
Stem cell transcriptomics and transcriptional 
networks
Embryonic stem cells (ESCs) have the unique ability to 
self-renew and differentiate into cells of all three germ 
layers of the body. �is capacity to form all adult cell 

types, termed ‘pluripotency’, allows researchers to study 
early mammalian development in an artificial setting and 
offers opportunities for regenerative medicine, whereby 
ESCs could generate clinically relevant cell types for 
tissue repair. However, this same malleability of ESCs 
also renders it a challenge to obtain in vitro differentiation 
of ESCs to specific cell types at high efficacy. �erefore, 
harnessing the full potential of ESCs requires an in-depth 
understanding of the factors and mechanisms regulating 
ESC pluripotency and cell lineage decisions.

Early studies on ESCs led to the discovery of the core 
pluripotency factors Oct4, Sox2 and Nanog [1], and, 
increasingly, the use of genome-level screening assays has 
revealed new insights by uncovering additional trans-
cription factors, transcriptional cofactors and chromatin 
remodeling complexes involved in the maintenance of 
pluripotency [1]. �e study of ESC transcriptional regu-
lation is also useful in the understanding of human 
diseases. ESCs, for instance, are known to share certain 
cellular and molecular signatures similar to those of 
cancer cells [2], and deregulation of ESC-associated 
trans criptional regulators has been implicated in many 
human developmental diseases.

Despite the promising potential, the use of human 
ESCs (hESCs) in clinical applications has been slow 
because of ethical, immunological and tumorigenicity 
concerns [3]. �ese ethical and immunogenicity issues 
were seemingly overcome by the creation of induced 
pluripotent stem cells (iPSCs), whereby exogenous 
expres sion of Oct4, Sox2, Klf4 and c-Myc in differentiated 
cells could revert them to pluripotency [4]. However, the 
question of whether these iPSCs truly resemble ESCs is 
still actively debated and remains unresolved [5]. Never-
theless, the application of iPSCs as an in vitro human 
genetic disease model has been successful in revealing 
novel molecular disease pathologies, as well as facilitating 
genetic or drug screenings [6].

In this review, we describe recent advances in under-
standing the ESC and iPSC transcriptional network, and 
also discuss how deregulation of ESC pathways is 
implicated in human diseases. Finally, we address how 
the knowledge gained through transcriptional studies of 
ESCs and iPSCs has impacted translational medicine.
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Transcriptomic approaches for studying stem cells
The transcriptome is the universe of expressed transcripts 
within a cell at a particular state [7]; and understanding 
the ESC transcriptome is key towards appreciating the 
mechanism behind the genetic regulation of pluripotency 
and differentiation. The methods used to study gene 
expression patterns can be classified into two groups: (1) 
those using hybridization-based approaches, and (2) 
those using sequencing-based approaches (Table 1).

For hybridization-based methods, the commonly used 
‘DNA microarray’ technique relies on hybridization 
between expressed transcripts and microarray printed 
oligo nucleotide (oligo) probes from annotated gene 
regions [7]. In addition to allowing the identification of 
highly expressed genes, microarrays also enable the study 
of gene expression changes under various conditions. 
However, microarrays have their limitations, whereby 
prior knowledge of genomic sequences is required, and 
cross-hybridization of oligo probes may lead to false 
identification [7]. Subsequently, later versions of micro-
arrays were modified to include exon-spanning probes 
for alternative-spliced isoforms, as well as ‘tiling arrays’, 
which comprise oligo probes spanning large genomic 
regions to allow for the accurate mapping of gene trans-
cripts [7,8]. Indeed, conventional microarrays and tiling 
arrays have been instrumental in advancing our under-
standing of ESC transcriptional regulation (Table  1) 
through the mapping of ESC-associated transcription-
factor binding sites (chromatin immunoprecipitation 
(ChIP)-chip) [9,10], identification of microRNA (miRNA) 
regulation in ESCs [11], as well as the identification of 
long non-coding RNA (lncRNA) [12] and long intergenic 
non-coding RNA (lincRNA) [13,14].

Sequence-based transcriptomic analysis on the other 
hand involves direct sequencing of the cDNA. Initially, 
Sanger sequencing techniques were used to sequence 
gene transcripts, but these methods were considered 
expensive and low throughput [7]. However, with the 
development of next-generation sequencing (NGS), such 
as the 454, Illumina and SOLiD platforms, it is now 
possible to perform affordable and rapid sequencing of 
massive genomic information [8]. Importantly, NGS when 
coupled with transcriptome sequencing (RNA-seq) offers 
high-resolution mapping and high-throughput transcrip-
tome data, revealing new insights into transcriptional 
events such as alternative splicing, cancer fusion-genes 
and non-coding RNAs (ncRNAs). This versatility of NGS 
for ESC research is evident through its various appli ca-
tions (Table 1), such as chromatin immunoprecipitation 
coupled to sequencing (ChIP-seq) [15], methylated DNA 
immunoprecipitation coupled to sequencing (DIP-seq) 
[16], identification of long-range chromatin interactions [17], 
miRNA profiling [18], and RNA-binding protein immuno-
precipitation coupled to sequencing (RIP-seq) [19].

