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Abstract

benchmarking dataset for model training and validation.
Website: http://www.cgem.ed.ac.uk/resources/

Identifying functional non-coding variants is one of the greatest unmet challenges in genetics. To help address
this, we introduce an R package, SURFR, which integrates functional annotation and prior biological knowledge to
prioritise candidate functional variants. SURFR is publicly available, modular, flexible, fast, and simple to use. We
demonstrate that SURFR performs with high sensitivity and specificity and provide a widely applicable and scalable

Background

Linkage analyses and genome-wide association studies
(GWASs) routinely identify genomic regions and variants
associated with complex diseases [1]. Over 90% of disease-
associated variants from GWASs fall within non-coding
regions [2], underlining the importance of the regulatory
genome in complex diseases. However, while there are a
number of programs that identify putatively pathological
coding variants, pinpointing the potential causal variants
within non-coding regions is a major bottleneck, as the
genomic signals that characterise functional regulatory
variants are not fully defined and our understanding of
regulatory architecture is incomplete [3].

Currently a number of large scale projects are under-
way with the aim of genome-wide, systematic identifica-
tion of functional elements, through a combination of
biochemical assays followed by highly parallel sequencing
[4]. This wealth of studies generating such data are typified
by the Encyclopaedia of DNA Elements (ENCODE) pro-
ject [5], Functional Annotation of the Mammalian Gen-
ome (FANTOMS5) project [6], 1000 Genomes project [7]
and the Epigenome Roadmap [8]. These endeavours pro-
vide genome annotation datasets for a range of genome
marks, including histone acetylation and methylation [5],
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chromatin states [9], DNase hypersensitive sites (DNase
HSs) [10,11], DNase footprints [12,13], transcription
factor binding sites (TFBSs) [14,15], conserved sequences
[16], enhancers [17] and polymorphisms [7]. These re-
sources, which have been made publicly available via gen-
ome web browsers such as the UCSC Genome Browser
[18] and the Ensembl Genome Browser [19], provide a
rich dataset for functional predictions. Manual interroga-
tion of genome browsers for a range of functional annota-
tions simultaneously does not, however, scale well for
large studies, lacks reproducibility, is unsystematic and is
difficult to benchmark.

There is a need for a system that combines these an-
notation datasets, along with other genomic functional
measures, to prioritise candidate variants for follow-up
analyses. To address this need, we have developed the
SuRER tool (SNP Ranking by Function R package). SURFR
has the following advantages: simplicity; speed; modular-
ity; flexibility; transparency (the output indicates which
features have contributed to rankings); and ease of integra-
tion with other R packages.

In addition, we also introduce novel training and valid-
ation datasets that i) capture the regional heterogeneity
of genomic annotation better than previously applied ap-
proaches, and ii) facilitate understanding of which anno-
tations are most important for discriminating different
classes of functionally relevant variants from background
variants.

We show that SuRFR successfully prioritises known
regulatory variants over background variants. Additional
tests on novel data confirm the generalisability of the
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method. Moreover, we demonstrate that SURFR either out-
performs or performs at least as well as three recently in-
troduced, approximately comparable, approaches [20-22]
in the prioritisation of known disease variants from several
independent datasets.

Implementation

Overview of SuRFR

SuRFR is based on the conceptually simple construct of
a rank-of-ranks. Each variant is scored for its overlap
with multiple types of annotation. For each annotation
category, each variant is ranked from least likely to indi-
cate function through to most likely. The ranks from
multiple distinct annotation categories are averaged
using a weighting model to produce a final, combined,
weighted rank (R) of variant candidacy for the trait
under consideration (Equation 1):

R = rank; (Z (r,;.w,«))

where r;; is the rank of the i variant in the j annota-
tion category, and W is the weight for the j™ annotation
category.

Central to this approach is a weighting model that
apportions the relative importance of each annotation
type (a vector of multipliers, one for each annotation
data source). The training and validation of weighting
models is described in subsequent sections. SuRFR is
distributed with three pre-trained weighting models
that utilise publicly available data for variant annota-
tion. The three pre-trained models are: a general model
broadly applicable to any analysis (ALL); a model de-
signed specifically for prioritising (rare) disease variants
(DM); and a model for complex disease variants (DFP).
Users are also free to specify their own weighting models.
Some parameter types are additionally tunable within a
pre-defined weighting model (for example, minor allele
frequency (MAF)).

Training and validation of the weighting models were
based on ten-fold cross-validation using a novel and
broadly applicable data spiking strategy described in
later sections.

SuRFR is implemented as an R package and is publicly
available [23]. The input requirement is a tab-delimited
text or bed file composed of chromosome number and
start and end coordinates for each SNP (GRCh37/hgl9
assembly); SuRFR builds a functional table based on
these data. The SuRFR package can interact with a sister
annotation package, 'SNP Annotation Information List
R package' (SAILR). SAILR provides precompiled anno-
tation tables for all variants from the 1000 Genomes
project [7] for each of the four main populations (AFR,
AMR, ASN, and EUR) from which users can extract a
subset of SNPs of interest.
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Annotation sources

SuRFR incorporates information relating to a range of
genomic and epigenomic annotation parameters known
to correlate with regulatory elements and non-coding
disease variants. Annotation data classes and sources are
summarized in Additional file 1 and detailed below.

