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TET proteins and the control of cytosine
demethylation in cancer
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Abstract

The discovery that ten-eleven translocation (TET)
proteins are α-ketoglutarate-dependent dioxygenases
involved in the conversion of 5-methylcytosines (5-mC)
to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine
and 5-carboxycytosine has revealed new pathways in
the cytosine methylation and demethylation process.
The description of inactivating mutations in TET2
suggests that cellular transformation is in part caused
by the deregulation of this 5-mC conversion. The
direct and indirect deregulation of methylation control
through mutations in DNA methyltransferase and
isocitrate dehydrogenase (IDH) genes, respectively,
along with the importance of cytosine methylation
in the control of normal and malignant cellular
differentiation have provided a conceptual framework for
understanding the early steps in cancer development.
Here, we review recent advances in our understanding of
the cytosine methylation cycle and its implication
in cellular transformation, with an emphasis on TET
enzymes and 5-hmC. Ongoing clinical trials targeting
the activity of mutated IDH enzymes provide a proof
of principle that DNA methylation is targetable, and
will trigger further therapeutic applications aimed at
controlling both early and late stages of cancer
development.
teins (such as O-linked β-D-N acetylglucosamine transfer-
Introduction
DNA methylation on carbon 5 of cytosine is one of the
best-studied epigenetic marks in mammals and is known
to play crucial roles in cellular processes, including
gene expression regulation and control of differentiation.
However, variations in DNA methylation appear during
normal differentiation and aging, and may contribute to
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tumorigenesis. The processes of DNA methylation and de-
methylation as well as enzymes involved in these epigen-
etic mechanisms have been outlined recently but still need
further characterization. Concomitantly, direct and indir-
ect deregulation of methylation control has been uncov-
ered in human malignancies from both hematopoietic and
non-hematopoietic origins.
Ten-eleven translocation (TET) enzymes are 2-

oxoglutarate, oxygen- and iron-dependent dioxygenases
able to catalyze the oxidation of 5-methylcytosine (5-mC)
into 5-hydroxymethylcytosine (5-hmC) [1,2]. They have
been identified as key players in cytosine demethylation
and in the control of cellular differentiation and trans-
formation. Acquired point mutations and deletion events
targeting TET genes are frequently observed in human
cancers. These mutations affect TET2 and to some extent
TET3 and result in partial or total inactivation of the gene.
Metabolic perturbations resulting from mutations in genes
encoding isocitrate dehydrogenase (IDH), fumarate hydra-
tase (FH) or succinate dehydrogenase (SDH) also inhibit
the TET enzymes and, in turn, DNA demethylation.
Deregulation of DNA methylation may also be achieved
directly through mutations in genes encoding DNA meth-
yltransferase (DNMT) [3,4]. We are now starting to under-
stand the control of TET protein activity, their DNA
targeting, and their crosstalk with other epigenetic marks.
For example, several proteins that interact with TET pro-

ase (OGT)) and with methylated and oxidized cytosines
have been identified, highlighting their function in the
regulation of chromatin structure. Following the imple-
mentation of specific detection methods, much has re-
cently been learned regarding the quantity and location of
the oxidized cytosine forms, mainly in embryonic stem
(ES) cells, and we are now on the verge of a more complete
understanding of their functions.
In this review, we discuss the established and emerging

roles of TET enzymes and their functions in cytosine de-
methylation, with an emphasis on methylcytosine and its
oxidized forms in normal tissues. We assess the roles of
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TET enzymes in hematological cancers and solid tumors,
focusing on mutations involved in TET inactivation. Fi-
nally, we discuss the potential translational applications.

The cytosine methylation cycle
5-mC results from the transfer of a methyl group to
cytosine within a CpG dinucleotide, mediated by DNMT
enzymes encoded by five genes. DNMT1 is mainly re-
sponsible for the maintenance of genomic DNA methy-
lation patterns (that is, after DNA replication), whereas
DNMT2 (or tRNA cytosine-5-methyltransferase) is an
RNA methyltransferase. DNMT3A and DNMT3B are
mainly responsible for de novo DNA methylation [5].
However, all three enzymes may contribute to both
maintenance and de novo DNA methylation [6]. The
catalytically inactive DNMT3L interacts with these en-
zymes and the histone 3 tail to stimulate DNA methy-
lation [7]. Furthermore, DNMT3A has recently been
identified to be involved in crosstalk with epigenetic
marks independently of DNMT3L [8].
Although DNA methylation has long been recognized,

