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Abstract

Background: It is often assumed that rare genetic variants will improve available risk prediction scores. We aimed to
estimate the added predictive ability of rare variants for risk prediction of common diseases in hypothetical scenarios.

Methods: In simulated data, we constructed risk models with an area under the ROC curve (AUC) ranging
between 0.50 and 0.95, to which we added a single variant representing the cumulative frequency and effect
(odds ratio, OR) of multiple rare variants. The frequency of the rare variant ranged between 0.0001 and 0.01 and
the OR between 2 and 10. We assessed the resulting AUC, increment in AUC, integrated discrimination
improvement (IDI), net reclassification improvement (NRI(>0.01)) and categorical NRI. The analyses were illustrated
by a simulation of atrial fibrillation risk prediction based on a published clinical risk model.

Results: We observed minimal improvement in AUC with the addition of rare variants. All measures increased with
the frequency and OR of the variant, but maximum increment in AUC remained below 0.05. Increment in AUC and
NRI(>0.01) decreased with higher AUC of the baseline model, whereas IDI remained constant. In the atrial
fibrillation example, the maximum increment in AUC was 0.02 for a variant with frequency = 0.01 and OR = 10. IDI
and NRI showed at most minimal increase for variants with frequency greater than or equal to 0.005 and OR
greater than or equal to 5.

Conclusions: Since rare variants are present in only a minority of affected individuals, their predictive ability is
generally low at the population level. To improve the predictive ability of clinical risk models for complex diseases,
genetic variants must be common and have substantial effect on disease risk.

Background
Genome-wide association studies (GWASs) have uncov-
ered an incredible number of common susceptibility var-
iants, but they explain only a small part of the heritability
of complex diseases [1]. In search for the missing herit-
ability, genetic research is investigating common variants
with weak effects on disease risk, gene-gene interactions,
structural variations and rare variants [2]. With the intro-
duction of next generation sequencing, much effort is
currently directed towards rare variants. Expected to
have a predominant effect on protein structure, rare var-
iants are more likely to be functional and to display
strong effects on disease risk [3-6]. Sequencing of coding
regions of the genome already has proved successful in

identifying rare polymorphisms associated with common
traits and complex diseases [7-10].
The predictive ability of rare variants and their potential

to improve clinical risk models are uncertain for the popu-
lation at large, as they are present in only a minority of the
affected individuals. The predictive ability of rare variants
in common diseases is understudied. Two methodological
papers investigated the increment in area under the recei-
ver operating characteristic curve (AUC) when rare var-
iants were added to models based on common variants
using simulated data [11,12]. They showed that the maxi-
mum increment in AUC was 0.06, but they did not pro-
vide the effect sizes of the rare variants, which makes it
difficult to interpret the significance of their results. Addi-
tionally, AUC is considered an insensitive measure to
detect potentially clinically important improvement in pre-
diction [13-15]. Two new metrics were developed and
rapidly gained popularity: the integrated discrimination

* Correspondence: cecile.janssens@emory.edu
1Department of Epidemiology, Erasmus University Medical Center,
Dr. Molewaterplein 50, Rotterdam, 3000 CA, The Netherlands
Full list of author information is available at the end of the article

Mihaescu et al. Genome Medicine 2013, 5:76
http://genomemedicine.com/content/5/8/76

© 2013 Mihaescu et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:cecile.janssens@emory.edu
http://creativecommons.org/licenses/by/2.0


improvement (IDI) and the net reclassification improve-
ment (NRI) [16]. These metrics may be able to detect
clinically significant improvement in prediction due to
rare variants that the AUC fails to uncover.
We investigated the value of rare genetic variants for

risk prediction of complex diseases. We examined the
relation between the predictive ability of rare variants
and their frequency, strength of effect (OR), and the
predictive ability of the baseline risk model. We assessed
the improvement in model performance by delta AUC
(ΔAUC), IDI, and NRI. To this end, we simulated a
large dataset and constructed risk models based on
common variants for increasing values of the baseline
AUC. In separate scenarios, we added rare genetic
variants with varying odds ratios (OR) and frequencies.
We further used hypothetical data that replicated the
empirical populations used to derive a recently pub-
lished clinical model for atrial fibrillation (AF) [17]. This
common cardiac arrhythmia is associated with increased
morbidity, mortality, and significant healthcare costs
[18]. Numerous common genetic variants associated
with atrial fibrillation risk have been identified [19-22]
and rare genetic variants are expected to improve the
detection of at-risk individuals [23,24].