Minor allele frequency

MAFs were obtained from the 1000 Genomes EUR
population for the cross-validation and model selection.
The variants with the lowest MAF (rarest) were ranked
highest. The optimal allele frequency range can, how-
ever, be tuned to suit any analysis.

Conservation

Genomic evolutionary rate profiling (GERP) estimates
position-specific evolutionary rates and identifies
candidate-constrained elements [24]. Constraint is
measured in terms of rejection substitution (RS) scores,
which are based on a comparison of the number of ob-
served versus expected substitutions at each nucleotide
position. SNP sites were ranked on the basis of their RS
score. To prevent distortion of the rankings by positive se-
lection and other confounding factors, we set all negative
RS scores to zero prior to ranking.

DNase hypersensitivity

SNPs were ranked on normalised peak scores (maximum
signal strength across any cell line) from genome-wide
DNase HS data assayed in 125 cell types (wgEncodeR-
egDnaseClusteredV2) [25,26].

DNase footprints

This dataset comprised deep sequencing DNase foot-
printing data from the ENCODE project [27]. SNPs were
ranked by the number of cell lines where DNase foot-
prints were observed.

Chromatin states

We used chromatin states predicted by the combinatorial
patterns of chromatin marks from the mapping of nine
chromatin marks across nine cell lines [17]. Multivariable
logistic regression on the full training/validation set was
used to assess the relationship between chromatin states
and variant type (regulatory or background variant)
across the nine cell lines using the R function glm.
Chromatin states were ranked from most to least in-
formative; on the basis of  coefficients across the nine
cell lines (Additional files 2 and 3). The highest ranking
state from the nine cell lines was chosen to represent
the chromatin state of each SNP.
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Position

Ranking was determined by SNP position relative to gene
features (exon, intron, splice site, promoter (defined as be-
ing within 1 kb of a transcription start site (TSS)), 10 kb
upstream or downstream of a gene, intragenic, CpG
islands, CpG shores). The ranking of the categories
(Additional file 4) is based on enrichment data presented
by Schork et al. [28] and Hindorff ez al. [29]. UCSC gene
annotation data (Known Gene' gene predictions from
sources such as RefSeq and GenBank) and the FANTOM5
CAGE data [16] were used to define TSSs.

Transcribed enhancers
Each SNP was assessed for overlap with CAGE-defined
transcribed enhancers from the FANTOMS5 project [30].

Transcription factor binding sites

TFBSs were identified from data based on ChiP-seq ex-
periments for 161 transcription factors across 91 cell
types and predicted transcription factor binding motifs
from the ENCODE Factorbook repository (wgEncodeR-
egTfbsClusteredV3) [15,31]. The highest peak signal for
any transcription factor across all cell lines was used to
rank SNPs.

Annotation weightings

The SNP rankings for each of the annotation parameters
were combined into a final rank-of-ranks by assigning
weights to each parameter, thus adjusting their relative
contribution to the final ranking of the SNPs. Different
combinations of parameter weightings were assessed
using cross-validation and a benchmarking dataset com-
prising non-coding disease and regulatory variants, and
background genomic variants of unknown function (1000
Genomes variants located within the ENCODE pilot
project regions).

Construction of test datasets

For the purposes of model training and validation we
constructed benchmark datasets (defined as being rele-
vant, scalable, simple, accessible, independent and re-
usable [32]) by combining known functional variants
with background datasets of variants. Several sources of
both functional and background variants were used.

Non-coding variants with phenotypic impacts from the
Human Gene Mutation Database

Non-protein-coding variants with reported phenotypic
impacts were obtained from the Human Gene Mutation
Database (HGMD Professional version, release December
2013), using the mutation table PROM, which contains
substitutions that cause regulatory abnormalities [33].
Only variants of the subclasses ‘Disease causing mutation’
(DM), ‘Disease-associated polymorphism with additional
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supporting functional evidence’ (DFP) and ‘In vitro/
laboratory or in vivo functional polymorphism’ (FP) were
included.

The known variants were subdivided into three data-
sets by HGMD class: ALL (the full dataset of 1,827 vari-
ants with known disease effect or regulatory function);
DM (644 variants of known disease causing mutations)
only; and DFP (686 disease associated variants with
functional evidence) only.

ENCODE background variants

To assess SuRFR’s ability to distinguish functional variants
from non-functional, a control set of non-functional vari-
ants was required. However, training sets consisting of ex-
perimentally confirmed non-functional variants are still
hard to come by and are limited in size. The ENCODE
pilot project provides information on 44 regions across
the genome that were selected around medically import-
ant genes and from regions with a cross-section of gene
densities and non-exonic conservation scores [34]. Back-
ground variants were obtained by randomly sampling
170,892 SNPs located within the ENCODE pilot regions
from the 1000 Genomes project EUR population [7].

Additional test datasets

For independent validation of SuRFR, we constructed
annotation feature datasets for variant sets from a var-
iety of sources. All of these contained variants with ex-
perimentally verified phenotypic impacts. Some of these
datasets also contain background variants. All of these
datasets were filtered to remove variants contained
within the HGMD or ENCODE training and validation
datasets.

Variants from the B-haemoglobin (HBB) locus The
HbVar database is a locus-specific database of human
haemoglobin variants and thalassemias [35]. The HBB
dataset constructed from HbVar data contains SNPs
from the human haemoglobin beta gene, HBB (coding
and non-coding), the true positive SNPs being variants
that cause beta thalassemia (27 non-coding variants
proximal to the HBB gene and 324 coding variants).