Transcriptomics has been instrumental in the study of 
alternative splicing events. It has been suggested that 
around 95% of all multi-exon human genes undergo 
alternative splicing to generate different protein variants 
for an assortment of cellular processes [20], and that 
alter native splicing contributes to higher eukaryotic 
complexity [21]. In mouse ESCs (mESCs) undergoing 
embryoid body formation, exon-spanning microarrays 
have identified possible alternative splicing events in 
genes associated with pluripotency, lineage specification 
and cell-cycle regulation [22]. More interestingly, it was 
found that alternative splicing of the Serca2b gene during 
ESC differentiation resulted in a shorter Serca2a isoform 
with missing miR-200 targeting sites in its 3’-UTR. Given 
that miR-200 is highly expressed in cardiac lineages, and 
that Serca2a protein is essential for cardiac function, the 
results suggest that during mESC differentiation some 
genes may utilize alternative splicing to bypass lineage-
specific miRNA silencing [22]. With the largely 
uncharacterized nature of alternative splicing in ESCs, 
and the availability of high-throughput sequencing tools, 
it would be of interest to further dissect these pathways.

Table 1. Transcriptomic approaches for studying stem cells

Objective	 Method	 Reference

DNA sequencing NGS [65]

mRNA expression analysis Microarray [58]

RNA-seq [93]

miRNA expression analysis Microarray [11]

RNA-seq [18]

lncRNA expression analysis Microarray [12,13]

Identification of alternative splicing isoforms Microarray [22,94]

RNA-seq [95]

Mapping of protein-DNA binding ChIP-chip [9,10,24]

ChIP-PET [23]

ChIP-seq [15]

DNA methylation profiling BS-seq [68]

MethylC-seq [68]

DIP-seq [16]

Mapping of long-range chromatin interactions ChIA-PET [17]

3C [29]

Identification of RNA-protein interactions RIP-seq [19]

RIP and 
direct RNA 
quantification

[14]

BS-seq, bisulfite sequencing; ChIA-PET, chromatin interaction analysis with 
paired-end tag sequencing; ChIP-chip, chromatin immunoprecipitation 
on chip; ChIP-PET, chromatin immunoprecipitation with paired-end tag 
sequencing; ChIP-seq, chromatin immunoprecipitation and sequencing; DIP-
seq, DNA immunoprecipitation and sequencing; MethylC-seq, methylcytosine 
sequencing; NGS, next-generation sequencing; RIP, RNA-binding protein 
immunoprecipitation; RIP-seq, RNA-binding protein immunoprecipitation and 
sequencing; RNA-seq, RNA sequencing; 3C, chromosome conformation capture.
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Transcriptional networks controlling ESCs
The	core	transcriptional	regulatory	network
In ESCs, the undifferentiated state is maintained by the 
core transcription factors Oct4, Sox2 and Nanog [1]. 
Early mapping studies revealed that Oct4, Sox2 and 
Nanog co-bind gene promoters of many mESC and hESC 
genes [23,24]. Importantly, the core transcription factors 
were found to maintain pluripotency by: (1) activating 
other pluripotency factors, while simultaneously repress-
ing lineage-specific genes via Polycomb group proteins; 
and (2) activating their own gene expression, as well as 
that of each other. Therefore, with this autoregulatory 
and feed-forward system, Oct4, Sox2 and Nanog con-
stitute the ESC core transcriptional network (Figure  1) 
[23,24]. Subsequent studies on additional ESC-related 

transcription factors using ChIP-based transcriptomics 
led to the discovery of transcription factors associating 
into an ‘Oct4’ or ‘Myc’ module [10,15].