Methods
Simulation of data
First, we used a simulation procedure to investigate the
effect of the predictive accuracy of the baseline model
on the discrimination of the model updated with rare
variants. The modeling procedure has been described in
detail by Janssens et al. [25]. In short, this procedure
creates a dataset of genotypes for a hypothetical popula-
tion. Genotypes, coded as 0, 1, or 2 based on the num-
ber of risk alleles, are assigned in such a way that the
allele frequencies of the genetic variants match specified
values and are in Hardy-Weinberg equilibrium. By chan-
ging the number, frequency, and ORs of simulated
variants we created baseline models with an AUC ran-
ging between 0.50 and 0.95. We added rare genetic var-
iants to the simulated dataset of common variants. Rare
variants were simulated as a single variant representing
multiple rarer variants. That is, for example, 20 indepen-
dent rare variants each with a frequency of 1 in 2,000
individuals can collectively be viewed as a single variant
with a frequency of 0.01. The variant was coded as 1 or
0 if the individual carried any or none of the risk alleles.
We simulated rare variants with a frequency of 0.0001,
0.001, 0.005, or 0.01, and an OR of 2, 5, or 10. We used
arbitrary values for the parameters of the rare genes, but
based our choice on the literature [3,26-28].
To compare the added value of rare and common var-

iants for risk prediction, we also simulated 10 to 100
common variants each with a risk allele frequency of

0.05 or 0.30 and an OR of 1.10 or 1.05. We have used
these parameters because most of the approximately 400
single nucleotide polymorphisms (SNPs) discovered in
100 recent GWAS had an OR of approximately 1.10
and future GWAS efforts are expected to uncover SNPs
with even lower effect sizes [28]. Disease risk was 4% as
in the AF example, or 10% to examine the impact of
higher disease risks on the measures of predictive ability.
In the simulations, disease risk can be interpreted as a
disease incidence, for example, a disease incidence over
5 years. For both the main simulations and the AF
example, population size was 200,000 for scenarios in
which rare variants were added and 20,000 for scenarios
in which common variants were added. Predicted risks
for each individual were obtained from logistic regres-
sion analyses, were calculated in the range 0 to 1 and
were rounded to two decimal points.

Simulation study of atrial fibrillation
Background for choosing the example of atrial fibrillation
Complex diseases can be multifactorial, that is, caused
by an intricate effect of multiple environmental and
genetic risk factors, but can also include monogenic
forms. One such example is AF, which consist of a rare
familial form that is a monogenetic disease and a com-
mon non-familial form [29]. Targeted use of prevention
strategies is warranted to reduce the burden of AF,
which requires accurate detection of individuals at high
risk. Algorithms for detection of individuals at risk,
based on routinely collected clinical risk factors, have
already been developed and validated in various popula-
tions [17,30,31]. The predictive accuracy of these clinical
scores leaves ample opportunity for improvement, and
so fuels the research for finding new biomarkers, includ-
ing genetic variants [23,32,33]. Several susceptibility
variants for AF have been found [19-21] but their com-
bined predictive ability is low as they explain only a
fraction of the heritability [1]. While sequencing efforts
are ongoing for AF, research focused on the potential
use of rare variants for risk prediction of AF becomes
very relevant [23,24]. We assessed the incremental value
of rare genetic variants over an existing clinical risk
score for AF.
Methods for constructing the dataset of clinical and
genetic risk factors
To assess the value of rare variants for AF risk prediction
we simulated a hypothetical population that reflected the
characteristics of the community-based cohort in which
the clinical risk score was developed (that is, the combi-
nation of Atherosclerosis Risk in Communities Study,
Cardiovascular Health Study and Framingham Heart
Study; please see Additional file for details on study
design) [34-36]. We simulated the distribution of clinical
and genetic risk factors separately in individuals with and
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without the outcome by random sampling from a multi-
variate normal distribution. To derive categorical clinical
variables and genetic variants, we transformed the corre-
sponding continuous variables into categorical variables.
We simulated clinical variables to be correlated, as
observed in the empirical population (see Additional file,
Table S3). We assumed that genetic variants were uncor-
related with one another and were uncorrelated with
clinical risk variables. Detailed information about the
simulation strategy is provided in the Supplementary
Methods (see Additional file).
Description of the clinical model
Variables included in the clinical risk score were: age,
race, smoking status, weight, height, systolic blood pres-
sure (SBP), diastolic blood pressure (DBP), diabetes,
medication for hypertension, history of congestive heart
failure, and history of myocardial infarction (see Addi-
tional file, Table S1 for the distribution of clinical vari-
ables). In the empirical dataset, that is, the combination
of Atherosclerosis Risk in Communities Study, Cardio-
vascular Health Study and Framingham Heart Study, the
outcome was defined as AF during 5 years of follow-up.
Individuals were free of AF at the beginning of follow-
up. The disease incidence was 4%. Simulations accu-
rately replicated the empirical data (see Additional file,
Table S4).
Description of genetic variables
We used the same parameters for the rare variants as in
the simulation scenarios where we varied the baseline
AUC. To estimate the added value of recently identified
susceptibility single nucleotide polymorphisms (SNPs)
for AF, we added to the clinical variables 10 genetic var-
iants with the same frequency and OR as the top 10
(that is, in terms of P value) uncorrelated SNPs from a
recent meta-analysis performed in the CHARGE AF
consortium [22] (see Additional file, Table S2).