RAVEN regulatory variant dataset To assess the ability
of SuRFR to prioritise regulatory variants with no known
disease association, we took advantage of a dataset de-
signed to detect variants modifying transcriptional regu-
lation [36], originally developed to train the web-based
application RAVEN. The RAVEN true positive SNP set
consists of 95 experimentally verified regulatory SNPs,
and the control set, 3,856 background variants, all within
10 kb of genes with mouse homologs. An additional
control set of background variants was constructed by
randomly sampling the 1000 Genomes EUR dataset for
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SNPs that were matched for distance to the nearest TSS.
This matched background set contains 9,500 variants.

ClinVar variant dataset The ClinVar archive [37] pro-
vides a freely accessible collection of experimentally veri-
fied disease variants [38]. We compiled 128 variants
(excluding mitochondrial variants) catalogued in the Clin-
Var archive (sourced from the GWAVA website [39]) into a
known disease variant set. A background set of 150 vari-
ants classified as non-pathogenic was also taken from the
GWAVA support website. An additional 58 non-exonic,
non-coding SNPs were obtained directly from the ClinVar
database and a background set of 5,800 1000 Genomes
EUR SNPs matched for distance to the nearest TSS was
generated for this dataset.

Complex trait related datasets

SORT1 dataset Musunuru et al. [40] investigated a
chromosome 1p13 locus strongly associated with low-
density lipoprotein cholesterol (LDL-C) levels and cardio-
vascular disease. Fine-mapping of the 1p13 locus, using
SNPs genotyped from approximately 20,000 individuals of
European descent [41], identified 22 variants in the min-
imal genomic region responsible for LDL-C association, of
which the six SNPs with the highest association were clus-
tered in a 6.1 kb non-coding region. Luciferase assays and
electrophoretic shift assays were used to demonstrate that
one of the six SNPs, rs12740374, creates a binding site for
the transcription factor C/EBP and alters liver-specific ex-
pression of the SORT1 gene. We constructed an annota-
tion table for the 22 variants from this analysis.

EGR2 dataset The early growth response 2 (EGR2) gene
is considered a good candidate for systemic lupus ery-
thematosus susceptibility (SLE). Myouzen et al. [42]
searched for functional coding variants within this locus
by sequencing 96 individuals with SLE and found no
candidate variants. A case-control association study for
SLE of the 80 kb region around the EGR2 gene identified
a single SNP with a significant P-value. Functional char-
acterisation (electrophoretic shift assay) of the SNPs in
complete linkage disequilibrium (LD) with this tagging
SNP showed that two SNPs had allelic differences in
binding ability. Luciferase assays performed on these
two SNPs showed that one (rs1412554) increased ex-
pression by 1.2-fold while the second (rs1509957) re-
pressed transcriptional activity. The 35 proxy SNPs that
are in perfect R-squared (R* = 1.0) with the tagging SNP
were annotated to test method performance.

TCF7L2 dataset In a search for variants associated with
type 2 diabetes, (T2D) Gaulton et al. [43] identified known
SNPs in strong LD with reported SNPs associated with
T2D or fasting glycaemia. Of these variants, they identified
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six variants at the TCF7L2 locus, one being a GWAS-
significant SNP, rs7903146, and the other five being in LD
with that tagging SNP). Using luciferase assays, they ob-
served allelic differences in enhancer activity for the tag-
ging SNP, rs7903146. These six SNPs defined a final
dataset to assess SuRFR’s functionality.

Cross-validation

Known functional and pathogenic variants were obtained
from the HGMD database and split into three datasets: ALL
(general class), DM (only disease mutations) and DFP (only
disease-associated with further evidence of functionality).
An equal number of background 1000 Genomes EUR
variants from the ENCODE pilot regions were randomly
selected. For the full (ALL) cross-validation analysis, known
and background variants were split into a training/valid-
ation set (1,440 known and 1,440 background SNPs) and a
hold-out test set (387 known SNPs and 169,452 back-
ground variants). The training/validation set was further
randomly split into 10 folds for cross-validation.

A modified grid search algorithm, incorporating multi-
variable regression, was used for parameter optimisation.
Multivariable regression performed on the full training/
validation set was used to guide the parameter boundar-
ies of the grid search algorithm (Additional file 5). Using
brute force permutation of integer parameter values par-
ameter weightings were permuted (n =450,000) across
the three models. Performance was measured using re-
ceiver operating characteristic (ROC) curves and area
under the curve (AUC) statistics using the ROCR R
package [44]). Maximum AUC with a threshold accept-
able performance error <0.005 was the objective param-
eter optimised for weighting parameter selection.

Multiple very similar scoring models existed: the
AUC:s of the top 1% of weightings differed by less than
0.003 (A AUC ALL: 0.00258; A AUC DM: 0.00211; A
AUC DFP: 0.00108), arguing for a smooth parameter
space with few fine-grained local optima.