and cytosine methylation by DNMT3A and DNMT3B
has been shown to be reversible in vitro [9], the mechan-
ism of DNA demethylation was unclear until the func-
tional analyses of the TET family proteins [1,2]. Due to
its poor recognition of 5-hmC, which results from TET
activity, DNMT1 is not able to perform the methyla-
tion of the neo-synthetized DNA strand (maintenance
methylation). So the methylation information is lost in
dividing cells, in a so-called passive manner (Figure 1).
The three enzymes of the TET family (TET1, TET2
and TET3) are able to further oxidize 5-hmC into 5-
formylcytosine (5-fC) and then 5-carboxycytosine (5-caC)
[10,11]. Thymidine DNA glycosylase (TDG) is then able
to remove 5-fC and 5-caC, triggering base-excision repair
(BER) activity and the reintroduction of unmethylated
cytosine [11-13]. The existence of decarboxylases that
convert 5-caC to unmethylated cytosine is hypothetical. It
has been suggested that the deamination of 5-hmC into
5-hydroxymethyluracil (5-hmU) occurs via activation-
induced deaminase (AID) and apolipoprotein B mRNA
editing enzyme (APOBEC), followed by TDG and BER
mechanisms [14]. However, this remains controversial
because 5-hmU residues may also originate from TET-
mediated oxidation of thymine [15]. In addition, the ac-
tivity of recombinant AID decreases with the size of
the cytosine C5 electron cloud and does not show any
activity on 5-hmC in vitro [16,17]. Indeed, AID exhibits
its strongest activity against unmodified cytosine. Thy-
mine resulting from deamination of 5-mC is not easily
recognized by DNA repair machinery and is considered
mutagenic. These branches of the cycle need to be fur-
ther investigated in a cell- and tissue-dependent con-
text. Regardless, TET proteins as well as several other
proteins (Table 1) are essential players in the demethyl-
ation of 5-mC.

DNA methylation distribution and localization
CpGs represent between 1% and 4% of genomic mam-
malian DNA and approximately 75% of them are meth-
ylated. Most CpGs are located in repetitive DNA
elements, indicating that cytosine methylation is used as
a defense mechanism against transposons and other
parasitic elements to maintain the function and stability
of the genome [18]. CpGs are also concentrated in CpG
islands, which are mainly unmethylated and are associ-
ated with DNA accessibility and gene transcription.
These CpG islands are usually found close to gene pro-
moters, and their methylation status is strongly corre-
lated with the transcription state of the genes nearby.
Methylation can also be identified within gene bodies. It
preferentially occurs in a CxG context (where x can be
T, A or C) in ES cells and this intragenic methylation is
mainly associated with highly expressed genes [19]. Pro-
moter and gene body methylation are being extensively
investigated to elucidate specific mechanisms and factors
responsible for gene expression modulation. Recently,
DNMT3B was reported to be involved in the remethyla-
tion of gene body-associated genes following treatment
of a colon cancer cell line with DNMT inhibitors [20].

DNA hydroxymethylation distribution
and localization
5-hmC was first identified in 1952 in bacteriophage T4
[21], and again 20 years later in the mammalian genome,
in which it was found to constitute 0% to 17% of the
total number of cytosine bases of brain-extracted DNA
in mouse, rat and frog [22]. More recently, 5-hmC was
estimated to constitute 0.6% of nucleotides in Purkinje
cells, 0.2% in granule cells [1] and 0.03% in mouse ES
cells [2]. However, the classical analyses of bisulfite-
treated DNA do not discriminate between 5-mC and
5-hmC. Discrepancies among published studies may
be due to different methodologies and analytical pro-
cesses [23-26]. These studies nevertheless provide a gen-
eral picture of the genome-wide distribution of modified
cytosines in ES cells and other tissues.
The distribution of 5-hmC differs in several organs

and tissues in mouse [27] and human [28]. The 5-hmC
content also varies during development and cell differen-
tiation [29]. For example, pluripotency correlates with
high levels of 5-hmC, as observed in the inner cell mass,
in multipotent adult stem cells as well as in progenitor
cells. Embryonic or induced pluripotent stem cells also
show a high 5-hmC level. Among differentiated cells,
neuronal cells retain a high 5-hmC content [30,31]. In the
blastocyst stage, erasure of DNA methylation and hydro-
xymethylation marks is followed by their re-establishment



Figure 1 Regulation of DNA methylation and demethylation. DNA demethylation can occur spontaneously via the DNMT enzymes that
methylated the nucleotide cytosine (5-methylcytosine, 5-mC) originally. A passive replication-dependent mechanism of DNA methylation is also
possible. Several active demethylation pathways have been postulated. TET family proteins catalyze the oxidation of 5-mC into 5-hydroxymethylcytosine
(5-hmC) and can further oxidize 5-hmC to 5-formylcytosine (5-fC) and 5-carboxycytosine (5-caC). 5-hmC recognition and transformation into
5-hydroxymethyluracyl (5-hmU) by activation-induced deaminase (AID) to facilitate repair by DNA glycosylase and the base-excision repair
(BER) pathway is still controversial. These latter activities are also thought to process 5-fC and 5-caC into unmodified cytosine . The decarboxylases
involved in this process are still to be identified. APOBEC, apolipoprotein B mRNA editing enzyme; DNMT, DNA methyltransferase; T, thymine; TDG,
thymine DNA glycosylase; TET, ten-eleven translocation.
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by TET proteins and subsequent de novo methylation by
DNMT3A and DNMT3B. In the totipotent zygote, the pa-
ternal pronucleus shows high levels of 5-hmC [32,33]
caused by genome-wide hydroxylation of 5-mC [34,35], in
contrast to the low level of 5-hmC in the maternal pro-
nucleus. This phenomenon is linked to TET3 transloca-
tion from the cytoplasm to the paternal pronucleus
immediately after fertilization [36]. In addition, the mater-
nal factor PGC7 protects 5-mC from Tet3-mediated con-
version to 5-hmC by binding to maternal chromatin
containing dimethylated histone H3 lysine 9 [37]. The ma-
ternal genome undergoes progressive 5-mC demethylation
upon cell division. Genome-wide mapping of 5-hmC with
specific antibodies or chemical labeling has enabled the
design of 5-hmC distribution maps in mouse and human
ES cells, as well as in neurological tissues. These studies
have revealed that the 5-hmC mark is not uniformly
distributed in the genome and is abundant in gene-rich
euchromatin regions, particularly at promoters, exons
and transcription start sites of genes expressed at low
levels [38]. 5-hmC is mainly enriched in low CpG con-
tent regions and in bivalent gene promoters, character-
ized by both transcriptional permissive trimethylated
histone H3 lysine 4 (H3K4me3) and repressive trimethy-
lated histone H3 lysine 27 (H3K27me3) marks. Further-
more, TET2-mutated diffuse large B-cell lymphomas