The	expanded	pluripotency	network
Apart from Oct4, Sox2 and Nanog, the Oct4 module also 
includes the downstream transcription factors of the LIF, 
BMP4 and Wnt signaling pathways: Stat3, Smad1 and 
Tcf3 [15,25]. Indeed, Stat3, Smad1 and Tcf3 co-occupy 
certain regulatory regions with Oct4, Sox2 and Nanog, 
thus establishing the pathway in which external signaling 
can affect ESC transcriptional regulation [15,25]. Mass 
spectrometry has also facilitated the study of protein-
protein interaction networks of core transcription factors 
[26,27], revealing that Oct4 can interact with a diverse 

Figure	1.	The	embryonic	stem	cell	transcriptional	regulatory	circuit. The embryonic stem cell (ESC) transcription factors Oct4, Sox2 and Nanog 
form an autoregulatory network by binding their own promoters as well as promoters of the other core members. These three core factors maintain 
an ESC gene expression profile by occupying: (1) actively transcribed genes, such as ESC-specific transcription factors; (2) signaling transcription 
factors; (3) chromatin modifiers; (4) ESC-associated microRNA (miRNA); and (5) other non-coding RNA, such as long intergenic non-coding RNA 
(lincRNA). Conversely, Oct4, Sox2 and Nanog, in concert with Polycomb group proteins (PcG), bind lineage-specific and non-coding RNA genes, 
such as Xist, to repress lineage gene expression and inhibit ESC differentiation.

Oct4

NanogSox2

Transcriptional
regulatory core

Esrrb

Klf2/4/5

Sall4

Stat3

Tcf3

Mediator

Cohesin

Wdr5

Rbbp5

Jarid2

Pcl2

miR-290

miR-302

Lin28

lincRNA

ESC
transcription
factors

Signaling
factors

Transcriptional
cofactors

Trithorax
group proteins

Polycomb
group proteins

miRNA
network

Non-coding RNA
network

PcG

Nestin

Pax6

miR-9

miR-124

HoxA1

T

miR-155

Foxa2

Gata6

miR-375

Cdx2

Eomes 

Xist

Ectoderm

Mesoderm

Endoderm

Trophectoderm

Non-coding RNA

ActiveRepressed

Yeo and Ng Genome Medicine 2011, 3:68 
http://genomemedicine.com/content/3/10/68

Page 3 of 12



population of proteins, including transcriptional regula-
tors, chromatin-binding proteins and modifiers, protein-
modifying factors, and chromatin assembly proteins. 
Importantly, knockdown of Oct4 protein levels is known 
to cause the loss of co-binding activity of other trans-
cription factors [15,27], suggesting that Oct4 serves as a 
platform for the binding of its interacting protein 
partners onto their target genes.

The Myc module consists of transcription factors such 
as c-Myc, n-Myc, Zfx, E2f1 and Rex1, and is associated 
with self-renewal and cellular metabolism [10,15]. Approxi-
mately one-third of all active genes in ESCs are bound by 
both c-Myc and the core transcription factors [28]. How-
ever, unlike Oct4, Sox2 and Nanog, which can recruit 
RNA polymerase II via coactivators such as the Mediator 
complex [29], c-Myc rather appears to control the trans-
crip tional pause release of RNA polymerase II, via 
recruit ment of a cyclin-dependent kinase, p-TEFb [28]. It 
is therefore proposed that Oct4-Sox2-Nanog selects ESC 
genes for expression by recruiting RNA polymerase II, 
while c-Myc serves to regulate gene expression efficiency 
by releasing transcriptional pause [1]. This may thus 
account for the reason why overexpression of c-Myc is 
able to improve the efficiency of iPSC generation, and 
how c-Myc could be oncogenic. In fact, the Myc module 
rather than the Oct4 module in ESCs was recently found 
to be active in various cancers, and may serve as a useful 
tool in predicting cancer prognosis [9].

Besides targeting transcription factors to regulate gene 
expression, Oct4 is also known to affect the ESC chroma-
tin landscape. Jarid2 [30-34] and Pcl2/Mtf2 [30,31,34-35] 
have been identified as components of the Polycomb 
Repressive Complex 2 (PRC2) in ESCs, and regulated by 
the core ESC transcription factors [10,15]. From these 
studies, Jarid2 is suggested to recruit PRC2 to its genomic 
targets, and can also control PRC2 histone methyl trans-
ferase activity [30-34]. The second protein Pcl2 shares a 
subset of PRC2 targets in ESCs [34-35] and appears to 
promote histone H3 lysine 27 trimethylation [35]. Knock-
down of Pcl2 promotes self-renewal and impairs differen-
tiation, suggesting a repressive function of Pcl2 by sup-
pres sing the pluripotency-associated factors Tbx3, Klf4 
and Foxd3 [35]. Oct4 has also been demonstrated to 
physically interact with Wdr5, a core member of the 
mam malian Trithorax complex, and cooperate in the 
trans criptional activation of self-renewal genes [36]. As 
Wdr5 is needed for histone H3 lysine 4 trimethylation 
(H3K4me3), Oct4 depletion notably caused a decrease in 
both Wdr5 binding and H3K4me3 levels at Oct4-Wdr5 
co-bound promoters. This indicates that Oct4 may be 
responsible for directing Wdr5 to ESC genes and main-
taining H3K4me3 open chromatin [36]. As chromatin 
structure and transcriptional activity can be altered via 
addition or removal of histone modifications [37], the 

ability of Oct4, Sox2 and Nanog to regulate histone 
modifications expands our understanding of how the 
core transcriptional factors regulate chromatin structure 
to ultimately promote a pluripotent state.