Metrics
We assessed discrimination of the baseline, genetic, and
combined models; improvement in discrimination; and
clinical usefulness of updating the baseline model with
genetic variants. We used AUC as a global measure of
discrimination. AUC indicates the degree to which the
predicted risks can discriminate between individuals
who will and will not develop the disease. AUC gener-
ally ranges from 0.50 (equal to tossing a coin) to 1.00
(perfect discrimination). We used the increment in AUC
(ΔAUC), IDI, and continuous NRI as measures of global
improvement in discrimination. IDI was calculated as
the difference in mean predicted probabilities between
cases and controls between the two models [16]. NRI is
an overall measure of correct reclassification of cases to
higher risk categories and of controls to lower risk cate-
gories [16]. The continuous NRI [NRI(>0)] does not use

categories but takes into account any increase or
decrease in predicted risk produced by the model
update [37]. Since we rounded risks to 0.01 (that is, 1%)
the NRI without categories used here is denoted as NRI
(>0.01). In other words the minimal change in risk is
0.01. We used categorical NRI to assess clinical useful-
ness. Clinical usefulness concerns the reclassification of
individuals in risk categories that leads to changes in
preventive or therapeutic interventions. We defined
three risk categories by using the risk cutoffs of 2.5%
and 5%, similar to those used the evaluation of the clini-
cal risk score for AF [17]. We also report the NRI in
cases and controls separately, as this may provide addi-
tional insight into the impact of model update [16,37].
For scenarios with various baseline AUC, we calculated
ΔAUC, NRI(>0.01), and IDI. For scenarios with the clin-
ical risk score we calculated ΔAUC, IDI, NRI(>0.01),
and categorical NRI.
Reported measures are median results from 200 simu-

lations unless stated otherwise. All analyses were per-
formed using the R programming language, version
2.11.1 [38].

Results
Simulation analyses
Figure 1 shows that, for a disease risk of 4%, the median
AUC and NRI(>0.01) only improved when variants were
not very rare and had higher ORs, and only when base-
line AUC values were in the lower range. Across higher
baseline AUC values, the median NRI(>0.01) became
negative, suggesting that rare variants produced more
wrong than correct risk reclassifications. The median
IDI was close to zero for very rare variants and mini-
mally increased with higher frequency and OR of the
rare variants. The median IDI was constant across most
baseline AUC values. When disease risk was higher
(that is, 10%), most performance measures slightly
increased compared to the scenarios with lower disease
risk (see Additional file, Figure S1). For rare variants
with OR = 10 and frequency ≥0.005, the median incre-
ment in AUC varied between 0.01 and 0.05 depending
on the value of the baseline AUC. The median NRI
(>0.01) varied between 0.18 and 0.55 and, in contrast to
the scenario with the lower disease risk, increased with
a higher baseline AUC.
As a comparison, we investigated the addition of 10 to