Table 1 Functions and expression of human and murine proteins involved in the cytosine methylation/demethylation cycle

Proteins Functions Expression levels during development
and in embryonic stem cells

Expression levels in adult tissues Expression levels in adult
hematopoiesis

TET1 Oxidization of 5-mC High in mES cells, low in oocytes and
zygotes [2,30,31]

Variable expression [56] Low [83]

TET2 Oxidization of 5-mC High in mES cells, low in oocytes and
zygotes [2,30,31]

Widely expressed [56] High [83]

TET3 Oxidization of 5-mC Low in mES cells, high in oocytes and
zygotes [2,30,31]

Limited expression in colon,
stomach, adrenal glands and
peripheral blood cells [56]

Low [83]

DNMT1 Methylation maintenance
during DNA replication

High in early embryonic stages [129] Ubiquitous [130,131] Uniform but low in
neutrophils [132]

DNMT3A De novo methylation High in early embryonic stages [129] Ubiquitous [130,131] Uniform but high in
T lymphocytes and
neutrophils [132]

DNMT3B De novo methylation High in later embryonic stages and
differentiated cells [129]

Low levels except testis, thyroid
and bone marrow [130,131]

Low expression except in
human CD34+ cells [132]

AID Cytidine deamination High in immature B cells from fetal
bone marrow and liver [133]

High in lymph nodes and
moderated in spleen and bone
marrow [134]

Mainly in activated mature
B cells [134]

TDG Glycosylation and deamination Ubiquitous from ED 7.5 to 13.5 in mouse,
high in central and peripheral nervous
system, thymus, lung, liver, kidney, adrenal
glands and intestine at ED 14.5 [135]

Mouse aorta [98] Not reported

IDH1 Isocitrate decarboxylation
of citric acid cycle

Not reported Cytoplasm [92,103] Not reported

IDH2 Isocitrate decarboxylation
of citric acid cycle

Not reported Mitochondria [92,103] Not reported

FH Hydration of fumarate of
citric acid cycle

Not reported Mitochondria [136] Mature erythrocytes [136]

SDH Oxidation of succinate of
citric acid cycle

Not reported Mitochondria [136] Not reported

References listed in this table are based on mouse model studies, except for [56,103,83,130-133]. 5-mC, 5-methylcytosine; AID, activation-induced deaminase;
DNMT, DNA methyltransferase; ED, embryonic day; FH, fumarate hydratase; IDH, isocitrate dehydrogenase; mES, murine embryonic stem; SDH, succinate dehydrogenase;
TDG, thymine DNA glycosylase; TET, ten-eleven translocation.
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have been associated with a hypermethylation signature
on gene promoters identified as bivalent in human ES
cells [39]. More recently, 5-hmC was identified in inter-
genic regions in human ES cells. More specifically,
5-hmC was found in regions comprising cis-regulatory el-
ements, such as active enhancers, with co-localization of
the histone modification marks monomethylated histone
H3 lysine 4 (H3K4me1) and acetylated histone H3 lysine
27 (H3K27ac), and transcription factor binding sites for
pluripotency factors, such as OCT4 and NANOG, or the
insulator binding protein CTCF [40,41].

Function of oxidized cytosine forms
TET proteins participate in the regulation of gene tran-
scription through the controlled generation of 5-hmC,
5-fC and 5-caC and their subsequent recognition by pro-
tein complexes involved in modulating chromatin struc-
ture or DNA repair [42-46].
Promoter methylation is associated with the repression

of gene expression in somatic cells. It is not clear yet
whether specific readers of methylated DNA, such as
methyl-CpG binding protein 2 (MeCP2), or methyl-
binding domain (MBD) proteins are recruited to the
methylated DNA and prevent the binding of transcrip-
tion factors, or if they participate directly in the estab-
lishment of compact chromatin and gene repression.
MBD1, MBD2 and MBD4 preferentially bind methylated
DNA, in contrast to MBD3, MBD5 and MBD6 that pre-
fer to bind to non-methylated DNA [47], although
MBD5 and MBD6 associate with heterochromatin [48].
MBD4, possessing a DNA glycosylase domain, is also
involved in BER following deamination events and is able
to interact with mismatch repair proteins [49,50]. Methyl-
CpG binding proteins were thought to be unable to bind
5-hmC [51] until recently [43], although the ability of
MBD3 to specifically bind 5-hmC [45] is still controversial
[44]. The DNA damage control proteins UHRF1 and
UHRF2 also have 5-mC binding ability through their SET-
and RING-associated domains. Additionally, UHRF1 is
able to bind hemimethylated DNA and recruit DNMT1
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[52,53]; it has recently been proposed that it may also be
able to bind both methylated and hydroxymethylated
DNA [42]. However, these 5-mC and 5-hmC readers are
rarely found to be mutated in cancer (Table 2).
In ES cells, the distributions of 5-fC and 5-caC resem-

ble those of 5-hmC, with a preference for enhancers,
Table 2 Somatic mutations affecting TET genes in cancer