Pluripotent	transcription	factor	regulation	of	non-coding	
RNA
ncRNAs are a diverse group of transcripts, and are classi-
fied into two groups: (a) lncRNAs for sequences more 
than 200 nucleotides in length; and (b) short ncRNAs for 
transcripts of less than 200 bases [38].

miRNAs that are about 22 nucleotides in length are 
considered to be short ncRNAs. In ESCs, miRNA expres-
sion is also regulated by the core transcription factors 
(Figure  1), whereby the promoters of miRNA genes, 
which are preferentially expressed in ESCs, are bound by 
Oct4, Sox2, Nanog and Tcf3 factors. Similarly, miRNA 
genes involved in lineage specification were occupied by 
core transcription factors in conjunction with Polycomb 
group proteins, to exert transcriptional silencing [39]. 
Examples of these silenced miRNA genes include let-7, 
which targets pluripotency factors Lin28 and Sall4 [11], 
as well as miR-145, which is expressed during hESC 
differentiation to suppress the pluripotency factors 
OCT4, SOX2 and KLF4 in hESCs [40].

The lncRNA Xist, which performs a critical role in 
X-chromosome inactivation, is silenced by the core ESC 
factors along intron 1 of the mESC Xist gene (Figure 1) 
[41]. Similarly, ESC transcription factors also regulate the 
expression of the Xist antisense gene Tsix [42,43]. 
However, it was found that deletion of Xist intron 1 
containing the Oct4-binding sites in ESCs did not result 
in Xist derepression [44]. Epiblast-derived stem cells and 
hESCs that express Oct4 are known to possess an inactive 
X-chromosome [45], and interestingly, pre-X inactivation 
hESCs have been derived from human blastocysts cultured 
under hypoxic conditions [46]. Therefore, it is likely that 
the ESC transcriptional network indirectly regulates 
X-chromosome activation status via an intermediary 
effector.

Recently, lincRNAs have been demonstrated to both 
maintain pluripotency and suppress lineage specification, 
hence integrating into the molecular circuitry governing 
ESCs [14]. Pluripotency factors such as Oct4, Sox2, 
Nanog and c-Myc have also been found to co-localize at 
lincRNA promoters, indicating that lincRNA expression 
is under the direct regulation of the ESC transcriptional 
network. Interestingly, mESC lincRNAs have been found 
to bind multiple ubiquitous chromatin complexes and 
RNA-binding proteins, leading to the proposal that 
lincRNAs function as ‘flexible scaffolds’ to recruit differ-
ent protein complexes into larger units. By extension of 
this concept, it is possible that the unique lincRNA 
signature of each cell type may serve to bind protein 
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complexes to create a cell-type-specific gene expression 
profile.

Cellular reprogramming and iPSCs
The importance of the transcriptional regulatory network 
in establishing ESC self-renewal and pluripotency was 
elegantly demonstrated by Takahashi and Yamanaka [4], 
whereby introduction of four transcription factors Oct4, 
Sox2, Klf4 and c-Myc (OSKM) could revert differentiated 
cells back to pluripotency as iPSCs. iPSCs were later 
demonstrated to satisfy the highest stringency test of 
pluripotency via tetraploid complementation to form 
viable ‘all-iPSC’ mice [47].

However, reprogramming is not restricted to the four 
OSKM factors only. Closely related family members of 
the classical reprogramming factors such as Klf2 and Klf5 
can replace Klf4, Sox1 can substitute for Sox2, and c-Myc 
can be replaced by using N-myc and L-myc [48]. However, 
Oct4 cannot be replaced by its close homologs Oct1 and 
Oct6 [48], but can be substituted using an unrelated 
orphan nuclear receptor, Nr5a2, to form mouse iPSCs 
[49]. Similarly, another orphan nuclear receptor, Esrrb, 
was demonstrated to replace Klf4 during iPSC generation 
[50]. Human iPSCs (hiPSCs), aside from the classical 
OSKM factors [51], can also be generated using a 
different cocktail of factors comprising OCT4, SOX2, 
NANOG and LIN28 [52]. Recently, the maternally 
expressed transcription factor Glis1 replaced c-Myc to 
generate both mouse iPSCs and hiPSCs [53]. Glis1 is 
highly expressed in unfertilized eggs and zygotes but not 
in ESCs; thus, it remains to be determined if other 
maternally expressed genes could similarly reinitiate 
pluripotency.