100 common variants, each with a frequency of 0.05
and an OR of 1.10 or a frequency of 0.30 and an OR of
1.05. We found a higher increase in AUC compared to
the addition of rare variants (see Figure 2). NRI(>0.01)
was mostly positive and increased with the number of
variants added. In contrast, IDI was minimal even with
the addition of 100 variants. Surprisingly, although the
increment in AUC was higher, the IDI was in some
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instances lower for common variants compared to rare
variants. As such, across low baseline AUC values rare
variants with OR = 10 and frequency ≥0.005 showed
higher IDI than 100 common variants. This trend was
seen also when disease risk was higher (that is, 10%)
(see Additional file, Figure S2). Furthermore, rare var-
iants with OR = 10 and frequency ≥0.005 showed also

higher NRI(>0.01) across higher baseline AUC values
compared to 100 common variants (see Additional file,
Figure S2).
To investigate the added value of rare and common

variants at the individual level, we additionally assessed
the magnitude of change in absolute risk at reclassifica-
tion. Having a rare variant substantially increased the

Figure 1 Change in AUC, NRI(>0.01) and IDI per different values of the baseline AUC when rare genetic variants were added to
prediction baseline model. ΔAUC, change in AUC between the model with and without the rare genetic variants; AUC, area under the
receiver operating characteristic curve; IDI, integrated discrimination improvement; n, number of common variants added; NRI, net reclassification
improvement; OR, odds ratio; p, frequency of the risk allele; AUC 1, AUC of the baseline model. Disease risk is 4%. Population size is 200,000.
Results are median values from 10 simulations.

Mihaescu et al. Genome Medicine 2013, 5:76
http://genomemedicine.com/content/5/8/76

Page 4 of 10



risk in <1% of both cases and controls when disease risk
was 4% (median increase in absolute risk: 0.35 in cases
and 0.24 in controls; see Figure 3a). When disease risk
was 10% the risk in 10% of cases largely increased while
the risk in <1% of controls increased only marginally
(median increase in absolute risk: 0.78 in cases and 0.02
in controls; see Figure 3b). The median decrease was
negligible in both cases and controls that did not carry
the risk variant (that is, -0.01). In contrast, when 100
common variants were added to the model and the

disease risk was 4%, the risk minimally increased or
decreased in individuals that were reclassified to higher
or lower risk categories (median increase in absolute
risk: 0.03 in cases and 0.02 in controls, median decrease:
-0.02 and -0.01; see Figure 3c). When common variants
were added, about a half of the cases and controls
moved in the right direction while around one-quarter
moved in the wrong direction. Similar results were
observed when disease risk was 10% (see Figure 3d).
Besides the individuals that carried the risk variant, an

Figure 2 Change in AUC, NRI(>0.01) and IDI per different values of the baseline AUC when common genetic variants were added to
prediction baseline model. ΔAUC, change in AUC between the model with and without the common genetic variants; AUC, area under the
receiver operating characteristic curve; IDI, integrated discrimination improvement; n, number of common variants added; NRI, net reclassification
improvement; OR, odds ratio; p, frequency of the risk allele; AUC 1, AUC of the baseline model. Disease risk is 4%. Population size is 20,000.
Results are median values from 10 simulations.
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increase in risk was observed also in some individuals
that did not carry a rare variant. This risk increase was
minimal and was due to a difference in beta coefficients
between the two regression models (data not shown).

Clinical example: genetic prediction of atrial fibrillation
The median AUC of the clinical model was 0.76 (95%
confidence interval, 0.75 to 0.78). Rare variants improved
the AUC of the clinical model only when they were more
frequent and had very high OR (see Table 1). Adding a
rare variant with a frequency of 0.01 increased AUC by
0.02 when OR was 10, but did not improve AUC when
OR was 2. IDI and NRI were zero for very rare variants,
that is, when frequency was 0.0001 or 0.001. IDI mini-
mally increased with a higher frequency and OR of the
rare variant (see Table 1). A variant with frequency of
0.01 and an OR of 10 yielded an IDI of 0.03. NRI(>0.01)

was negative in most scenarios. The higher the frequency
and OR of the rare variant, the larger the negative value
of NRI(>0.01). In contrast to the NRI(>0.01), categorical
NRI and NRI in controls, but not in cases, were positive
and minimally increased with the frequency and OR of
the rare variants. Adding 10 variants with empirical ORs
and frequencies showed a minimal improvement in all
model performance measures.