Genes Mutations in solid tumors

TET genes

TET1 Rare in endometrioid carcinomaa, colorectal
[105,137], lung [106,138,139] and bladder ca

TET2 Rare in endometrioid carcinomaa, colorectal
[105,137], melanoma and lung cancer [106,1

TET3 Rare in endometrioid carcinoma and colorecta

Epigenetic regulators of TET genes

Methyltransferases

DNMT1 Rare in endometrioid carcinomaa, colorectal
and lung cancer [106,138,139]

DNMT3A Rare in endometrioid carcinomaa, colorectal
lung cancer [106,138,139] and 2% in non-sm

Deaminase and glycosylase

AID Rare in glioblastoma and medulloblastoma
carcinomaa, colon cancer [105,137] and lung

TDG Rare in endometrioid carcinomaa, rare in gli
[104,136], lung [106,138,139] and thyroid can

Histone crosstalk regulators

OGT Rare in endometrioid carcinomaa, colorectal
lung cancer [106,138,139] and breast cancer

IDAX Rare in breast cancera, glioblastomaa, endom
kidneya, colon cancer [105,137], lung cancer
in mouth and pharynx carcinoma [117]

5-mC and 5-hmC readers

MBD1 Rare in endometrioid carcinomaa, colorectal
lung cancer [106,138,139], breast cancer [14

MBD4 Rare in endometrioid carcinomaa, colorectal
lung cancer [106,138,139], breast cancer [11

UHRF1 Rare in endometrioid carcinomaa, colorectal
and lung cancer [106,138,139]

Other genes affecting TET functions

Metabolic enzymes

IDH1 Rare in paragangliomas [153], frequent in ch
thyroid [155,156], prostate [157] and central
cancers [102,158,159]

IDH2 Rare in endometrioid carcinomaa and colore
frequent in chondrosarcomas [154] and cen
cancers [102,158,159]

FH Renal cell carcinoma [163] and paragangliom

SDH Renal cell carcinoma [164] and paragangliom
aCOSMIC database. Some mutations listed in this table have not been confirmed as
AID, activation-induced deaminase; AML, acute myeloid leukemia; AITL, angioim
CLL, chronic lymphocytic leukemia; DLBCL, diffuse large B-cell lymphoma; DNMT
and Axin complex; IDH, isocitrate dehydrogenase; MBD, methyl-binding domain; MDS,
PTCL, peripheral T-cell lymphoma; SDH, succinate dehydrogenase; T-ALL, T-cell acute lym
UHRF, ubiquitin-like with PHD and ring finger domains.
and bivalent and silent promoters. Analyses of proteins
interacting with cytosine-oxidized forms have identified
glycosylase and DNA repair proteins interacting with
5-fC at a higher level compared with other cytosine
forms, suggesting that 5-fC may trigger repair-associated
removal [44].
Mutations in hematological malignancies

carcinomas
ncer [140]

Rare in AML [141] and CLL [142]

carcinomas
38,139]

Frequent in various cancers (see Table 3)

l carcinomas [105,137] Rare in CLL [142], PTCL [90] and T-ALL [143]

carcinomas [105,137], Rare in AML [141]

carcinomas [105,137],
all cell lung cancer [144]

AML [128], MDS [145] and T-cell
lymphomas [90,91]

[146], endometrioid
cancer [106,138,139]

T-ALL [147]

oblastomaa, colon cancer
cer [148]

Not reported

carcinomas [105,137],
[115,149]

DLBCL [150] and CLL [142]

etrioid carcinomaa,
[106,138,139] and 1.2%

Not reported

carcinomas [105,137],
9] and melanoma [109]

Rare in ALL [151]

carcinomas [105,137],
5] and melanoma [109]

Rare in AML [141]

carcinomas [105,137] Rare in B-ALL [152]

ondrosarcomas [154],
nervous system

Frequent in AML [88], MDS [160],
DLBCL [161] and B-ALL [162]

ctal carcinomas [105,137],
tral nervous system

Frequent in AML [88], MDS [160]
and AITL [89]