While certain transcription factors may be replaced 
with chemicals during the reprogramming process, they 
all still require at least one transcription factor [54]. 
Recently, however, the creation of hiPSCs and mouse 
iPSCs via miRNA without additional protein-encoding 
factors was reported [55,56]. By expressing the miR-302-
miR-367 clusters, iPSCs can be generated with two 
orders of magnitude higher efficiency compared with 
conventional OSKM reprogramming [55]. Similarly, 
iPSCs could be formed by transfecting miR-302, miR-200 
and miR-369 into mouse adipose stromal cells, albeit at 
lower efficiency [56]. The ability of miRNAs to reprogram 
somatic cells is intriguing, and it would be of great 
interest to determine the gene targets of these repro-
gramming miRNAs.

Expression profiling of ESCs and iPSCs
The question of whether pluripotent iPSCs truly resemble 
ESCs is an actively debated and evolving field, with 
evidence arguing both for and against iPSC-ESC simi-
larity. As such, further research using better controlled 

studies is needed to resolve this issue. Here, we summar-
ize and present the key findings that address this topic.

Initially, it was believed that hiPSCs were similar to 
hESCs [52,57], but subsequent studies argued otherwise 
as differential gene expression [58], as well as DNA 
methylation patterns [59], could be distinguished between 
hiPSCs and hESCs (Table 2). However, these differences 
were proposed to be a consequence of comparing cells of 
different genetic origins [60], laboratory-to-laboratory 
variation [61], and the iPSC passage number [62]. Later, 
hiPSCs were described to contain genomic abnormalities, 
including gene copy number variation [63,64], point 
muta tions [65] and chromosomal duplications [66] 
(Table  2). However, whether these genomic instabilities 
are inherent in hiPSCs only, or a consequence of culture-
induced mutations, as previously described in hESCs, is 
still not certain [67]. Extended passages of iPSCs 
appeared to reduce such aberrant genomic abnormalities, 
possibly via growth outcompetition by healthy iPSCs 
[64], but this was contradicted by a separate study that 
found that parental epigenetic signatures are retained in 
iPSCs even after extended passaging [68]. Indeed, this 
‘epigenetic memory’ phenomenon was also reported in 
two earlier studies, whereby donor cell epigenetic memory 
led to an iPSC differentiation bias towards donor-cell-
related lineages [62,69]. The mechanism behind this 
residual donor cell memory found in iPSCs was attri-
buted to incomplete promoter DNA methylation [70]. 
Surprisingly, knockdown of incompletely repro gram med 
somatic genes was found to reduce hiPSC generation, 
suggesting that somatic memory genes may play an active 
role in the reprogramming process [70].Differences in 
ncRNA expression were also found between iPSCs and 
ESCs (Table 2). For instance, the aberrantly silenced 
imprinted Dlk1-Dio3 gene locus in iPSCs results in the 
differential expression of its encoded ncRNA Gtl2 and 
Rian, and 26 miRNAs, and consequent failure to generate 
‘all-iPSC’ mice [60]. Upregulation of lincRNAs specifi-
cally in hiPSCs was also reported [13]. Expression of 
lincRNA-RoR with OSKM could also enhance iPSC 
formation by twofold, suggesting a critical function of 
lincRNA in the reprogramming process [13].

As these reported variations between hESCs and 
hiPSCs could be attributed to small sample sizes, a recent 
large-scale study by Bock et al. [71] profiled the global 
transcription and DNA methylation patterns of 20 differ-
ent hESC lines and 12 hiPSC lines. Importantly, the study 
revealed that hiPSCs and hESCs were largely similar, and 
that the observed hiPSC differences were similar to 
normally occurring variation among hESCs. Additionally, 
Bock et al. established a scoring algorithm to predict 
lineage and differentiation propensity of hiPSCs. As 
traditional methods of screening hiPSC quality rely on 
time-consuming and low-throughput teratoma assays, 
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the hiPSC genetic scorecard offers researchers a quick 
assessment of the epigenetic and transcriptional status of 
pluripotent cells. This may be especially useful for the 
rapid monitoring of cell-line quality during large-scale 
production of iPSCs [71].

Deregulation of transcriptional networks in 
disease
Blastocyst-derived ESCs possess an innate ability for 
indefinite self-renewal, and can be considered a primary 
untransformed cell line. Unlike primary cell cultures with 
limited in vitro lifespans, or immortalized/tumor-derived 
cell lines that do not mimic normal cell behavior, ESCs 
thus offer a good model for studying cellular pathways. 
ESC transcriptomics have indeed advanced our under-
standing into the molecular mechanisms affecting certain 
human diseases.

