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Abstract

Background: Recently, it has been proposed that epigenetic variation may contribute to the risk of complex
genetic diseases like cancer. We aimed to demonstrate that epigenetic changes in normal cells, collected years in
advance of the first signs of morphological transformation, can predict the risk of such transformation.

Methods: We analyzed DNA methylation (DNAm) profiles of over 27,000 CpGs in cytologically normal cells of the
uterine cervix from 152 women in a prospective nested case-control study. We used statistics based on differential
variability to identify CpGs associated with the risk of transformation and a novel statistical algorithm called EVORA
(Epigenetic Variable Outliers for Risk prediction Analysis) to make predictions.

Results: We observed many CpGs that were differentially variable between women who developed a non-invasive
cervical neoplasia within 3 years of sample collection and those that remained disease-free. These CpGs exhibited

the accuracy needed for clinical application.

Number ISRCTN25417821.

heterogeneous outlier methylation profiles and overlapped strongly with CpGs undergoing age-associated DNA
methylation changes in normal tissue. Using EVORA, we demonstrate that the risk of cervical neoplasia can be
predicted in blind test sets (AUC = 0.66 (0.58 to 0.75)), and that assessment of DNAm variability allows more
reliable identification of risk-associated CpGs than statistics based on differences in mean methylation levels. In
independent data, EVORA showed high sensitivity and specificity to detect pre-invasive neoplasia and cervical
cancer (AUC = 0.93 (0.86 to 1) and AUC = 1, respectively).

Conclusions: We demonstrate that the risk of neoplastic transformation can be predicted from DNA methylation
profiles in the morphologically normal cell of origin of an epithelial cancer. Having profiled only 0.1% of CpGs in
the human genome, studies of wider coverage are likely to yield improved predictive and diagnostic models with

Trial registration: The ARTISTIC trial is registered with the International Standard Randomised Controlled Trial

Background

It has been proposed that epigenetic variation may con-
tribute to the risk of complex genetic diseases like can-
cer and that differential exposure to environmental risk
factors may underlie much of this variation [1,2].
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Consistent with this view, a recent study has shown that
regions that are differentially methylated between nor-
mal and cancer tissue appear to be highly variable in
cancer itself, and that identification of cancer-relevant
markers may therefore benefit from statistics that mea-
sure differential variability [3]. Based on these insights,
we here aimed to demonstrate that analysis of epigenetic
variability in prospectively collected normal cells can
predict the risk of future morphological transformation.
In order to demonstrate this in humans, two require-
ments are mandatory: the cells that are used for
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epigenetic analyses need to be (i) the cells of origin for
the studied cancer, and (ii) they need to be collected
years in advance of the onset of cytological and mor-
phological signs of cancer. Currently, the only human
organ that meets these two requirements is the uterine
cervix. Thus, we used Illumina Infinium technology [4]
to measure DNA methylation (DNAm) at 27,578 CpG
sites in cytologically entire normal cells (liquid-based
cytology (LBC) samples) from the uterine cervix of 152
women (aged 19 to 55 years) in a nested prospective
case-control study within ARTISTIC (A Randomised
Trial of HPV Testing in Primary Cervical Screening
[5,6]). Prospective cases were women who developed a
cervical intraepithelial neoplasia of grade 2 or higher
(CIN2+) within 3 years of sample draw, while controls
were women who remained disease-free. To further sup-
port our data we used completely independent LBC
samples with abnormal cytology and associated controls,
as well as cervical cancer tissue and normal cervix
specimens.

Methods

Study population

The ARTISTIC trial

The LBC samples we analyzed were collected from
women as part of the ARTISTIC trial [5,6]. All women
underwent two screening rounds with an interval of 3
years. Within the ARTISTIC trial, women, aged 19 to
64 years who were undergoing routine screening as part
of the English National Health Service Cervical Screen-
ing Programme in Greater Manchester were randomly
assigned in a ratio of 3:1 to either combined LBC and
human papilloma virus (HPV) testing where the results
were revealed and acted on, or to combined LBC and
HPV testing where the HPV result was concealed from
the patient and investigator. There were a total of
24,510 eligible women at entry. In the first round of
screening 453 women had CIN2+. In the second round
of screening 75 women (who were screen-negative in
the first round and who had a sample stored from the
first round) had developed CIN2+ (44 were HPV-posi-
tive and 31 were HPV-negative in the first round).
Seventy-seven women who had not developed any cyto-
logical changes were matched (age and HPV status in
round 1) to the cases. The cytologically normal samples
from round 1 from these 152 women were used for
DNAm analysis. Further details, cytology and HPV scor-
ing are described in Additional file 1. This trial is regis-
tered with the International Standard Randomised
Controlled Trial Number ISRCTN25417821.