The 10-fold cross-validation was repeated for the HGMD
subclasses DM (512 variants) and DFP (534 variants). The
differences between the mean training AUCs and validation
AUCs were used to calculate performance errors. Three
models were developed from this analysis and incorporated
in the R package: a general model, 'ALL’; a model specific-
ally designed to identify (rare) disease mutations, DM’; and
a model for complex disease variants (GWAS or common
variants), 'DFP'. For each of the three dataset classes, the
best model was run on the hold-out test dataset (similarly
divided by variant class into ALL, DM and DFP categories).
Generalisation errors were calculated by comparing test
AUC:s to the mean validation AUCs. Performance and gen-
eralisation errors were calculated to assess how consistently
each model performed during cross-validation and to pre-
dict how well they would perform on novel data.
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Results and discussion

Cross-validation analysis of genomic features using
HGMD regulatory variants

Our goal was to design and test a method for the prioritisa-
tion of candidate functional SNPs. One of the greatest chal-
lenges faced in the development of a predictive method,
such as this, is the need for systematic and impartial per-
formance evaluation. Two critical factors in performance
evaluation are i) good benchmarking datasets and ii) the
use of appropriate statistical evaluation methods [32].

Non-coding variants with reported phenotypic impacts
were obtained from HGMD. These variants were subdi-
vided into three datasets: ALL (the full HGMD dataset,
1,827 SNPs); DM (known disease causing variants, 644
SNPs); and DFP (disease-associated variants with functional
evidence, 686 SNPs). In each case, an equal number of
background variants was obtained by randomly sampling
SNPs from the 1000 Genomes project (EUR) that were lo-
cated within the ENCODE pilot project regions. Although
this background set will contain true functional variants, it
has the advantage of providing insight into the impact dif-
ferent genomic backgrounds have on performance, making
it an excellent benchmark dataset. In addition, a benchmark
dataset should be relevant, accessible, reusable, representa-
tive of the data under investigation, composed of experi-
mentally verified variants and applicable to the evaluation
of other tools. The combination of phenotypically func-
tional variants from HGMD and ENCODE pilot region
background variants fulfils all of these criteria.

We used 10-fold cross-validation to assess the per-
formance and gerenalisability of SuRFR on the three
datasets. All three datasets were divided into training,
validation and hold-out test subsets. For each dataset,
each of the three subsets comprised non-overlapping
sets of SNPs. This was an important consideration as it
prevented over-fitting of the derived models.

We assessed SURFR’s performance via ROC curve and
AUC statistics. Optimum parameters were chosen for
each model on the basis of average training/validation
AUCs and corresponding error rates (see Implementation
section). The AUCs obtained for each model when run on
the training, validation and, crucially, the hold-out test sets
were high (from 0.90 to 0.98), indicating that each model
successfully prioritises known regulatory variants over
background variants (Table 1, Figure 1). Moreover, the
performance and gerenalisation errors were low (<0.035),
indicating that the method would be likely to perform
equally well on novel data.

Different sets of genomic features characterise different
classes of regulatory variants

The 10-fold cross-validation and subsequent testing on
the hold-out dataset showed that each class of functional
variant was best prioritised by different combinations of
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genomic annotations (Table 2). DM variants were con-
sistently ranked higher than background variants by a
large range of annotation models. In the main, the DM
variants give rise to high penetrance and Mendelian dis-
orders, that is, disorders with more severe phenotypic
outcomes. Such variants could, perhaps, be expected to
result in substantial functional changes. As a group,
these variants would be likely to be associated with
changes across many functional annotation categories,
thus they can be identified by a range of functional an-
notation weightings. In contrast, the DFP variants are
likely to result in more subtle changes to function and,
we could hypothesise, would be more difficult to detect.
In fact, the DFP variants required a very specific com-
bination of annotation weightings, combining position,
chromatin states, DNase footprints, enhancers and
TFBSs, with conservation having no impact.

Overall, we found SNP position to be the most in-
formative feature with respect to functionality for all
three classes of functional variants. This finding is con-
sistent with evidence in the literature, which shows that
a regulatory site’s influence on expression falls off almost
linearly with distance from the TSS in a 10 kb range
[45], and that disease variants are enriched in certain
genomic positions, including coding regions and pro-
moters, over intronic and intergenic regions [28].

The ranking of the different classes of chromatin states
were chosen based on multivariable regression of the full
training and validation dataset (Additional file 2), the
promoter and strong enhancer chromatin states ranking
above the other classes. Chromatin states were also
found to be good markers of functionality across all vari-
ant classes. This finding is in keeping with the literature:
for example, disease variants are over-represented in
genomic regions characterised by particular chromatin
states, such as strong enhancers [17], more often than
others. As we prioritise SNPs in strong enhancers above
most other chromatin states, our results are in keeping
with these findings.

TEBSs played a role in the ranking of all three classes
of regulatory variants. This is not unexpected, as
changes to TFBSs may alter transcription factor binding
and thus have an impact on function.

