
The deep �eld
Techniques for directly assessing and quantifying RNA 
by high-throughput sequencing, collectively known as 
RNA-Seq [1], have revealed unexpected complexity and 
diversity in human transcriptomes [2]. Many previously 
unknown transcripts that are being detected are low-
abundance long intergenic non-coding RNAs (lncRNAs), 
which seem to be crucial for function and in disease [3]. 
A key advantage of RNA-Seq over previous microarray-
based methods for assessing transcription is the ability to 
query all transcripts on a genome-wide scale without 
prior knowledge about the locations and structures of 
genes. However, this advantage of RNA-Seq has also 
been its Achilles heel: transcriptomes are dominated by 
few highly abundant transcripts, and the frequent 
sampling of such transcripts in proportion to their 
abundances and lengths reduces the power to detect 
transcripts that are rare or short [4].

An apt analogy for a genome biologist attempting to 
measure transcription of a short, low-abundance gene 
from genome-wide RNA-Seq data is the difficulty 

encountered by an astronomer attempting to detect a low 
magnitude star from images collected in a low resolution 
sky survey. �e tradeoff between breadth and depth is 
one that astronomers have grappled with for a long time 
and have ultimately resolved with the development of 
telescopes that can limit the scope of a detector to areas 
of interest, along with guiding technology enabling deep 
sampling of a region over long exposures. �is approach 
was the design principle for the Hubble Deep Field, 
which focused a powerful detector on the darkest 
portions of the sky. With the bright ‘foreground’ of 
nearby objects removed, an immense number of galaxies 
were discovered in what was previously thought to be 
empty space. Mercer et al. [5] have designed an analogous 
focused experiment for probing the transcriptome, RNA 
CaptureSeq, and describe a similar outcome: regions 
with only scattered coverage in genome-wide experi-
ments are revealed to be loci with transcription of low-
abundance RNAs. A key aspect of CaptureSeq is that the 
integrity of the transcriptome in the ‘deep field’ is 
preserved: the relative proportions of transcripts sampled 
with CaptureSeq are shown to be equivalent to the 
relative proportions in conventional RNA-Seq.

Seq and �nd
Mercer et al. [5] first performed conventional RNA-Seq 
focusing on a primary human foot fibroblast cell line. De 
novo assembled transcripts from conventional RNA-Seq 
were combined with ‘dark’ intergenic regions that seemed 
not to be transcribed to design capture arrays. �e 
targeted regions were then pulled down using the array, 
followed by sequencing. Mercer et al. [5] provide 
numerous controls to show that the approach maintains 
library diversity without introducing PCR amplification 
bias or other biases.

�e enrichment provided by CaptureSeq is estimated 
to be 380-fold more than conventional RNA-Seq in the 
targeted regions. �erefore, the resolution achievable 
with CaptureSeq (in the targeted regions) is approxi-
mately equivalent to what could be obtained with 
10 billion conventional RNA-Seq reads. As Mercer et al. 
[5] point out, such depth is necessary for finding very-
low-abundance transcripts and for accurately quantifying 
abundances. We reinforce the latter observation in 
Figure  1, which gives an example showing that extreme 
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depth is necessary for accurate isoform abundance esti-
ma tion for the dystrophin gene, a complex multi-isoform 
gene that can harbor mutations causing muscular dys-
trophy. The need for deep sequencing in the example 
arises from the overlap between the multiple isoforms of 
the gene and the ambiguity that this causes in read 
mapping. Large gene families are equally difficult to 
resolve for the same reason. It has been estimated that 
only 60% of transcripts can be accurately quantified with 
10 billion conventional RNA-Seq reads [6].

Increased accuracy is only one advantage of 
CaptureSeq. Another striking result of Mercer et al. [5] is 
the number of previously unknown transcripts dis-
covered and the corollary that current sequencing experi-
ments are very far from saturation. The message is clearly 
‘seq and find’ and this is exactly what is happening in 
RNA-Seq. The experiments surveyed in [1] are an order 
of magnitude smaller than the norm today, and it is 
reasonable to extrapolate that as the costs of sequencing 
drop precipitously, the average depth of sequencing in 

Figure 1. To demonstrate the difficulty of accurate isoform-level abundance estimation on low-abundance genes, we simulated an RNA 
CaptureSeq experiment on the 18 isoforms of the dystrophin gene as annotated in RefSeq (hg19), shown in (a). For each number of 76 bp 
paired-end fragments that aligned to the gene, we estimated abundances of each isoform using the online EM algorithm (for details of the model 
used see [8] and for details of the implementation see [11]). (b) The accuracy of isoform abundance estimation measured as the Pearson correlation 
coefficient (r) of the logged relative abundance estimates compared with the true abundance used to generate the simulated data. The results are 
averaged over four simulations from different random abundance distributions. Because of the similarity of the isoforms, only 2.5% of fragments 
aligned uniquely to a single isoform on average, making the deconvolution particularly difficult. The bottom x-axis shows how many alignable 
paired-end fragments would be required to achieve the same r in a genome-wide experiment as in the CaptureSeq simulation. Here we assume 
3.17 fragments per kilobase per million mapped reads (FPKM) for the gene, which is what we estimated from a sample ENCODE dataset [accession 
SRR065495].
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RNA-Seq experiments will increase by another order of 
magnitude in the next 3 years.