DNA methylation nested case control study

A total of 152 samples in a prospective nested case con-
trol study within ARTISTIC were selected for DNAm
analysis. Cases were 75 women who had normal
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cytology in screening round 1 but demonstrated CIN2+
after 3 years in round 2. Controls were 77 women who
had normal cytology at entry and in the second screen-
ing round. Cases and controls were matched for age
(Wilcox rank sum test P = 0.95) and HPV status: 92
were HPV-positive (44 cases and 48 controls) and 60
were HPV-negative (31 cases and 29 controls) at entry
(Fisher test P = 0.74). Informed consent was obtained
from the main study population and this study has been
approved by the ethical committee (National Research
Ethics Service Reference Number 10/H1107/15).

Other DNA methylation data sets

In addition to the nested case control prospective study
within ARTISTIC, we used two additional DNAm data
sets that were also generated using the same Illumina
Infinium 27 k platform. Set 1 comprised a total of 30
LBC samples (19 HPV-negatives and 11 HPV-positives)
with normal cytology and 18 LBC samples (all HPV-
positive) with CIN2+, as described in [7]. Set 2 com-
prised a total of 63 cervical tissue samples: 48 cervical
cancers, 15 normals. The normal cervical tissue samples
were from women (mean age 55.4 years) who under-
went a hysterectomy for fibroids of the uterine corpus,
that is, these women did not have fibroids in the uterine
cervix. The 48 cervical cancer specimens were from
women (matched for age with mean age 56.8 years) who
were treated at the Innsbruck Medical University. Of
these 48 cancers, 26 were of stage 1, 10 of stage 2, 4 of
stage 3 and 7 of stage 4 (1 sample had missing stage
information). In terms of grade, 7 were of grade 1, 28 of
grade 2 and 11 of grade 3 (2 samples had no grading).
All specimens were obtained with informed consent and
approval from the ethics committee UN4044-290/4.9.
DNA extraction and methylation assay

The DNA extraction protocol is described in Additional
file 1. Genome-wide methylation analysis using the Illu-
mina Infinium Methylation27K beadchip (Illumina Inc.,
USA, WG-311-1201) was performed. This chip interro-
gates the methylation status of over 27,000 CpG sites
throughout the human genome, covering the promoters
of over 14,000 genes [4]. Further details are in Addi-
tional file 1.

Data availability

All data in this manuscript have been deposited in the
Gene Expression Omnibus repository [8] under acces-
sion number [GSE30760].

mRNA expression data of normal cervical and cervical
cancer tissue

We used the publicly available normalized expression
data (all Affymetrix) from the Gene Expression Omni-
bus with accession numbers [GSE9750] [9], [GSE7803]
[10], and [GSE6791] [11]. For each downloaded data set
we only selected the normal squamous cervix epithelial
and squamous cervical cell carcinoma samples: for
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[GSE9750] there were 24 normal and 33 cancers, for
[GSE7803] there were 10 normals and 21 cancers, and
for [GSE6791] there were 8 normals and 20 cancers.
Probes mapping to the same Entrez ID were averaged,
resulting in 13,213 genes [GSE9750], 13,262 genes
[GSE7803] and 20,827 genes [GSE6791].