Discussion
Using a hypothetical population, we have shown that
rare variants only minimally improved AUC and did not
yield clinically relevant positive NRI(>0.01) and IDI
when disease risk was low. Rare variants produced larger
increments in AUC when the baseline model had lower
AUC, but in these scenarios NRI(>0.01) and IDI
remained close to zero. Addition of rare variants to the

Figure 3 Change in absolute risk at model update with rare and common genetic variants. On the × axis is shown the correct
reclassification of cases and controls (that is, Cases up; Controls down) and incorrect reclassification (that is, Cases down; Controls up) when rare
variants with a cumulative OR of 10 and frequency of 0.01 (Figures 3a, b) or 100 common variants each with a OR of 1.05 and a frequency of
0.30 (Figures 3c, d) are added to a baseline model with an AUC = 0.70. The bold line shows the median, the boxes indicate the interquartile
ranges (range, 25-75%), and the whiskers present 1.5 times the interquartile range. Box widths are proportional to the square-root of the number
of individuals in the groups. Disease risk is 4% in Figures 3a and c, and 10% in Figures 3b and d. The plot is obtained from one simulation using
200,000 individuals for Figures 3a and b, and 20,000 individuals for Figures 3c and d.
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baseline model largely increased predicted risks for the
few individuals carrying the risk variant, whereas pre-
dicted risks were only slightly decreased for those who
did not carry the variant. For a higher disease risk, rare
variants with strong effects showed improvement in
AUC across a wider range of baseline AUC values and
significant positive NRI(>0.01) and IDI. Addition of rare
variants to the baseline model largely increased pre-
dicted risks only in cases, as expected.
Before addressing the implications of these results for

future research, we discuss several methodological aspects
of our study that might have impacted the results. First,
we modeled rare variants as a single variant. This is a
common procedure used to investigate the association of
multiple extremely rare variants with disease risk and does
not affect the results presented here [9,39]. Second, we
assumed that each genetic variant was uncorrelated with
other variants and clinical risk factors. While linkage equi-
librium between rare variants is a very realistic assump-
tion, rare variants may be in linkage disequilibrium with
common variants. In fact, it has been suggested that com-
mon variants may share a haplotype with the true rare
causal variants [6]. Third, genetic variants may be asso-
ciated with intermediate risk factors for disease, which are
often the variables included in traditional clinical risk
scores. Such correlations would likely decrease the impact
of the variants and hence show less improvement in per-
formance than reported in this paper.

We have shown that, from a population perspective, rare
variants are only useful for risk prediction of complex dis-
eases when they have strong effects on disease risk, when
they are not too rare and when the risk of disease is high.
Figure 1 shows that when disease risk was 4% the addition
of rare variants resulted in an improvement in AUC only
when the baseline AUC was low. As shown, this trend was
more pronounced when rare variants had higher OR. NRI
(>0.01) showed a minimal added value of rare variants
only when baseline AUC was lower (≤0.70) and variants
had very strong effects (OR = 10). When baseline AUC
was ≥0.80, the NRI(>0.01) indicated that overall more
wrong reclassifications of risk were done by addition of
rare variants. To summarize, rare variants only improved
discrimination when baseline AUC values were low, but
even then the improvement was minimal. Only when the
OR of the rare variant was very large, its frequency higher
and disease risk high, were the AUC and NRI(>0.01)
improved across a wider range of baseline AUC. If the
expected effect sizes might be smaller than previously
thought, the predictive ability of rare variants will be even
lower than our results indicate. The NRI(>0.01) and IDI
values were higher than those observed with the addition
of 100 common variants with a frequency and OR as used
in this study. Thus, despite a lower improvement in AUC,
rare variants may result in larger improvements in NRI
(>0.01) and IDI compared to common variants. This
apparent discrepancy in observations is explained by the

Table 1 Performance of genetic and combined (clinical and genetic) risk models for AF using rare and common
variants.