Non-coding disease-associated GWAS variants are con-
centrated in DNase HSs, and thus putative regulatory sites
[2]. It is unsurprising, therefore, that we find that DNase
HSs and footprints are important markers of functional-
ity. Our analysis shows that DNase HS clusters and
DNase footprints are highly correlated, making it diffi-
cult to separate any individual effects. In our analysis,
DNase footprints on their own provide as much infor-
mation as using the two features together. This is likely
to be because they provide overlapping information:
DNase HSs mark regions of open chromatin and DNase
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Table 1 Average training, validation and test AUCs for the three SURFR models run on the cross-validation datasets

Model Training AUC Validation AUC Test AUC Performance error Gerenalisation error
ALL 0.944 0.944 0.909 0.000 0.035
DM 0.976 0.976 0.956 0.000 0.020
DFP 0912 0.908 0.897 0.004 0013

The AUCs and error rates from cross-validation for the three SURFR models. Column 1 shows the three models (ALL, DM, DFP). Columns 2 and 3 show the average
training AUCs and validation AUCs, respectively, for each of the three models from the 10-fold cross-validation analysis. The performance error (column 5) shows
that the difference between the training and validation AUCs is small. Column 4 shows the average test AUCs achieved by each of the three models run on the
hold-out datasets. The low gerenalisation errors in column 6 and the AUCs from the test datasets show that SuRFR is likely to gerenalise and perform equally well

on novel data.

footprints mark the (more specific) regions of transcrip-
tion factor occupancy.

Ranking SNPs on MAF (low frequency scoring high-
est) was very effective in the prioritisation of DM class
variants over background variants, but was not import-
ant in the ALL or DFP classes. This is likely to be due to
the fact that DM variants are most likely to be Mendel-
ian or highly penetrant, making them more likely to be
rare, whereas the DFP class tend to be those associated
with lower penetrance, complex traits and are, therefore,
more likely to have higher MAFs.

We found that conservation is not a particularly inform-
ative annotation, playing a minor role in the identification
of DM variants, making an even smaller contribution to
identifying ALL variants, and not contributing at all to

the identification of DFP variants. There are a number of
methods used to assess variant function that solely rely on
conservation (Table two from Cooper & Shendure, [4])
and others have shown that conservation can be used to
discriminate functional regulatory variants from back-
ground variants [20]. However, our finding supports those
studies that have shown that conservation is a poor pre-
dictor of regulatory function [46] and is consistent with
findings of extensive regulatory gain and loss between lin-
eages, indicating that there is variation in regulatory elem-
ent positions across evolution [47].

Transcribed enhancers do not correlate with the DM
class and only modestly with the ALL class of regulatory
variants but do provide information on functionality for
the DFP variants, leading to the hypothesis that the DFP

HGMD TEST dataset
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Figure 1 ROC curves for the three SURFR models on the hold-out test datasets. Mean ROC curves and AUCs for the top three SuRFR
models from the cross-validation, run on the hold-out test dataset. True positive rate (x-axis) plotted against false positive rate (y-axis) for each of
the three models: ALL (green line); DM (blue line); and DFP (golden line). The dotted grey line indicates random chance.
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Table 2 Details of the weighting models for each of the three variant classes

Model MAF Conservation Chromatin states DNase HS Position DNase footprints Enhancers TFBSs
ALL 0 1 1 0 8 0 1 3
DM 12 2 6 1 15 1 0 5
DFP 0 0 3 1 15 3 5 2

The first column lists the three weighting models (ALL, DM and DFP). Each subsequent column represents a different annotation class. The values represent the

weightings of each annotation class defined in each weighting model.

variants are more likely to be of weak effect or have
tissue-specific roles compared with the other classes. It
is difficult to judge the significance of this due to the
current, relatively small dataset.

Performance of SURFR on additional test datasets

To further test the generalisability of our method we
tested our ALL, DM, and DFP models on two additional
test datasets. The first comprises variants from the HBB
locus (HBB dataset) [35] that are known to cause thalas-
semia, which allow assessment of SuRFR’s ability to pri-
oritise regulatory Mendelian disease variants; the second
was the RAVEN dataset, which consists of experimen-
tally validated non-coding regulatory variants with no
known disease-association, located within 10 kb of genes
with mouse homologs [36].

As the HBB dataset does not contain background vari-
ants, the 27 non-coding HBB variants were spiked into the
44 ENCODE regions and the average AUC across the re-
gions calculated. All three models performed extremely
well on this dataset, with AUCs ranging from 0.95 to 0.98
(Figure 2A), confirming the ability of SuRER to correctly
prioritise pathogenic variants with high accuracy.

The 95 non-coding RAVEN variants were also spiked
into the ENCODE regions, as for the HBB variants, and
the performance of SuRFR was ascertained (Figure 2B).
On this dataset, both the general (ALL) and DFP models
performed well (AUCs of 0.95 and 0.94, respectively);
however, the DM model’s AUC was 0.80. This result was
not unexpected as the RAVEN variants comprise known
regulatory, rather than disease-causing, variants, and as
such would not be expected to be discriminated by the
disease variant model.

The RAVEN dataset additionally contains 3,856 back-
ground variants, matched by position to the experimen-
tally verified regulatory variants. The RAVEN regulatory
variants were compared against the background variants
and produced AUCs of 0.851, 0.839 and 0.844 for the
ALL, DM and DFP models, respectively (Figure 3).