For instance, it was previously reported that cancer 
cells possess an ESC-like transcriptional program, suggest-
ing that ESC-associated genes may contribute to tumor 
formation [72]. However, this expression signature was 
shown to be a result of c-Myc, rather than from the core 
pluripotency factors (Table 3) [9]. As c-Myc somatic copy-
number duplications are the most frequent in cancer 
[73], the finding that c-Myc releases RNA poly merase II 
from transcriptional pause [28] offers new under standing 
into the transcriptional regulatory role of c-Myc in ESCs 
and cancer cells. Another pluripotency-associated factor, 
Lin28, which suppresses the maturation of pro-differen-
tiation let-7 miRNA, is also highly expressed in poorly 
differentiated and low prognosis tumors [74]. Importantly, 
let-7 silences several oncogenes, such as c-Myc, K-Ras, 
Hmga2 and the gene encoding cyclin-D1, suggesting that 
Lin28 deregulation may promote oncogenesis [74].

Aside from cancer, mutations in ESC-associated 
transcriptional regulators can cause developmental 

abnormalities. The Mediator-cohesin complex, which 
occupies 60% of active mESC genes, is responsible for 
regulating gene expression by physically linking gene 
enhancers to promoters though chromatin loops [29]. 
Notably, the binding pattern of Mediator-cohesin onto 
gene promoters differs among cell types, indicative of 
cell-type-specific gene regulation [29]. In hESCs, Mediator 
was also revealed to be important in the maintenance of 
pluripotent stem cell identity during a genome-wide 
siRNA screen, suggesting an evolutionarily conserved 
role [75]. Given this important gene regulatory function 
of the Mediator-cohesin complex in mESCs and hESCs, 
mutations in these proteins are associated with disorders 
such as schizophrenia, and Opitz-Kaveggia and Lujan 
syndromes [29]. Interestingly, the Cornelia de Lange syn-
drome, which causes mental retardation due to gene dys-
regulation rather than chromosomal abnormalities, is 
associated with mutations in cohesin-loading factor 
Nipbl [29]. Therefore, it is proposed that such develop-
mental syndromes may arise as a result of the failure to 
form appropriate enhancer-promoter interactions.

Mutations in core ESC transcription factor SOX2 and 
the ATP-chromatin remodeler CHD7 result in develop-
mental defects such as SOX2 anophthalmia (congenital 
absence of eyeballs) and CHARGE syndrome, respectively 
[76]. Although a direct association between CHARGE 
syndrome and ESCs is not known, mESC studies revealed 
that Chd7 co-localizes with core ESC factors and p300 
protein at gene enhancers to modulate expression of 
ESC-specific genes [77]. It is thus possible that CHARGE 
syndrome may arise due to CHD7 enhancer-mediated 
gene dysregulation. In neural stem cells, Chd7 is able to 
bind with Sox2 at the Jag1, Gli3 and Mycn genes, which 
are mutated in the developmental disorders Alagille, 
Pallister-Hall and Feingold syndromes [78]. Similarly, 
Chd7 has been described to interact with the PBAF 

Table 2. Transcriptomic comparisons between induced pluripotent stem cells and embryonic stem cells

Characteristic	 Mouse	iPSCs	 Human	iPSCs

mRNA expression Distinct from mESCs at lower passages, donor cell gene 
expression still present [62,69]; closely resemble mESCs at 
late passages [62]

Distinct from hESCs at lower passages [58], with residual donor 
gene expression [70,96,97]; closely resemble hESCs at late 
passages [58,98]

miRNA expression miRNA encoded within the imprinted Dlk1-Dio3 locus is 
aberrantly silenced [60] 

Small number of differences reported [58,99], but variation 
between hESCs and hiPSCs comparable to somatic and cancer 
cells [100]

lncRNA expression Not determined Differences in lincRNA expression reported. lincRNA-RoR 
enhances reprogramming by twofold [13]

DNA methylation status Distinct from mESCs at lower passages, donor cell DNA 
methylation pattern still present [62,69]; closely identical to 
mESCs at late passages [62]

Differences in DNA methylation reported [59,68,70], but not in 
all hiPSCs [71]

Genome status Not determined Possess gene copy number deletions and duplications [63-64], 
somatic coding mutations [65], and chromosomal duplications 
[66]

hESC, human embryonic stem cell; hiPSC, human induced pluripotent stem cell; iPSC, induced pluripotent stem cell; lincRNA, long-intergenic non-coding RNA; 
lncRNA, long non-coding RNA; mESC, mouse embryonic stem cell; miRNA, microRNA.
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complex to control neural crest formation [79]. Therefore, 
these data hint that Chd7 may partner different proteins 
to cooperatively regulate developmental genes. Although 
the mechanism behind gene regulation by Chd7 and its 
interacting partners is not well understood, the use of 
ESCs may serve as a useful system to further probe Chd7 
function during development and disease.

