
Genetic regulation of gene expression
Understanding how and to what extent inter­individual 
genetic variation determines gene function in normal 
and pathological conditions can provide important 
insights into disease etiology. To this end, the rapid 
accumulation of large transcriptomic datasets across 
diff erent tissues has prompted several population­based 
studies of gene expression variation [1]. In many of these 
studies, typical transcriptional analyses are carried out 
within or between whole tissue(s), with the aim of 
pinpointing gene expression signatures and/or (tissue­
specifi c) genetic regulation of gene expression. Even at 
this level, context­dependent genetic regulation of gene 
expression has been shown to be important, and the 
underlying regulatory variants have more complex eff ects 
than previously anticipated [2]. For instance, character­
izing diff erent cis­regulatory mechanisms between tissues 
(such as opposite allelic eff ects) is important to under­
stand the tissue­specifi c function exerted by disease­
associated genetic variants.

Th e genetic variants that are associated with gene 
expression variation are commonly called expression 

quantitative trait loci (eQTLs). Th ese can be mapped to 
the genome by modeling quantitative variation in gene 
expression and genetic variation (for example, single 
nucleotide polymorphisms (SNPs)) that have been 
assessed in the same population, family or segregating 
population. Essentially, mRNA levels can be treated as a 
quantitative phenotype and as such can be mapped to 
discrete genomic regions (genetic loci) that harbor DNA 
sequence variation aff ecting gene expression. In many 
cases, eQTL studies have provided direct insights into 
the complex regulatory mechanisms of gene expression ­ 
for instance, by allowing researchers to diff erentiate cis 
(or local) from trans (or distant) control of gene ex­
pression in a given tissue, experimental condition or 
developmental stage. Furthermore, eQTL analyses can be 
integrated with clinical genome­wide association studies 
(GWAS) to identify disease­associated variants [3,4]. 
Despite this recent, exciting progress in ‘genetical 
genomics’ (that is, eQTL studies), the growing number of 
single­cell transcriptomic analyses now prompts re­
evaluation of our understanding of how heritable 
variations aff ect gene function in the cell.

Neglected single-cell diff erences and other hidden 
factors
Establishing a robust link between SNPs and gene 
expression variation is a non­trivial exercise when multiple 
cell types are jointly modeled. To aid this process, ad hoc 
methodological approaches that borrow information 
among tissues have been recently developed [5,6]. None­
theless, emerging concepts such as single­cell transcrip­
tomics have started changing our understanding of the 
genetic regulation of gene expression in individual cells, 
which can be hidden in ensemble­averaged experiments. 
In a recent study published in Nature Biotechnology, 
Holmes and colleagues [7] carried out single­cell quanti­
fi  cation of gene expression for 92 genes in approximately 
1,500 individual cells to disentangle the eff ect of gene 
variants on cell­to­cell variability, temporal dynamics or 
cell­cycle dependence in gene expression.

Th e authors looked at selected genes in fresh, naive B 
lymphocytes from three individuals and clearly showed 
how gene expression had much greater variability 
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between cells within an individual than between indi­
viduals. This observation set the scene for a compre­
hensive investigation of the distributions of single-cell 
gene expression and the properties of gene expression 
noise in a larger population of cells. These analyses were 
focused on 92 genes affected by Wnt signaling (that can 
be chemically perturbed by a Wnt pathway agonist), of 
which 46  genes were also listed in the Catalog of 
Genome-Wide Association Studies, and resulted in four 
important outcomes.

First, perturbing the system with a Wnt pathway 
agonist exposed significant changes not only in whole-
tissue gene expression but also in gene expression noise. 
Given the intrinsic stochastic nature of gene expression, 
it was expected that the number of mRNA copy numbers 
would vary from cell to cell, as previously shown in 
isogenic bacterial cell populations [8]. The single-cell 
transcriptomic analyses reported by Holmes and 
colleagues [7] highlight the large effect of fluctuations of 
mRNA copy numbers in HapMap lymphoblastoid cell 
lines, which has been mostly neglected and might influ­
ence eQTL detection in this system to a large extent.