Background variants as known functional variants

As a negative control, we also tested SuRFR’s ability to
prioritise a subset of background variants versus other
background variants. The RAVEN background variant
set consists of 3,856 variants that are within the 10 kb
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Figure 2 ROC curves for the three SURFR models run on the
HBB and RAVEN datasets. (A) HBB analysis; (B) RAVEN analysis.
Mean ROC curves (true positive rate (x-axis) plotted against false
positive rate (y-axis)) and AUCs for the three SURFR models (ALL,
green; DM, blue; DFP, gold) run on the HBB non-coding (A) and
RAVEN non-coding (B) regulatory variants spiked into the ENCODE
background datasets. The dotted grey line indicates random chance.
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RAVEN known and background spiked in RAVEN background
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Figure 3 Performance of SURFR on regulatory versus background variants. ROC curves and AUCs for the three models of SURFR run on
true RAVEN variants (experimentally verified) or negative RAVEN variants (background variants set as 'true’). The three True' analyses (ALL, green
line; DM, dark blue line; DFP, golden line) all perform consistently well, with an average AUC of 0.845, whereas the '‘Background' as true analyses
showed SURFR does not detect background variants any more than you would expect by chance (the grey dotted line).
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region upstream of genes that are conserved between
mice and humans. One-hundred randomly sampled sub-
sets of 95 variants from this RAVEN background dataset
were redefined as known' and spiked into the RAVEN
background dataset. The average AUC calculated across
these 100 sets was 0.50, indicating background variants
are not prioritised any better than would be expected
by chance (Figure 3). In contrast, the 95 RAVEN
background variants spiked into the same background set
(see above), achieved AUCs ranging from 0.84 to 0.85,
demonstrating the ability of the method to prioritise func-
tional variants better than non-functional variants.

Comparison with alternative methods

We compared SuRFR’s ability to prioritise known patho-
genic variants against three additional tools that priori-
tise non-coding variants using a somewhat comparable
approach: GWAVA, CADD and FunSeq. GWAVA uses a
modified random forest algorithm, written in the Python
language, to prioritise non-coding variants [20]. CADD
provides a single measure (C score) that has been pre-
computed for the entire genome. C scores are based on
integration of multiple annotations [21]. FunSeq is a
method for prioritising cancer drivers. Prioritisation is
based upon the assessment of patterns of multiple

functional annotations. The authors state that FunSeq
will be most effective in the analysis of tumour genomes,
but can also be applied for the analysis of germ line
mutations [22].

To compare SuRFR with these methods, we used an
independent dataset of 128 pathogenic variants from the
ClinVar archive of disease variants (see Implementation
section). This dataset excludes mitochondrial variants, as
SuRFR has been trained on nuclear, not mitochondrial,
variants and relies heavily on functional data that are
not applicable to mitochondrial variants (most notably,
histone modifications and DNase HS data). These were
compared against two background sets: a background
set of 150 'non-pathogenic' ClinVar variants and 19,400
variants identified as part of the 1000 Genomes project
[7], selected by Ritchie et al. [20] for their assessment
of GWAVA’s performance, which were matched with
the pathogenic variants for distance to the nearest TSS.
None of the three datasets contained variants used
to train SuRFR, GWAVA, CADD or FunSeq, allowing
rigorous comparison of the methods’ performances.
SuRFR was run using the DM model, as it is the most
appropriate model for this data type. GWAVA was simi-
larly run using the TSS model, as this was used by
Ritchie et al. in their original analysis [20]. CADD has
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no alterable parameters; however, FunSeq was run using
the ‘personal genome’ option and a MAF cutoff of 0.1.
SuRFR was able to discriminate the pathogenic variants
from background variants with AUCs of 0.80 and 0.85,
respectively, while on the same datasets the AUCs were
0.71 and 0.80 for GWAVA, 0.76 and 0.831 for CADD,
and 0.544 and 0.483 for FunSeq (Figure 4A,B).

A ClinVAR pathogenic vs. nonpathogenic variants
o |
o
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e
©
- ©
o °
=
D
[]
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QO o |
=
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S —— SURFR (AUC = 0.802)
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= CADD (AUC = 0.763)
FunSeq (AUC = 0.544)
[=]
g -
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0.0 0.2 04 06 0.8 1.0

False positive rate

B ClinVAR pathogenic vs. 1KG background variants

e | o
«©o
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©
= o
m o
=
B
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0 o |
2
)_
P = SuRFR (AUC = 0.846)
= GWAVA (AUC = 0.802)
—— CADD (AUC = 0.831)
FunSeq (AUC = 0.483)
o
=
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0.0 0.2 04 06 08 10

False positive rate

Figure 4 Comparison of SURFR, GWAVA, CADD and FunSeq on
two ClinVar datasets. (A,B) ROC curves (true positive rate versus
false positive rate) and AUCs for SURFR, GWAVA, CADD and FunSeq
run on ClinVar pathogenic versus non-pathogenic variants (A) and
ClinVar pathogenic versus matched 1000 Genomes background
variants (B). SURFR outperforms all three methods on both of these
datasets, with AUCs of 0.802 and 0.846 versus 0.705 and 0.802 for
GWAVA, 0.763 and 0.831 for CADD and 0.544 and 0.483 for FunSeq

on the two datasets, respectively.
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To test the performance of each method on a purely
non-exonic, non-coding clinical dataset (as the ClinVar
data used in the GWAVA paper include synonymous,
non-synonymous and UTR exonic variants), we ex-
tracted 58 such variants directly from the ClinVar data-
base and generated a background set matched by
distance to the nearest TSS, 100 times the size of the
true positive set. Interestingly, all of the tools performed
similarly on this dataset: the AUC for SuRFR (DM
model) was 0.671, 0.629 for GWAVA (TSS model) and
0.692 for CADD (Additional file 6). None of them were
as good at identifying this non-exonic, non-coding data-
set against this stringently matched background set
compared with the other ClinVar datasets. On this data-
set GWAVA would have an advantage over the other
tools, as the TSS model was specifically trained on this
type of data. The lower AUC for SuRFR, however, is
likely to represent the lowest estimate of SuRFR’s per-
formance, as by comparing regulatory variants with
control variants matched by distance to TSS, we are ef-
fectively removing position from consideration. While
we have shown that position is the most important fea-
ture in SuRFR’s variant prioritisation, we can assume
SuRFR’s ability to distinguish pathogenic from matched
background variants is due to the additional features
included in our model. As position matching of back-
ground variants is an unrealistically harsh testing envir-
onment, we expect and observe better performance in
real world scenarios (Table 3).