Clinical and therapeutic implications
The development of hiPSC technology offers the unique 
opportunity to derive disease-specific hiPSCs for the in 
vitro study of human disease pathogenesis (Figure 2). A 
major advantage of using disease-specific hiPSCs is that 
they allow the capture of the patient’s genetic background 
and, together with the patient’s medical history, will 
enable the researcher to uncover the disease genotypic-
phenotypic relationship [6]. A number of patient-derived 
hiPSC disease models have been established, including 
those for Hutchinson Gilford Progeria, Timothy syn-
drome, schizophrenia and Alzheimer’s disease [5,80-83], 
and these have been useful in understanding the cellular 
mechanisms behind these illnesses. For example, trans-
criptional profiling of schizophrenia neurons derived 
from iPSCs have identified 596 differentially expressed 
genes, 75% of which were not previously implicated in 
schizophrenia [82]. This highlights the potential of 
disease-specific iPSCs in unlocking hidden pathways. 
Additionally, the use of disease cell lines can facilitate 

drug design and screening under disease conditions 
(Figure 2) [6]. One such example is the drug roscovitine, 
which was found to restore the electrical and Ca2+ signal-
ing in Timothy syndrome cardiomyocytes [81].

The self-renewing ability of hiPSCs means that a 
potentially unlimited source of patient-specific cells can 
be generated for regenerative purposes (Figure 2). Impor-
tantly, hiPSCs, when coupled with gene targeting 
approaches to rectify genetic mutations, can be differen-
tiated into the desired cell type and reintroduced to the 
patient (Figure 2) [5]. However, unlike mESCs, hESCs 
and hiPSCs cannot be passaged as single cells and have 
very poor homologous recombination ability [84]. 
Circum venting this problem may require the conversion 
of hiPSCs into a mESC-like state, which is more amenable 
to gene targeting [85]. Alternatively, recent reports of 
successful gene targeting in human pluripotent stem cells 
using zinc-finger nucleases (ZFNs) [86], and transcription 
activator-like effector nucleases (TALENs) [87], presents 
another option for genetically altering hiPSCs for cell 
therapy. Albeit that there are concerns of off-target effects, 
the advantage of using nuclease-targeting approaches is 
that they do not necessitate the conversion of hESCs and 
hiPSCs into mESC-like states prior to genomic 
manipulation.

While it has been assumed that iPSCs generated from 
an autologous host should be immune-tolerated, Zhao et al. 
[88] recently demonstrated that iPSCs were immunogenic 

Table 3. Dysregulation of transcriptional networks in stem cells and disease

Gene/protein	 Role	in	ESCs	 Role	in	disease

c-MYC Involved in the expression of self-renewal genes [101]; recruits 
p-TEFb to initiate transcriptional pause release of RNA polymerase 
II [29]

Most common gene duplication in cancer [73]; c-Myc appears to be 
responsible for the gene expression signature of cancer cells [9]

LIN28 Maintains ESC pluripotency by binding and inhibiting the 
maturation of pro-differentiation let-7 miRNA; LIN28 is also a hiPSC 
reprogramming factor [74]

Highly expressed in poorly differentiated and low prognosis tumors; 
as let-7 silences the expression of oncogenes c-Myc, K-Ras, Hmga2 
and the gene encoding cyclin-D1, Lin28 suppression of let-7 miRNA 
may thus promote oncogenesis [74]

SOX2 A core ESC transcription factor together with Oct4 and Nanog. 
Regulates the expression of pluripotency genes, and suppresses 
lineage-specific genes [23,24]; Sox2 is also an iPSC reprogramming 
factor [4]

Mutation in SOX2 causes anophthalmia (congenital loss of eyeballs) 
in humans. Proposed to cooperate with CHD7 to regulate genes 
involved in Alagille, Pallister-Hall and Feingold syndromes [76]

CHD7 Binds with core ESC factors and p300 at gene enhancers to 
modulate ESC-specific gene expression [77]

Mutations in CHD7 result in CHARGE syndrome; proposed to 
cooperate with SOX2 to regulate genes involved in Alagille, Pallister-
Hall and Feingold syndromes [76]

Mediator Physically links the Oct4/Sox2/Nanog-bound gene enhancers to 
active gene promoters via chromatin looping [29]; necessary for 
normal gene activity 

Mutations in Mediator are associated with Opitz-Kaveggia, Lujan, 
and transposition of the great arteries syndromes; also implicated in 
schizophrenia, colon cancer progression [1] and uterine leiomyomas 
[102]

Cohesin Proposed to bind and stabilize the Oct4/Sox2/Nanog enhancer-
promoter chromatin loops [1]; necessary for normal gene activity