Second, single-cell transcriptomic analysis allowed 
Holmes and colleagues to quantify both the noise from 
the regulation of transcription and the noise of RNA 
turnover, which therefore can be modeled independently. 
In keeping with previous observations [9], genes differed 
from each other primarily in terms of burst size (that is, 
the amount of RNA produced when the gene is switched 
on), resulting in an increased expression variance 
between cells that was greater than the expression mean. 
The expression ‘Fano factor’ (the gene expression vari­
ance divided by the mean) quantifies this phenomenon, 
and it represents another commonly neglected compo­
nent that might be important in eQTL studies.

Third, when gene expression distributions were 
described in terms of heterogeneous cell subpopulations 
with respect to different stages of the cell cycle, Holmes 
and colleagues showed that the majority of genes ana­
lyzed had altered expression between G1 and early 
S  phases. These apparent differences in cell cycle sub­
population proportions between samples represent 
another determinant of gene expression variation, which 
is expected to contribute significantly to gene regulation.

Finally, single-cell transcriptomics enabled the reliable 
quantification of the gene expression noise in the system. 
The latter can be considered as another source of varia­
bility, which can then be used to infer an expression 
network for each sample. Traditional gene co-expression 
networks assess gene-gene associations by correlating 
gene expression profiles across multiple samples. By 
contrast, in the Nature Biotechnology article, expression 
networks were built by correlating gene expression across 
multiple cells, which were profiled in the same 

lymphoblastoid cell line. For instance, one expression 
network built with approximately 200 cells from one of 
the lymphoblastoid cell lines revealed changes in cell-to-
cell gene correlations in response to chemical pertur­
bation of the Wnt signaling, which were not detectable at 
the level of whole-tissue expression. This approach 
allowed the authors to assess the extent to which the 
network connectivity of each gene varies in the system in 
response to other perturbations (for example, chemical, 
genetic), unmasking an additional factor that is 
potentially relevant for eQTL analysis.

Single-cell quantitative trait loci
After demonstrating (and quantifying) the important 
effect on gene function of a number of factors that reflect 
single-cell differences, Holmes and colleagues tested how 
each of these factors (alone or in combination) contri­
buted to the detection of cis-eQTLs (that is, regulatory 
SNPs within 50 kb of the gene) [7]. This is an important 
question because integrated eQTL and clinical GWAS 
analyses are commonly employed to identify genes and 
pathways underlying disease, and eventually generate 
new hypotheses concerning diagnostic and prognostic 
biomarkers or potential therapeutic targets [10]. First, the 
eQTL associations detected at -log10P  =  3 for whole-
tissue gene expression (at both baseline and after chemi­
cal perturbation of the Wnt signaling) represented only a 
small fraction of the total number of eQTLs in the system 
(Figure  1). Overall, many more eQTL signals were 
detected for the other single-cell expression phenotypes 
tested. This highlights the extent to which different 
masked sources of variation (detailed above) can signifi­
cantly affect the detection of cis-eQTLs in the system. 
Furthermore, it turns out that the complex spatio­
temporal expression variability quantified by single-cell 
analysis (‘single-cell expression’) is more heritable than, 
or at least comparable to, gene expression levels averaged 
over many cells (‘whole-tissue expression’), such that the 
authors of the study named this new class of associated 
genetic variants ‘single-cell quantitative trait loci’ 
(scQTLs) [7].

Notably, GWAS eQTL genes in particular demon­
strated greater cell-cycle (G1 and early S phase) inter-
individual variability compared with other genes and 
greater inter-individual variability of their network con­
nectivities [7]. The implications of these results are two-
fold: first, these studies urge caution in the interpretation 
of eQTL data published to date where only whole-tissue 
expression was considered; and second, they prompt a 
deeper evaluation (and accurate modeling) of these 
’masked‘ sources of variation resulting from single-cell 
differences. It will be intriguing to extend these analyses 
to the study of more distant genetic control of gene 
expression at the single-cell level (that is, single-cell 
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trans-eQTLs) and to investigate the functional relevance 
of scQTLs on whole-body phenotypes in human and 
animal models. With the growing accessibility of single-
cell technologies for transcriptomic studies, the time is 
right for a deep re-thinking of the key factors determining 
the observed complexity of gene expression and its 
regulation.
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many cells.
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