mRNA expression data analysis

From the above three expression data sets we built an
integrated (merged) expression set over 42 normal cer-
vical epithelial samples and 74 cervical cancers using a
procedure that we have validated many times pre-
viously [12-14]. Briefly, there were 13,213 genes in
common between all three expression arrays. For each
of these genes and for each expression set we then
renormalized the gene expression profile to mean zero
and unit variance, yielding ‘z-profiles’. For each gene,
its z-profile in each of the three studies was then
merged. This resulted in a merged expression set over
13,213 genes and 116 samples (42 normal and 74 can-
cers). For each gene, we then computed a ¢-statistic P-
value against normal/cancer status. Of the 140 risk
genes, 86 were found in the merged expression set. Of
these 86, 46 exhibited differential expression P-values
< 0.05. A binomial test was used to test the signifi-
cance of the skew towards differential under- or over-
expression. To adjust for any global (that is, over all
13,213 genes) skew towards under- or overexpression,
we also estimated the P-value using a Monte Carlo
procedure (1,000 Monte Carlo runs) in which 86 genes
were selected at random and a binomial test P-value
was recomputed. The fraction of the 1,000 runs with a
binomial test P-value more extreme than the observed
gives an independent P-value estimate.

Statistical methods

Full details of statistical methods are in Additional file 1.
Brief descriptions of the different parts of the statistical
analysis are given below.

Quality control and inter-array normalization

The raw DNAm data were subject to a similar quality
control procedure as used in our previous publication
[7].

Supervised analyses

To identify CpGs associated with age (aCpGs) we used
surrogate variable analysis [15]. False discovery rate
(FDR) estimation was implemented as in the g-value
package [16]. To identify age-independent variable CpGs
(vCpGs), we adjusted the data for age, and subsequently
estimated the variances for each CpG. Because of the
heteroscedasticity of B-values [17], we also estimated the
variance using R-values (defined as R = M/U) [18]. To
identify differentially variable CpGs (DVCs) between
prospective CIN2+ cases and normals, we used Bartlett’s
test [19]. In doing so, variances were estimated after the
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methylation profiles were linearly adjusted for age
within each phenotype.

EVORA: Epigenetic Variable Outliers for Risk Prediction
Analysis

Full details and the model assumptions on which
EVORA is based are described in Additional file 1.
There are three important statistical aspects to EVORA:
(i) identification of candidate risk CpGs; (ii) identifica-
tion of samples that constitute methylation outliers; and
(iii) a method for assigning risk to each sample, which is
robust and independent of the scale used. For (i) we use
Bartlett’s test [19], since our hypothesis is that DVCs
defined by outlier profiles are more likely to define risk
CpGs [3]. To define outliers in a scale-independent fash-
ion (ii) we use the COPA (Cancer Outlier Profile Analy-
sis) transformation [20]. Lastly, to assign a risk score to
a sample, we use an adaptive index algorithm framework
[21]. EVORA is freely available as an R-package (evora)
[22].

Results

DNA methylation variability is increased in cytologically
normal cells predisposed to neoplasia