Cohesin mutations implicated in Cornelia de Lange syndrome, 
whereby patients exhibit developmental defects and mental 
retardation due to dysregulation of gene expression [29]

Nipbl Binds with mediator complex to allow loading of cohesion and 
formation of stable chromatin loop [29] 

Nipbl mutations implicated in Cornelia de Lange syndrome, whereby 
patients exhibit developmental defects and mental retardation due 
to dysregulation of gene expression [29]

ESC, embryonic stem cell; hiPSC, human induced pluripotent stem cell; iPSC, induced pluripotent stem cell; miRNA, microRNA.
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and could elicit a T-cell immune response when trans-
planted into syngeneic mice. However, it should be 
distinguished that in the Zhao et al. study undiffer-
entiated iPSCs were injected into mice, rather than 
differentiated iPSC-derived cells, which are the clinically 
relevant cell type for medical purposes. Furthermore, the 
immune system is capable of ‘cancer immunosurveillance’ 
to identify and destroy tumorigenic cells [89]. Hence, it 
may be possible that the observed iPSC immunogenicity 
could have arisen through cancer immunosurveillance 
against undifferentiated tumor-like iPSCs, and that 

iPSC-derived differentiated cells may not be immuno-
genic. It would thus be necessary to experimentally verify 
if iPSC-derived differentiated cells are immunogenic in 
syngeneic hosts.

Conclusions and future challenges
Understanding and exploiting the mechanisms that 
govern pluripotency are necessary if hESCs and hiPSCs 
are to be successfully translated to benefit clinical and 
medical applications. One approach for understanding 
hESCs and hiPSCs would be to study their transcriptomes, 

Figure 2. The application of induced pluripotent stem cell technology for therapeutic purposes. Patient-derived somatic cells can be isolated 
through tissue biopsies and converted into induced pluripotent stem cells (iPSCs) through reprogramming. From there, iPSCs can be expanded 
into suitable quantities before di�erentiation into desired tissue types for transplantation purposes. Gene targeting of patient-derived iPSCs can 
also be done through homologous recombination or via gene-editing nucleases to correct genetic mutations. Upon successful modi�cation, 
the genetically corrected iPSCs can then be expanded, di�erentiated and transplanted back into the patient for cell therapy. iPSCs from patients 
harboring genetic diseases can similarly be used as an in vitro disease model to study disease pathogenesis, or for drug development and 
screening. Data gained through the study of disease-speci�c cell culture models will enable the identi�cation of critical molecular and cellular 
pathways in disease development, and allow for the formulation of e�ective treatment strategies.

 

Disease modelingGene targeting

Reprogramming

Disease pathogenesis Drug screening

iPSCs

Regeneration and differentiation

Transplant Treatment

Patient

Tissue biopsy

Corrected iPSC

Yeo and Ng Genome Medicine 2011, 3:68 
http://genomemedicine.com/content/3/10/68

Page 8 of 12



and, through various approaches, we have learnt how the 
core pluripotency factors create an ESC gene expression 
signature by regulating other transcription factors and 
controlling chromatin structure and ncRNA expression.

Current methodologies to generate iPSCs are ineffi-
cient, suggesting that significant and unknown epigenetic 
barriers to successful reprogramming remain [90]. 
However, defining these barriers is difficult, as existing 
transcriptomic studies rely on average readings taken 
across a heterogeneous cell population. This therefore 
masks essential rate-limiting transcriptional and epi-
genetic remodeling steps in iPSC formation. Future 
studies in elucidating the iPSC generation process may 
thus adopt a single-cell approach [91], which will offer 
the resolution needed to define key reprogramming 
steps. Future efforts should also be focused upon improv-
ing hiPSC safety for human applications, through the use 
of stringent genomic and functional screening strategies 
on hiPSCs and their differentiated tissues [3]. Only with 
well-defined and non-tumorigenic iPSC-derived tissue 
would we then be able to assess the transplant potential 
of iPSCs in personalized medicine.

In addition to generating disease-specific iPSCs from 
patients, the use of gene-modifying nucleases to create 
hESCs harboring specific genetic mutations may be a 
forward approach towards studying human disease 
patho genesis [86]. With the recent creation of approxi-
mately 9,000 conditional targeted alleles in mESCs [92], it 
would be of tremendous scientific and clinical value to 
likewise establish a hESC knockout library to study the 
role of individual genes in disease and development. 
Furthermore, while SNP and haplotype mapping may be 
useful in associating diseases with specific genetic loci, 
the use of ZFNs or TALENs to recreate these specific 
gene variations in hESCs may offer an experimental 
means of verifying the relationship of SNPs or haplotypes 
with diseases.
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