as [104] Not reported

as [104] Not reported

somatic mutations. 5-mC, 5-methylcytosine; 5-hmC, 5-hydroxymethylcytosine;
munoblastic T-cell lymphoma; B-ALL, B-cell acute lymphoblastic leukemia;
, DNA methyltransferase; FH, fumarate hydratase; IDAX, Inhibition of the Dvl
myelodysplastic syndrome; OGT, O-linked β-D-N acetylglucosamine transferase;
phoblastic leukemia; TDG, thymine DNA glycosylase; TET, ten-eleven translocation;
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TET proteins
TET1 was first identified as a rare fusion partner of
the mixed lineage leukemia gene, resulting from the
chromosomal translocation t(10;11)(q22;23) in acute
leukemia [2,54-57]. The difference between TET pro-
teins relies on their structure (Figure 2) but also on their
distinct expression patterns: TET2 is more highly ex-
pressed in the hematopoietic system than TET3 and
TET1. It is currently thought that the common and
main function of TET proteins is to establish or main-
tain protective boundaries to prevent unwanted methyla-
tion of non-methylated regions [58]. Each TET protein
may also have specific functions: for example, TET1 oxi-
dizes 5-mC to 5-hmC, and TET2 and TET3 stimulate
the removal of 5-hmC [59]. In ES cells, TET2 may pref-
erentially act on gene bodies, and TET1 at promoters
[60]. The role of TET-mediated cytosine oxidation at
distal enhancers is currently being thoroughly investi-
gated. Super enhancers (enhancer clusters) that produce
enhancer-transcribed RNAs in mouse ES cells have
recently been associated with H3K27ac, TET1 and a
decrease in DNA methylation level at pluripotency-
dedicated loci [61]. Also, a specific role for TET2 in the
control of enhancer activity has been suggested in the
context of murine ES cell differentiation [62]. This
mechanism remains to be investigated in the context of
cancer, and more specifically in hematological disorders.

Interaction with other proteins
The stability and activity of TET proteins are regulated
in several ways. Vitamin C has been reported as a cofac-
tor that enhances the activity of TET enzymes [63,64].
The Dvl-binding protein inhibition of the Dvl and Axin
complex (IDAX) can recruit TET2 to unmethylated
DNA via the CXXC domain, and at the same time is able
to induce its proteolytic degradation by caspase activa-
tion [65]. Other proteins interact with TET proteins,
such as early B-cell factor 1 [66], or modulate their sub-
cellular localization, such as AID [67], but it is not yet
Figure 2 Primary structure and function of human TET proteins. All TE
domain, and one 2-oxoglutarate and three iron (II) binding sites in the carb
amino-terminal CXXC zinc finger domain is only identified in TET1 and TET
CXXC4 gene (also named inhibition of the Dvl and Axin complex, IDAX), loc
TET2 to DNA through a physical interaction [65]. AA, amino acid; TET, ten-e
clear whether they affect TET stability and function. This
is also the case for OGT, which can associate with TET
proteins [68-70] but appears to differently affect the
three proteins. For instance, OGT has been described to
trigger the export of TET3 from the nucleus and thus
impair its activity [71]. A better understanding of mul-
tiple TET functions will arise from the identification of
TET partners in normal and cancerous cellular contexts.

Crosstalk with other epigenetic mechanisms
In addition to transcriptional regulation through the
readers of 5-hmC, 5-fC and 5-caC, another level of tran-
scriptional regulation mediated by TETs comes from the
interplay between DNA and histone modifiers. TET1
has been shown to interact with histone deacetylases
through the transcriptional corepressor SIN3 transcrip-
tion regulator family member A, thereby promoting
transcriptional repression [72]. TET proteins can recruit
OGT enzymes to chromatin, which catalyzes the addition
of O-linked β-D-N acetylglucosamine to serine and threo-
nine within histones and other proteins. TET proteins also
interact indirectly with the complex proteins associated
with SET1 (COMPASS) complex, which is responsible for
mono-, di- and trimethylation of histone 3 lysine 4 and is
associated with active transcription. This interaction oc-
curs through the OGT-mediated glycosylation of the
COMPASS subunit host cell factor 1. The COMPASS
complex of proteins is involved in the regulation of master
genes, such as HOX, during development, balanced by the
action of the polycomb repressive complex (PRC), which
catalyzes the repressive mark H3K27me3. In addition,
TET1 shares target genes with PRC2 in ES cells [73]. In
conclusion, TET proteins also serve as platforms for other
epigenetic activities [74].

Other TET functions
The TET family is conserved during evolution. Drosophila,
for example, has one homologous gene, whose function
remains undetermined because of the particular DNA
T proteins present a double-stranded β helix (DSBH), a cysteine-rich
oxyl terminus, which constitute their dioxygenase catalytic domain. An
3, allowing these enzymes to bind DNA directly to CpG. Recently, the
ated upstream of TET2 on chromosome 4, has been reported to tether
leven translocation.
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methylation pattern of flies [75]. Additional TET functions
might be uncovered in the future, and a recent report
indicates that mammalian TET proteins may catalyze
the formation of 5-hydroxymethylcytidine in vitro, sug-
gesting a role in RNA modification [76]. Recently, TET
triple knockout mouse ES cells were generated using
the CRISPR/Cas9 system, suggesting a novel function
of these proteins in telomere length regulation [77]. In-
deed, triple knockout ES cells have an increased telomere
length associated with a higher frequency of telomere-
sister chromatid exchange. Although TET proteins seem
to be involved in telomere shortening, their precise roles
need to be further investigated in the context of both nor-
mal and cancerous cells.

TET and cancer
Here, we discuss the role of TET proteins in cancer fo-
cusing on TET2 mutations and activity impairment, first
in hematopoietic malignances and then in solid tumors.