A stringent quality control and inter-array normaliza-
tion procedure resulted in a normalized data matrix of
methylation values (B-values, 0 < § < 1) over 24,039
CpGs and 152 samples (Methods). Prospective cases (n
= 75) and controls (n = 77) were matched for age and
HPYV status (Methods). Following the suggestion that
epigenetic variability may mark genes that contribute
to the risk of cancer [1,3,23], we hypothesized that dif-
ferential variability in normal tissue might be asso-
ciated with an increased risk of neoplasia. We thus
derived a list of CpGs that showed significantly differ-
ent (age-adjusted) variability between future (CIN2+)
cases and controls (DVCs) (Methods). We observed
many DVCs (Figure 1a) and among the top 500 (FDR
< 0.0001; Additional file 2) the majority (73%) were
more variable in future cases (Figure 1c). The set of
DVCs was largely unchanged if variability was not
adjusted for age or if also adjusted for HPV status
(Additional file 3). In contrast, testing for differential
methylation using ¢-statistics (differentially methylated
CpGs (DMCs)) did not yield genome-wide significance
levels (FDR ~0.6 for the top 50 CpGs; Figure 1b).
DVCs that showed significantly higher variance in
future cases (hypervariable DVCs) generally exhibited
small yet consistent increases in mean methylation
levels (Figure 1d; Additional file 2). Inspection of typi-
cal methylation profiles of such DVCs revealed that
the increased or decreased variability was due to
approximately 20 to 30% changes in DNAm present in
only a relatively small number of ‘outlier’ samples (Fig-
ure 1d; Additional file 4). Developmental genes, and in
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Figure 1 Differentially variable and differentially methylated CpGs. (a) Histograms of P-values derived from Bartlett's test comparing
differences in variance between normal samples that become neoplastic (CIN2+) and samples that remain normal (differentially variable CpGs
(DVCs)). (b) Histograms of P-values derived from t-tests comparing differences in mean CpG methylation levels between the same two
phenotypes (differentially methylated CpGs (DMCs)). (c) Scatterplot of Bartlett statistics (logarithm of the ratio of the variance in prospective CIN2
+ to that in normal) shown on the y-axis against the corresponding t-statistics (x-axis) for the top 500 DVCs. The numbers of hypervariable
(hyperV) and hypovariable (hypoV) DVCs are given. (d) Typical methylation profile of a hypervariable DVC (blue = prospective CIN2+, green =
normal). The thin dashed lines indicate the mean levels of methylation in each phenotype. The P-values shown are from a Bartlett's test
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particular polycomb group targets (PCGTs) [24] (see
Additional file 1 for precise definition), were enriched
only among the DVCs showing increased variance in
the normal cells of prospective cancer cases (odds
ratio = 4.9 (3.9 to 6.3), P < 1le-31) and were six times
more likely to exhibit higher variability in prospective
cases than lower (Additional file 5). PCGTs were also
the most highly enriched gene category out of a total
of 6,173 gene sets in a Gene Set Enrichment Analysis
[25] (Additional file 6). Random permutation of sample
labels also showed that this enrichment could not have

arisen by chance (Additional file 5). Thus, all these
results indicate that increased DNAm variability affects
PCGTs and is an intrinsic property of normal cells
predisposed to neoplasia.

Age-associated variation in DNA methylation also
correlates with the risk of neoplasia

An unsupervised singular value decomposition and a
supervised linear regression analysis (adjusted for CIN2
+ status) both confirmed a strong age-associated signa-
ture (644 CpGs at FDR < 0.05) with the majority (392,
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61%) hypermethylated with age (Additional files 7 and
8). Interestingly, we observed that the 644 CpGs
undergoing age-associated changes in DNAm (aCpGs)
showed specific directional changes associated with the
future development of CIN2+ even though these
changes were not individually significant (Additional
file 9). Specifically, those CpGs undergoing significant
hypermethylation with age were generally also hyper-
methylated in future CIN2+ cases (Additional file 9).
To test further if age-hypermethylated aCpGs are
indeed associated with CIN2+, we compared their
methylation levels in an independent data set (also
generated with the Illumina 27 k platform) consisting
of 30 normal and 18 age-matched CIN2+ samples (Set
1, Methods) [7]. The mean methylation level of these
aCpGs was also significantly higher in the CIN2+ sam-
ples of this set (Additional file 10).

Significant overlap of hypervariable DVCs and age-
hypermethylated aCpGs

Next, we explored the relationship between DVCs and
aCpGs. Many CpGs showing age-associated hyper-
methylation also showed significant increases in (age-
adjusted) variability within the normal tissues of future
CIN2+ cases, while age hypomethylated aCpGs did not
(Figures 2a-c). Thus, CpGs that are more variable in
prospective CIN2+ cases independently of age over-
lapped significantly with CpGs that undergo age-asso-
ciated  hypermethylation in normal tissue
independently of prospective disease status. This could
mean that detecting DNAm changes across a group of
individuals of the same age but who may have had
variable lifetime exposures to environmental risk fac-
tors (and therefore be at variable disease risk) is simi-
lar to detecting age-associated changes in a population
of differently aged individuals (since lifetime exposures
accumulate with age). Because PCGTs were enriched
in both hypermethylated (hyperM) aCpGs and hyper-
variable (hyperV) DVCs (Figure 2c), it was natural to
ask if aCpGs mapping to PCGTs and that had been
identified from other tissues (for example, whole
blood) [7] would also exhibit a preferential skew
towards hypervariability. Remarkably, out of the 69
PCGT CpGs identified as hypermethylated with age in
whole blood [7], the overwhelming majority were more
variable in the epithelial cells of future CIN2+ cases
(Figure 2d). In contrast, the 20 PCGT CpGs under-
going age-associated hypomethylation in blood showed
no skew towards either increased or decreased variabil-
ity (Figure 2d). Thus, we can conclude that genes
prone to epigenetic variation are also prone to undergo
age-associated hypermethylation and that PCGTs
define a significant subset of these genes.
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Differentially hypervariable CpGs predict risk of
intraepithelial cervical neoplasia