SuRFR and GWAVA were also tested on a set of cod-
ing disease variants for P thalassemia located within
the HBB gene. Although neither method is specifically
designed to prioritise coding variants, both were ex-
tremely good at discriminating the coding variants from
the ENCODE background sets (Additional file 7), SURFR
and GWAVA achieving AUCs of 0.998 and 0.975,
respectively. As the HBB and RAVEN non-coding vari-
ants overlapped with variants used in the GWAVA
training and validation datasets, it was not possible to
compare SuRFR and GWAVA’s performance on these
data. It was, however, possible to compare SuRFR’s
performance with CADD's on this dataset. For this

Table 3 Rankings of experimentally validated regulatory
variants from three real world analyses for SuRFR,
GWAVA and CADD

Total number SuRFR GWAVA CADD ranking
of variants ranking of  ranking of  of functional
functional functional variant
variant variant
SORT1 22 Ist out of 22 6th out of 22 20th out of 22
EGR2 35 st out of 35 2nd out of 35  18th out of 35
TCF7L2 6 2nd outof 6 2nd out of 6 2nd out of 6

SURFR performs consistently well against GWAVA and CADD on these
three datasets.
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study, we combined the RAVEN experimentally verified
regulatory variants with 9,500 background variants,
matched by distance to the nearest TSS (100 control
variants for each true positive variant). The AUC for
SuRER on this dataset was 0.702, while CADD achieved
a more modest performance, with an AUC of 0.608
(Additional file 8).

To establish next how well SURFR performs compared
with GWAVA and CADD on variants related to complex
traits, we ran all three methods on three published ana-
lyses identifying regulatory variants associated with dis-
ease risk (see Implementation section).

SORT1: analysis of a chrip13 locus associated with
low-density lipoprotein levels and cardiovascular disease
Musunuru et al. [40] showed that a region of chromo-
some 1p13 was associated with LDL-C. They carried out
functional analysis on 22 variants from the locus and
identified rs12740374 as the most likely functional can-
didate. We ran the 22 candidate variants through SuRFR
and compared their ranking with GWAVA and CADD’s
rankings [20]. SuRFR successfully ranked rs12740374 1st
out of the 22, whereas GWAVA ranked it 6th out of 22
and CADD ranked it 20th out of 22 (Table 3).

EGR2: Evaluation of variants from the EGR2 locus
associated with systemic lupus erythematosus

The 80 kb chr10q21 candidate locus for SLE contains a
total of 237 variants with a MAF >0.10 from the 1000
Genomes ASN population [7]. When all 237 SNPs were
assessed by GWAVA, CADD and SuRFR, no tool was
able to identify rs1509957 (a SNP found by Myouzen
et al. [42] to have reduced activity in a reporter assay)
within the top 10%. However, when only the 35 proxy
SNPs in LD with the most significantly associated SNP
from their association study for SLE were ranked, SuRFR
ranked rs1509957 1st out of 35, GWAVA ranked it 2nd,
and CADD ranked it 18th, highlighting the importance
of using additional prior biological information to pre-
filter variants to improve predictive power (Table 3).

Study of type 2 diabetes-associated variants at the TCF7L2
locus
Of the six variants within the T2D GWAS associated re-
gion at the TCF7L2 locus, only one SNP showed signifi-
cantly increased enhancer activity. GWAVA, CADD and
SuRFR all ranked this variant second out of six (Table 3).
We have shown that SuRFR either outperforms or per-
forms as well as GWAVA, and that both GWAVA and
SuRFR substantially outperform CADD on the datasets
tested here. The 'black box' nature of GWAVA’s design
means that we are unable to comment on the reasons
for the difference in performance between the two
methods. However, Ritchie et al. [20] report that G + C
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content, conservation, DNase HSs, distance to the nearest
TSS and some histone modifications contribute most to
the discriminative power of GWAVA. While there are
overlaps between the annotations used by the two
methods there are also differences, and it seems likely that
these differences contribute to the difference in perform-
ance between SuRFR and GWAVA. The training and val-
idation approaches also differ and we would argue that
our tripartite training, validation and testing splits of the
initial data are better suited to avoid over-fitting than the
GWAVA bipartite training and validation approach.

CADD was developed using an entirely different proto-
col involving a support vector machine trained to differen-
tiate high-frequency human-derived alleles from an equal
number (14.7 million) of simulated variants [21]. A wide
range of annotations were assessed and combined into a
single measure (C score) for each variant, which can be
viewed as an estimate of deleteriousness. SURFR either
matches or outperforms CADD on all of the datasets we
have tested. This may be because CADD is trained to dif-
ferentiate high-frequency alleles from simulated variants
of equal frequencies, whereas the datasets under test often
contain a range of allele frequencies.