TET in hematopoietic malignancies
TET mutations
Inactivation of TET2 by genomic deletions or mutations
has been reported in a wide range of adult hematological
malignancies, including acute myeloid leukemia (AML),
myelodysplastic syndrome (MDS) and myeloproliferative
neoplasms (MPN) [78-80], as well as in lymphoid malig-
nancies [39,81] (Table 3). In myeloid malignancies, TET2
mutations are associated with a decrease in 5-hmC levels
and an increase in 5-mC levels with respect to TET2-
wild-type samples [82-84]. Many TET2 acquired mis-
sense mutations have been described. Mutations that
target the evolutionarily conserved catalytic domain of
the protein are predicted to impair its function. Other
missense mutations, occurring, for example, in the
amino-terminal part of the protein, may also affect its
function in an as yet uncharacterized manner. TET2 mu-
tations are observed on only one of the two gene copies,
indicating that partial inactivation of the protein may
contribute to cellular transformation [78]. There are
marked differences between the three TET genes in
terms of their expression levels. TET2, for example, has
a higher expression level in hematological cells than
TET1 or TET3. TET3 expression levels are higher than
TET1 levels in hematopoietic progenitor cells. Mutations
in TET3 have also been described but are much less fre-
quent, probably because of its lower expression in
hematopoiesis. Regarding TET1, most of the currently
described mutations are missense mutations, whose
functional consequences have not been established.

Associations with other mutations
Mouse and human studies have shown that the loss
of TET2 endows cells with a growth advantage over
wild-type cells, but does not lead to full transformation.
Although this is not always the case, TET2 mutation fre-
quently occurs before the JAK2V617F mutation in the
development of MPN [78,85], suggesting that TET2 mu-
tation may occur very early in cancer development.
TET2 mutations also occur in early progenitors in MDS.
Acquired TET2 mutations are also observed in lymph-
oma, both B- and T-cell types, and particularly in
angioimmunoblastic T-cell lymphoma (AITL). In both
T- and B-cell lymphomas, TET2 mutations have been
identified in multipotent progenitors [86] that are able to
participate in both myeloid and lymphoid differentiation.
Together, these observations indicate that TET2 loss pre-
disposes but does not trigger cellular transformation. The
tumor phenotype depends on cooperating mutations,
such as JAK2 or KIT mutations for MPN [87].
In AML, TET2 mutations occur with other major mu-

tations, particularly internal tandem duplication of FLT3,
as well as mutations in RAS, NPM1 and DNMT3A. Mu-
tations in TET2, IDH1 and IDH2 are, however, mutually
exclusive [88]. The situation is markedly different in
AITL. Here, TET2 mutations are closely associated with
DNMT3A mutations [86] and, even more intriguing, do
occur together with IDH2 mutations [89-91].

TET and IDH mutations
IDH mutant proteins can inhibit TET2 activity. The
IDH genes encode enzymes of the citric acid cycle that
convert isocitrate into α-ketoglutarate (αKG) in a nico-
tinamide adenine dinucleotide phosphate-dependent man-
ner. A variety of human cancers, including AML [92-94],
show recurrent missense mutations in IDH1 and IDH2
that endow the mutant protein with the ability to
synthesize 2-hydroxyglutarate (2HG) from αKG (Table 2).
2HG is a competitive inhibitor of αKG and may inhibit all
αKG-dependent dioxygenases, including EGLN prolyl hy-
droxylases, Jumanji C histone demethylases and TET pro-
teins. In AML, TET2 and IDH mutations are mutually
exclusive, suggesting that they target the same pathway
[84]. Consistent with this, TET2- and IDH-mutated pri-
mary AML samples show comparable DNA methylation
profiles [84,95].

Other examples of TET2 activity targeting in myeloid
malignancies
A recent report indicates that mutations in the WT1
gene are exclusive from TET2, IDH1 and IDH2 muta-
tions and impair TET2 activity in human AML. The
WT1 gene encodes a zinc finger transcription factor and
is mutated in approximately 8% of patients. Similar to
patients with mutations in IDH1, IDH2 and TET2, sam-
ples from patients with WT1-mutated primary AML
show decreased 5-hmC levels and changes in 5-hmC
localization. This study indicates the involvement of



Table 3 Prevalence of TET1, TET2 and TET3 mutations in hematological malignancies and solid tumors

Cancer TET1 mutation prevalence (%) TET2 mutation prevalence (%) TET3 mutation prevalence (%)

Myeloid malignancies

MDS Not reported 6-26 [78,79,165-169] Not reported

MDS/MPN

CMML (adult) Not reported 20-58 [78,169-174] Not reported

MPD

PV Not reported 6-16 [78,169,170] Not reported

ET Not reported 4-5 [78,169,170] Not reported

MF Not reported 2-17 [78,169,170] Not reported

CML Not reported 2-4 [175,176] Not reported

AML

De novo (adult) Rare [141] 12-27 [169,170,177-181] Not reported

De novo (pediatric) Not reported 2-4 [182,183] Not reported

Secondary AML Not reported 17-32 [80,85,184,185] Not reported

Mastocytosis Not reported 20-29 [87,186] Not reported

BPDCN Not reported 25-54 [187-189] Not reported

Lymphoid malignancies

B-cell lymphoma

DLBCL Not reported 6-12 [39,81] Not reported

MCL Not reported 0-4 [81,190] Not reported

Follicular lymphoma Not reported 2 [81] Not reported

CLL Rare [142] Not reported Rare [142]

T cell lymphoma

AITL Not reported 33-83 [81,86,91,191,192] Not reported

PTCL and PTCL, NOS Not reported 20-49 [81,86,91,191,192] Rare [90]

T-ALL Not reported Not reported Rare [143]