Based on these results, we proposed the following model
in which epigenetic variance may be used to predict the
risk of neoplastic transformation. Since the typical DVC
methylation profile (Figure 1d) is one in which a small
number of samples exhibit increased outlier methylation
(> 20% methylation change), we hypothesized that can-
cer-risk in a given sample may be associated with the
number of such risk CpGs (hypervariable DVCs/hyper-
methylated aCpGs) becoming ‘methylation hits’ (Figure
3a). To test this idea, we applied a novel statistical algo-
rithm called EVORA (Methods; Figure 3a), which aims
to assess the risk of neoplastic transformation from the
number of methylation outliers. Using multiple training/
test set partitions, we found that EVORA could predict
the future risk of CIN2+ in blind test sets (area under
the curve (AUC) = 0.66 (0.58 to 0.75), P < 0.05; Figure
3b), while an analogous classifier based on differences in
mean methylation levels could not (AUC = 0.51 (0.30 to
0.72), P = 0.46; Figure 3c).

Risk CpGs identified in normal cells can detect
intraepithelial neoplasia and cervical cancer
EVORA identified a total of 140 risk CpGs (hypervari-
able DVCs and hypermethylated aCpGs; Figure 4a;
Additional file 11), of which 69 mapped to PCGTs. We
postulated that this pool of 140 risk CpGs would also
necessarily diagnose CIN2+ status, since for established
neoplastic cells we would expect an even higher fraction
of these CpGs to be hypermethylated. Indeed, in an
independent Illumina Infinium 27 K methylation data
set of normal cervical smears and age-matched CIN2+
samples (set 1; Methods), EVORA was able to predict
CIN2+ status with very high accuracy (Figures 3d and
4b). Importantly, while the risk scores of the normal
samples in ARTISTIC and set 1 were comparable to
each other, the scores of the CIN2+ samples were signif-
icantly higher than those of normal cells that only
become CIN2+ within 3 years (Figure 5), reflecting a
progressive increase from normal cells at low risk, to
normal cells at high risk, and finally to cells in a pre-
invasive neoplastic state. Importantly, risk CpGs (that is,
differentially variable CpGs) identified from the ARTIS-
TIC cohort predicted CIN2+ status better than CpGs
that were not differentially variable, even if they mapped
to PCGTs (Figure 6). Since risk CpGs performed simi-
larly irrespective of PCGT status (Figure 6), this indi-
cates that differential variability is the key feature of
cells at risk of morphological transformation and not
PCGT status.

Next, we explored the methylation profiles of the 140
risk CpGs in an independent set of cervical cancers and
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Figure 2 Relation between differentially variable and age-associated CpGs. (a) Bartlett test P-values (on -log10 scale) of CpGs indicating
significance of differential variability (between prospective CIN2+ and controls) (y-axis) versus their average B-value across all samples (x-axis).
CpGs undergoing age-associated (aCpG) hypermethylation (hyperM) or hypomethylation (hypoM) are colored as indicated. (b) The ratio (on log
scale) of variability in prospective CIN2+ to variability in controls (y-axis) versus significance level (x-axis). Skyblue (orange) denotes CpGs
significantly hypermethylated (hypomethylated) with age (@CpGs) in normal cells from uterine cervix. The green dashed line represents the FDR
cutoff value of 0.05 for calling DVCs. (c) Venn diagram illustrating overlaps of age-hypermethylated CpGs with DVCs that are hypervariable
(hyperV) in prospective CIN2+, and with PCGT CpGs. A total of 41 CpGs overlapped between all three categories and 20,917 CpGs were in none
of the three categories. The P-value (estimated from a multiple binomial test) indicates the random chance of observing 41 or more overlapping
CpGs. (d) As (b) but now highlighting the 68 and 20 CpGs that map to PCGTs and undergo age-associated hyper- (blue) and hypomethylation
(red) in whole blood samples [7]. Among these CpGs, we give the number that are significantly differentially variable (FDR < 0.05, green dashed
line) and their distribution in terms of increased or decreased variance in future CIN2+ cases. P-value is from a binomial test.