OR Frequency Variants (n) AUC IDI NRI(>0.01) NRI categorical

Genetic Combined Δ Total Cases Controls

Rare variants

2 0.0001 1 0.50 0.76 0 0 0 0 0 0

0.001 1 0.50 0.76 0 0 0 0 0 0

0.005 1 0.50 0.76 0 0 -0.01 0 0 0

0.01 1 0.51 0.76 0 0 -0.03 0 0 0

5 0.0001 1 0.50 0.76 0 0 0 0 0 0

0.001 1 0.50 0.76 0 0 -0.01 0 0 0

0.005 1 0.51 0.76 0 0 -0.05 0.01 0.01 0

0.01 1 0.52 0.77 0.01 0.01 -0.10 0.02 -0.01 0.03

10 0.0001 1 0.50 0.76 0 0 0 0 0 0

0.001 1 0.50 0.76 0 0 -0.03 0.00 0 0.01

0.005 1 0.52 0.77 0.01 0.02 -0.11 0.02 -0.01 0.03

0.01 1 0.54 0.78 0.02 0.03 -0.13 0.04 -0.02 0.06

Common variants

1.14-1.45a 0.03-0.84* 10 0.59 0.77 0.01 0.01 0.20 0.04 0.01 0.04
aUsing parameters from the top 10 (that is, in terms of P value) uncorrelated SNPs in the CHARGE AF meta-analysis; in the table are listed the range of OR and
allele frequency [22]. Variables included in the clinical risk score were: age, weight, height, systolic blood pressure (SBP), diastolic blood pressure (DBP), diabetes,
medication for hypertension, history of congestive heart failure, history of myocardial infarction, smoking status, and race. Disease risk is 4% and population size
is 200,000 for rare variants scenarios and 20,000 for common variants scenarios. Results are median values from 200 simulations.

AUC, area under the receiver operating characteristic curve; ΔAUC, change in AUC between the model with and without genetic variants; IDI, integrated
discrimination improvement; NRI, net reclassification improvement (cutoffs 2.5% and 5%); OR, odds ratio.
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fact that AUC only considers the rank in predicted risks,
not actual values, whereas NRI and IDI do depend on
actual magnitude of changes in predicted risks before and
after updating the model. Rare variants with strong effect
by definition have a substantial impact on disease risk,
albeit for a small group of individuals.
Interestingly, the degree of precision had a large

impact on the global improvement of discrimination as
measured by continuous NRI. The discrepancy in results
was most striking for the rare variants. As such, we
observed a NRI(>0) of 0.17 when a rare variant with OR
of 10 and frequency of 0.01 was added to the clinical
AF model and predicted risks were not rounded, com-
pared to an NRI(>0.01) of -0.13 when risks were
rounded to two decimal points. This is likely explained
by the fact that, by definition, most individuals did not
carry the rare risk variant and this resulted in a very
small decrease in risk for most individuals, a change
that was not captured when risks were rounded. In con-
trast, the difference in AUC and categorical NRI
between non-rounded and rounded risks was minimal,
that is, at most 0.01 in a few scenarios from the AF
example. This raises the question what is the amount of
precision to be reported for risk predictions and what is
the most appropriate continuous NRI measure.

Conclusions
In conclusion, we have shown that addition of rare var-
iants to baseline risk models that include clinical or
genetic risk factors resulted in model improvement only
when the rare variants had strong effects on disease risk.
This improvement was larger with a higher disease risk
because the odds ratios lead to different likelihood ratios
when the disease is more common. We have also shown
that rare variants largely increased the risk in some indi-
viduals, while most individuals were reclassified to a
slightly decreased risk. Very rare variants, by definition,
occur in only few individuals that ultimately develop the
disease and therefore have poor sensitivity and a limited
predictive ability. This means that most individuals will
either not be reclassified into another risk category or
will be reclassified on the basis of clinically irrelevant
changes in predicted risks. Counterintuitively, most indi-
viduals who will develop the disease will see their risk
slightly decreased after testing for rare variants. Although
this decrease in disease risk is minimal, individuals with
predicted risks just above the threshold may be moved to
a lower risk category. In the case of AF, a disease asso-
ciated with stroke and increased mortality [40], this
would mean that many individuals would not benefit
from the potentially lifesaving preventive measures.
While rare variants are unlikely to improve the predic-

tion of common diseases in the population, they do have
substantial impact on disease risk in carriers of the rare

variants. When rare variants have very strong effects on
disease risk, they are probably more aggregated within
certain families and resemble a Mendelian transmission.
It would be of high interest to compare family history
information [41] with tests including rare variants and,
further, to investigate if such variants can be more pre-
dictive in families with positive family history. Apart
from such exceptions, it should be anticipated that the
study of rare variants will have its largest contribution in
advancing our understanding of disease pathophysiology.

Description of additional data files
The following additional data are available with the
online version of this paper. The Additional file includes
information on study design and baseline characteristics
in Atherosclerosis Risk in Communities Study, Cardio-
vascular Health Study and Framingham Heart Study and
describes the top 10 independent SNPs, change in AUC,
NRI(>0.01), and IDI per different values of the baseline
AUC when rare or common genetic variants are added
to prediction baseline model and additional information
on the methods.
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