Solid tumors from

Endometrium 9* 7* 4*

Breast Rare [106] Rare [115] Rare*

Central nervous system Rare [193] Rare* Rare*

Kidney Rare* Rare [113] Rare*

Large intestine 7 [105,137] 4 [105,137] 5 [105,137]

Liver Rare [194] Rare* Rare [195]

Lung 5 [106,114,138] 2 [115,138,139] Rare [138,139]

Ovary Rare* Rare* Rare [112]

Pancreas Rare [196,197] Rare* Rare*

Prostate Rare [106,198] Rare [198,199] Rare [199]

Skin Rare [109] 1 [109] Rare [116]

Stomach 4 [200,201] Not reported Rare*

Urinary tract 4 [140] 4* Rare*

AITL, angioimmunoblastic T cell lymphoma; AML, acute myeloid leukemia; BPDCN, blastic plasmacytoid dendritic cell neoplasm; CLL, chronic lymphocytic
leukemia; CML, chronic myeloid leukemia; CMML, chronic myelomonocytic leukemia; DLBCL, diffuse large B cell lymphoma; ET, essential thrombocytosis; FL,
follicular lymphoma; MCL, mantle cell lymphoma; MDS, myelodysplastic syndrome; MF, myelofribrosis; MDS/MPN, myelodysplastic syndrome/myeloproliferative
neoplasm; MPD, myeloproliferative disorder; PV, polycythemia vera; PTCL, peripheral T cell lymphoma; PTCL,NOS, peripheral T cell lymphoma not otherwise
specified; T-ALL, T-cell acute lymphoblastic leukemia; TET, Ten eleven translocation. *COSMIC database. Some mutations listed in this table have not been
confirmed as somatic mutations.
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WT1 in the regulation of hydroxymethylation and pro-
vides an example of TET2 function impairment without
TET2 mutations [96].
Mouse models have shown that microRNAs (miRNAs)

miR26a and miR29a are able to regulate TET expression
by targeting their 3’ untranslated regions (UTRs) [97,98].
Other miRNAs, such as miR125b, miR29b, miR29c,
miR101 and miR7, have also been implicated in TET
regulation using a 3’ UTR human and mouse reporter
screen [99]. Recently, miR22 has been shown to be re-
sponsible for the downregulation of all three TET genes
[100]. Indeed, conditional expression of miR22 in a
transgenic mouse model led to reduced levels of 5-hmC,
amplification of the hematopoietic stem/progenitor com-
partment, and development of hematopoietic malignan-
cies. miR22 is highly expressed in more than half of adult
MDS and AML samples, providing another example that
TET2 activity can be knocked down in the absence of a
somatic mutation.

5-hmC and TET in solid tumors
Deregulation of cytosine hydroxymethylation by
TET activity
Abnormal patterns of cytosine methylation have been
observed in some solid tumors, including melanoma.
The melanoma epigenome widely lacks 5-hmC, in asso-
ciation with tumor progression and downregulation of
the TET family genes [101]. However, somatic TET mu-
tations are exceedingly rare in this cancer, suggesting
that another mechanism is affecting TET activity. Con-
sidering that TET enzymes are dependent on αKG, alter-
ation in genes participating in its production may
contribute to the inhibition of TET activity. Accordingly,
IDH1 or IDH2 mutations are described in 10% of mela-
nomas. These data support a role for deregulation of
DNA methylation control during tumor progression ra-
ther than during the initial phases.
IDH mutations were first observed in human gliomas

[102]. The IDH-mutated samples exhibited a hyperme-
thylation phenotype, due to the inactivation of TET pro-
teins by 2HG [103]. In paragangliomas, inactivating
mutations in the SDHx and FH genes, encoding citric
acid cycle enzymes (Table 2), result in the accumulation
of succinate or fumarate, respectively, and competitive
inhibition of αKG-dependent dioxygenases, similar to
2HG [104]. SDH mutations induce a hypermethylation
phenotype compared to tumors with wild-type SDH, and
are associated with transcriptional silencing. This argues
for a driver role for demethylation deregulation in the
development of these tumors.

TET mutations
TET mutations are rare in solid tumors [105-117]. In many
instances, acquired mutations are missense mutations
whose functional consequences on TET protein activity
are uncertain. A survey of TET2 mutations in the
COSMIC database showed more deleterious mutations in
hematological malignancies than in solid tumors (29.8%
versus 7.3% for frameshift mutations and 28.1% versus
10.3% for nonsense mutations). Conversely, there are fewer
potentially benign mutations in hematological malignan-
cies than in solid tumors (0.25% versus 17.6% in solid tu-
mors for coding-silent mutations and 26.5% versus 63.1%
for missense mutations). The dominant expression of
TET2 (with respect to TET1 and TET3) in hematopoiesis
results in a strong effect of TET2 deficiency on 5-hmC
levels. Aside from the potential specific functions of TET2,
because expression of the three TET genes is equivalent in
other tissues, the consequences of TET2 deficiency on glo-
bal cytosine (hydroxy)methylation is expected to be less
important than in hematopoietic tissues. IDH, SDH and
FH mutations, which result in the inhibition of virtually all
αKG-dependent dioxygenases, including all three TET pro-
teins, would therefore more strongly impact DNA methy-
lation control than a single TET gene mutation.

