratio
(95% CI) of 1.40 (1.06, 1.85) in these analyses, suggest-
ing that this marker could contribute importantly to a
mechanistic explanation for the approximate 40% higher
incidence of stroke among E-alone and E+P users in the
WHI randomized trial [3,4]. Also, it is interesting that
four of the eleven top-ranked proteins for association
with stroke risk (Table 2) are members of the IGF sig-
naling pathway (IGFBP4, IGF2, IGFBP6, IGFBP2). There
have been some previous reports of associations
between IGF pathway proteins and stroke [32-34].
Increased IGF binding protein levels may result in
decreased IGF protein concentrations. IGF1 has been
proposed as a potential neuroprotective protein for
stroke [35].

Figure 2 Glycolysis/gluconeogenesis pathway. Enzymes identified in stroke experiments are indicated by shading. Red and yellow indicate
increased and no change in cases compared to controls, respectively. Gray indicates proteins identified but not quantified.
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To more directly assess the role of B2M and IGFBP4
in mediating hormone therapy effects on CHD and
stroke, respectively, we are currently carrying out ELISA
analyses of baseline and 1-year plasma samples in the
WHI hormone therapy trials. The effect of changes
between baseline and 1-year on these proteins on subse-
quent hormone therapy hazard ratios for CHD and
stroke will be examined.
Other proteins having small FDRs for association with

CHD (Table 1) or stroke (Table 2) will benefit from eva-
luation in replication studies. Some of these have pre-
viously received some consideration as vascular disease
risk markers, including ORM1 [36-40], APOA2 [41-43],
PPIA [44], and IGFALS [45-47].
In addition to protein set analyses based on KEGG

pathways (described in Results), we also examined Gene
Ontology [48] pathways related to inflammation. There
was some evidence (P = 0.03) for a difference between
CHD cases and controls for a cytokine activity pathway
(CCL5, C5, PF4, and CCL16), and some (P = 0.04) for
an acute inflammatory response pathway (ORM1,
ORM2, C2, CFHR1, MBL2, AHSG), whereas there was

no evidence of corresponding differences between stroke
cases and controls.

Conclusions
We have identified B2M and IGFBP4 as novel risk mar-
kers for CHD and stroke, respectively. These markers
have potential to help elucidate hormone therapy effects
on these diseases as observed in the WHI randomized
controlled trials. The IPAS platform [11-14] provides
quantification only for proteins having cysteine residues,
but otherwise our analyses benefit from the depth of the
proteomic profiling. Concentration ratios associated
with hormone therapy in our earlier IPAS studies agreed
closely with ELISA-based ratios from the same samples
[9], and IPAS concentration ratios for E-alone and E+P
agreed closely with each other for many proteins identi-
fied as hormone-therapy related. These comparisons
suggest that a number of additional proteins with small
FDRs (for example, < 0.2) in Tables 1 and 2 are likely
also to be disease risk markers, though it will be impor-
tant for these associations to be replicated in indepen-
dent samples.

Figure 3 Baseline plasma B2M concentrations for CHD cases and controls, and IGFBP4 concentrations for stroke cases and controls,
from the Women’s Health Initiative hormone therapy trials. Individual ELISA-based concentrations are shown along with boxplots showing
the median (dark line) and the 25th and 75th percentiles (bottom and top of box). The notches indicate 95% confidence intervals for the
median.
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Additional material

Additional file 1: Supplementary methods. Detailed methods for
sample preparation, protein fractionation, and mass spectrometry analysis
are described.

Additional file 2: Table S1. Baseline characteristics for women
developing coronary heart disease (CHD) or stroke and for corresponding
disease-free controls, drawn from the Women’s Health Initiative
Observational Study.

Additional file 3: Table S2. CHD case versus control log-transformed
concentration ratios for all quantified proteins.

Additional file 4: Table S3. Stroke case versus control log(base2)-
transformed concentration ratios for all quantified proteins.
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