Breaking the curse of deep sequencing
Given the observations above, it is natural to speculate 
that conventional RNA-Seq with 10 billion reads will be 
commonplace in the near future and to ask whether 
technologies such as CaptureSeq are truly necessary. It 
certainly seems plausible that exome sequencing, which 
is to genome sequencing as CaptureSeq is to conventional 
RNA-Seq, will eventually be replaced by routine whole 
genome sequencing. However, in addition to techno-
logical challenges that must be overcome to allow routine 
sequencing of 10 billion reads, there are also bio-
informatics problems that must be solved if such data are 
to be useful. In particular, increased numbers of reads in 
RNA-Seq lead to the ‘curse of deep sequencing’, in which 
extra sequence actually reduces performance and accu-
racy in current processing pipelines. This happens for 
two reasons. Firstly, most existing algorithms for RNA-
Seq quantification require loading a substantial fraction 
of the total number of sequenced reads into memory. 
This is already a challenging prospect at 100 million 
reads. Algorithms whose running times are not linear in 
the number of reads are also likely to fail with large 
amounts of sequence data. Secondly, reads have errors 
and are prone to various biases [7], which, while appear-
ing at a fixed frequency, occur at greater numbers with 
increased reads. For example, if a sufficiently large amount 
of sequence is obtained, a recurring error in a highly 
abundant gene may appear to be a (false) novel isoform. 
It therefore becomes imperative with large amounts of 
sequence to correct for sequencing artifacts, and this can 
be computationally prohibitive.

CaptureSeq breaks the curse of deep sequencing by 
providing increased transcript resolution at fixed sequen-
cing depth. This means that existing methods can be 
readily applied to the analysis of CaptureSeq data, and 
indeed the authors [5] show that the Cufflinks suite of 
tools can be used for both assembly [8] and quantification 
[7] of CaptureSeq data.

The single cell transcriptome
Mercer et al. [5] emphasize the discovery of novel 
lncRNAs in the deep field. They found 163 novel neigh-
boring and antisense lncRNAs around protein coding 
genes. In general, they found that captured lncRNAs have 
very low expression of only 0.011 FPKM (fragments per 
kilobase per million mapped reads). These findings follow 
on the heels of a recent comprehensive annotation of 
human lncRNAs [9] and together suggest that very rare 
transcripts may bestow individual transcriptional ‘finger-
prints’ on cells. In fact, Mercer et al. [5] estimate that the 
newly discovered lncRNAs are present at an average copy 

number of 0.0006 transcripts per cell. This precise 
quanti fication together with evidence from CaptureSeq 
that the sequenced fragments are samples from complete 
transcripts (and not just ‘noise’) points towards the 
presence of very rare transcripts, possibly even unique to 
individual cells.

CaptureSeq therefore motivates the development of 
other approaches to the enrichment of low-abundance 
transcripts. One complementary possibility is the further 
development of depletion approaches, which could 
selectively filter the highest-abundance transcripts before 
sequencing; an example is removal of ribosomal RNA 
already performed in many experiments [1]. Although 
the depletion approach may inadvertently remove lower-
abundance RNAs because of cross-hybridization, it offers 
a genome-wide approach to enrichment. Furthermore, 
CaptureSeq may have a similar bias in the opposite 
direction: repetitive sequence in the transcriptome might 
lead to captured RNA from outside a targeted genomic 
region.

RNA CaptureSeq and beyond
Regardless of how low-abundance transcripts are detected, 
Mercer et al. [5] have demonstrated the extent of dis-
covery possible in the deep field. The functional relevance 
of ultra low-abundance transcripts is currently debated 
[9,10], and the question of whether rare transcripts 
regulate biologically important processes or are artifacts 
of stochastic transcription is a key open problem. 
However, there is increasing recognition that antisense 
lncRNAs are present at many protein coding genes, 
including numerous proto-oncogenes, and that they 
regulate their associated genes via epigenetic modifica-
tions [3]. The ability to see farther into the RNA deep 
field with CaptureSeq is therefore likely to lead to many 
exciting developments in genomic medicine thanks to 
better understanding of the aberrant transcription under-
lying human disease.
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