Advantages of using SuRFR

Implementation of SuRFR in R has many advantages, in-
cluding ease of use and of data management. In addition,
code run times are short and the R environment pro-
vides a high level of flexibility. For example, the use of R
facilitates incorporation of additional modules, functions
and annotation data in the future; and integration with
other R packages. This is a clear advantage over web-
based methods, where there may be issues of data secur-
ity, control over parameter settings or flexibility to mod-
ify the underlying code. At every point during the
running of the R package, users can understand the ex-
tent to which the various annotations contribute to the
variant rankings, allowing construction of hypotheses
based on the data obtained. This is a major advantage
over 'black box' approaches such as GWAVA, where the
user is unaware of the factors affecting variant rankings.

Intended use of the software

This R package is intended to be used as an aid for gen-
omics studies. We must, however, emphasise that SURFR
is predictive and does not take the place of experimental
validation. Instead, it should be used as a guide to priori-
tising candidate variants to take forward for follow-up
analysis.

Limitations

SuRFR is not currently designed to discriminate between
coding variants of differing impact; however, many exist-
ing software packages perform this task well [4].
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SuRFR, and any other comparable method, is likely to
discriminate against long-range enhancers, due to the
strong influence of SNP position (score increasing with
proximity to genes). This is currently a difficult issue to
address, as known variants are biased towards coding
and promoter variants and no relevant datasets exist to
train methods in the discrimination of true long-range
enhancers.

All methods tested here performed less well on matched
non-exonic, non-coding variants (Additional file 6). Again,
this is likely to be due to a lack of knowledge, sufficiently
comprehensive genomic measures and appropriate train-
ing datasets.

Outline of planned future development
There is scope for extending SuRFR. Planned future de-
velopments under consideration include expanding the
collection of annotations to assess the impact of coding
variants and investigation of additional annotations that
may correlate with regulatory elements (for instance, ex-
pression quantitative trait loci data). In addition, we
would hope to improve SuRFR’s flexibility by i) linking it
in with other R packages (for example, next-generation
sequencing packages and methylation and expression
analysis packages), and ii) provide additional utility for
user customisation.

We would also like to extend SuRFR's remit to assess
indels. This goal is currently somewhat hampered by a
relative dearth of appropriate training and validation data.

Conclusions

Assessing the impact of non-coding variants is currently
a major challenge in complex trait genetics. We have de-
veloped a system that combines a unique collection of
data from multiple functional annotation categories to
prioritise variants by predicted function. The modular
design and tunable parameterisation of SURFR allows for
the simple and efficient incorporation of publicly avail-
able data and prior biological knowledge into the rank-
ing scheme.

The R package provides three models: a general model
for any analysis (ALL); a model designed specifically for
prioritising (rare) disease variants (DM); and a model for
complex disease variants (DFP). Alternatively, SuRFR al-
lows users to specify their own custom model. This
method has been tested on known regulatory and dis-
ease variants and a proposed benchmark background
variant dataset and has been shown to perform with
high sensitivity and specificity. SURFR also has the ability
to prioritise coding and non-coding functional variants.

Our analysis has provided insight into the extent to
which different classes of functional annotation are most
useful for the identification of known regulatory variants.
We have also shown that SuRFR either outperforms, or
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performs at least as well as, comparable SNP prioritisa-
tion approaches, whilst benefiting from the advantages
that come from being part of the R environment.

Availability and requirements
Project name: SURFR
Project home page: http://www.cgem.ed.ac.uk/resources/
Operating system(s): unix/linux
Programming language: R
Other requirements: bedtools and tabix
License: Artistic-2.0
Any restrictions to use by non-academics: No

Additional files

Additional file 1: Table S1. Annotation data and sources.

Additional file 2: Table S2. Chromatin state multivariable regression 3
coefficients.

Additional file 3: Table S3. Chromatin state rankings.
Additional file 4: Table S4. Position category rankings.
Additional file 5: Table S5. Grid search parameter boundaries.

Additional file 6: Figure S1. Comparison of SURFR, GWAVA and CADD
on an additional, non-coding ClinVar dataset. ROC curves (true positive
rate versus false positive rate) and AUCs for SURFR, GWAVA and CADD
run on a non-exonic, non-coding dataset of ClinVar pathogenic variants
versus a matched 1000 Genomes background variant set. SURFR, GWAVA
and CADD perform to a similar level on these data.

Additional file 7: Figure S2. ROC curves and AUCs of SURFR versus
GWAVA on HBB coding variants. The plot shows the performance of
SURFR and GWAVA in terms of true positive rates (x-axis) and false
positive rates (y-axis), plotting ROC curves (SURFR, blue; GWAVA, red)
against performance expected by chance (grey dotted line). This figure
shows that both methods are very good at prioritising functional coding
variants over background variants.

Additional file 8: Figure S3. ROC curves and AUCs for SURFR versus
CADD on RAVEN regulatory variants versus a matched control set. The
plot shows the performance of SURFR and CADD in terms of true positive
rates (x-axis) and false positive rates (y-axis), plotting ROC curves (SURFR,
blue; CADD, green) against performance expected by chance (grey
dotted line). This figure shows that both methods prioritise functional
regulatory variants over matched background variants to a similar extent.
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