corresponding age-matched normal tissue (set 2; Meth-
ods). The outlier risk scores were significantly reduced
(Figure 4c) owing to the fact that risk CpGs exhibited
much more of a bi-modal methylation pattern between

cancer and normal tissue; that is, risk CpGs were invari-
ably either hemi- or fully methylated across a high pro-
portion of the cancers (Figure 4d). Nevertheless, a small
subset of risk CpGs retained their outlier profiles in
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well as between the two classification algorithms. (d) EVORA ROC curve in set 1 (48 liquid-based cytology samples: 18 CIN2+, 30 normals). (e)
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Figure 4 Heatmaps over risk CpGs. (a-c) Heatmaps of COPA-transformed methylation values for the top 140 risk CpGs that are (i) significantly
hypermethylated with age and (i) show significant increased variability in future CIN2+ cases, as determined in the ARTISTIC cohort. Color codes
for COPA scores: yellow = COPA score < 1 (no methylation); skyblue = COPA score < 5. Outliers denoted by blue = methylation COPA score > 5
and black = methylation COPA score > 10. CpGs have been hierarchically clustered using a Manhattan distance metric. Those mapping to PCGTs
are labeled with their associated gene. Samples have been ordered according to their EVORA risk score as shown in the panels above heatmaps.
(@) ARTISTIC cohort: 152 samples (75 prospective CIN2+ (red), 77 no CIN2+ at last follow-up (green). (b) Set 1: 48 samples (18 CIN2+ (red), 30
normals (green)). (c) Set 2: 63 cervical tissue samples (48 cancers (red), 15 normals (green)). (d) Heatmap depicts the same data matrix as in (c)
but with the methylation values on the B-value scale where CpG B-values have been median normalized to zero. The corresponding scores now
depict the percentage of methylation hits as measured on the beta-scale.

cervical cancer and EVORA was therefore still highly
predictive of cancer status (Figure 4c). Adapting
EVORA to the original beta methylation scale to better
capture the observed bi-modal methylation profiles
yielded a perfect discrimination of normal and cancer
tissue (Figures 3e and 4d).

Risk genes are underexpressed in cervical cancer

To evaluate if the genes associated with the identified
risk CpGs show expression changes in cervical cancer,
we built an integrated data set of mRNA expression
profiles over 13,213 genes and encompassing 42 normal
cervical epithelial and 74 cervical cancer (squamous cell
carcinoma) specimens (Methods). The integration was

done using a renormalization procedure that we have
validated previously [12-14]. Of the 140 risk genes, 86
could be mapped to this merged data set. Comparison
of average mRNA levels of our 86 risk genes between
normal and cancer tissue confirmed that risk genes
showed lower average expression levels in cervical can-
cer (Additional file 12). Analysis of individual gene sta-
tistics further showed that 46 were differentially
expressed and that there was a significant skew towards
underexpression in cancer (Additional file 12). More-
over, in only 13 of 1,000 random selections of 86 gene
sets (Monte Carlo analysis described in Methods) did
we observe a skew as significant as the one observed for
the risk genes (Additional file 12).
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Figure 5 Cross-comparison of EVORA risk scores. Boxplots of EVORA risk scores (y-axis) of the 77 normal LBC samples in ARTISTIC (N(ART)),
the 30 normal LBC samples of set 1 (N(Set1)), the 75 prospective CIN2+ LBC samples in ARTISTIC (preCIN2-+(ART)), and the 18 CIN2+ samples of
set 1 (CIN2+ (Set1)). Wilcox-test P-values between N(ART) and N(Set1), and between preCIN2+(ART) and CIN2+(Set1) are given.

Discussion

In this work we have addressed two fundamental ques-
tions. First, do DNAm changes precede the morpholo-
gical signs of neoplastic transformation?