Implications for disease
Studies of TET2 deficiencies in tumor development have
revealed the importance of DNA methylation in cellular
processes as well as in the progressive development of
adult type hematological malignancies.
In terms of potential clinical applicability, it appears

difficult to specifically and directly target these TET
dioxygenases for cancer treatment because they are inac-
tivated in cancer. Indeed, recent efforts have focused on
indirect correction of TET function and 5-hmC deregu-
lation in cancer.
TET inactivation induces a methylation imbalance, in-

cluding hypermethylation of tumor suppressor genes in
malignant clones. These genes may be targeted by hypo-
methylating agents already used in clinical studies, such
as 5-azacitidine and decitabine [118,119]. The global
hypomethylation effect of these drugs, which remains
nonspecific, seems to be accompanied by local hyper-
methylation, whose long-term consequences are un-
known [20]. The molecular mechanisms of action of these
drugs need to be further investigated, and extensive clinical
trials are needed to prove their efficacy and to identify bio-
markers of clinical responses.
In IDH1- or IDH2-mutated cancers, the oncometabo-

lite 2HG acts as a biomarker of compromised enzyme
activity [120]. This led to the development of IDH2 in-
hibitors, now tested in clinical trials [121]. Similarly, FH
and SDH inhibitors could be developed to prevent the
overall effect of metabolic TET inactivation in cancer.
The activities of TET as well as DNMT enzymes are reg-
ulated, in part, by the concentrations of their required
cofactors. Thus, the metabolic state of the cell is an
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antitumor target, by preventing the activity of the mu-
tated protein but also by manipulating agonist or antag-
onist functions. In addition to the detection of TET2
mutations that pre-date full-blown malignancies, recent
studies have highlighted preleukemic phases in AML
that are associated with mutations in other genes affecting
DNA methylation, such as DNMT3A, IDH1 and IDH2
[122], and in genes involved in chromatin structure, such
as SMC1A (structural maintenance of chromosome 1A)
[123]. These observations suggest that manipulating the
control of chromatin structure may be efficient for the
treatment of both early and late phases of disease.

Conclusions and future directions
DNA methylation patterns are markedly abnormal in ma-
lignant cells in comparison with normal tissues. Abnormal
Figure 3 Schematic of methylation and hydroxymethylation patterns
are located in CpG islands and promoters of actively transcribed gene
5-methylcytosine (5-mC). 5-hydroxymethylcytosines (5-hmCs) are frequent in
and within gene bodies of transcribed genes. A global hypermethylation phe
transformation, including repressed tumor suppressor gene promoters. Hypom
for example. Cancer cells present a global decrease of 5-hmC and local redistr
tumor suppressor gene.
methylation has been postulated to inactivate tumor sup-
pressor genes through cytosine methylation and to activate
oncogenes through cytosine hydroxymethylation and de-
methylation (Figure 3). An unexpected number of oxidized
cytosine forms have been uncovered, whose specific func-
tions need to be investigated. Specific techniques allowing
their thorough investigation at the nucleotide level are
under development and will enable us to investigate the
specific functions of these cytosines in normal cells. This is
a requirement for understanding their roles in cellular
transformation, because mutations detected in cancer can
inactivate or impair DNA methylation (for example,
DNMT3A mutations) or DNA demethylation (for example,
TET2 or IDH mutations).
Although cytosine methylation is associated with

gene repression, the exact mechanisms leading from
in normal and cancer cells. In normal cells, unmethylated cytosines
s, whereas promoters of repressed genes are mainly composed of
cis-regulatory elements such as enhancers, in low CpG content regions,
notype, with respect to normal tissue, is usually associated with tumoral
ethylation can, however, be observed locally, in oncogene promoters,
ibution of this mark towards some oncogene promoters. C, cytosine; TSG,
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methylation to gene repression are still elusive, as are the
crosstalk with other epigenetic modifications, the factors
involved in chromatin modification and the regulation of
their activities. DNA methylation and demethylation result
from the regulation of different enzymatic activities, which
compete with each other for DNA access.
This process is complex enough to appear stochastic,

with a slow drift in methylation profiles that is tissue
specific as well as age related. This drift leads to cellular
heterogeneity and, with respect to methylation and gene
repression, allows for cell selection. It is likely that TET2
deficiency increases cellular heterogeneity and facilitates
the selection of fitter cells. We now require a complete
understanding of the protein complexes involved in
cytosine methylation and demethylation, including the
exact role of each of the mammalian TET proteins
and their regulatory signals, in order to target these
processes.
Work with human samples and murine models has

shown that TET2 deficiency does not trigger full-blown
malignancies but predisposes to the development of tu-
mors such as MPN, MDS and lymphoma. The different
Tet2 knockout mouse models exhibit similar phenotypes
but also present subtle differences that might be due to
the loss of different regions of the gene. So far, it has not
been possible to correlate clinical phenotypes with TET2
mutations (for example, regarding their precise location
or heterozygosity). Other questions relate to the depend-
ency of malignant cells on the initial TET2 mutation,
and why some patients with TET2 mutations remain
healthy while others develop a myeloid or a lymphoid
malignancy [123-126]. Addressing such questions is im-
portant, not only with regard to mutations in genes
involved in the control of DNA methylation (such as
TET2 or DNMT3A), but also for mutation in genes con-
trolling other functions that predate and may predispose
to the development of adult malignancies [125-127].
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