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Abstract

Genome-wide association studies (GWASs) have successfully uncovered thousands of robust associations between
common variants and complex traits and diseases. Despite these successes, much of the heritability of these traits
remains unexplained. Because low-frequency and rare variants are not tagged by conventional genome-wide genotyping
arrays, they may represent an important and understudied component of complex trait genetics. In contrast to common
variant GWASs, there are many different types of study designs, assays and analytic techniques that can be utilized for rare
variant association studies (RVASs). In this review, we briefly present the different technologies available to identify rare
genetic variants, including novel exome arrays. We also compare the different study designs for RVASs and argue that the
best design will likely be phenotype-dependent. We discuss the main analytical issues relevant to RVASs, including the
different statistical methods that can be used to test genetic associations with rare variants and the various bioinformatic
approaches to predicting in silico biological functions for variants. Finally, we describe recent rare variant association
findings, highlighting the unexpected conclusion that most rare variants have modest-to-small effect sizes on phenotypic
variation. This observation has major implications for our understanding of the genetic architecture of complex traits in
the context of the unexplained heritability challenge.
Introduction
Simple (or Mendelian) diseases such as sickle cell anemia
and cystic fibrosis are caused by mutations in single genes.
These mutations, which may have variable penetrance and
expressivity, are causal. On the other hand, complex (or
common) human diseases such as myocardial infarction
or schizophrenia result from the combined effect of mul-
tiple genetic variants and environmental stresses. Genetic
variants associated with complex human diseases do not
cause diseases but rather influence the risk of developing
them. The focus of this review is on the role of rare gen-
etic variants in complex human diseases. Genome-wide
association studies (GWASs) have successfully uncovered
thousands of robust associations between common vari-
ants and complex traits and diseases. As GWAS-based
consortia have expanded to include hundreds of thou-
sands of samples [1,2], the role of common variation in
the genetics of complex traits is becoming well-
characterized. However, the genetic markers evaluated in a
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GWAS typically do not represent rare genetic variation, de-
fined in this review as variants with a minor allele frequency
(MAF) <1%. To evaluate comprehensively the contribution
of rare genetic variants to complex traits and diseases, DNA
sequencing-based approaches and custom arrays have re-
cently been developed and deployed on a large scale [3-5].
In addition, there are many different types of study designs
and analytic techniques that have been developed specific-
ally to maximize the power of rare variant association stud-
ies (RVASs). With these tools, investigators have begun
describing the contribution of rare variants on complex
traits and diseases.
The original excitement over RVASs sparked from tar-

geted gene sequencing experiments, which identified rare
coding variants with strong effects on phenotypic variation.
These included genetic variation in ABCA1 and PCSK9,
associated with high-density lipoprotein (HDL)- and low-
density lipoprotein (LDL)-cholesterol levels, respectively
[6-8]. In particular, the translational success of the identifica-
tion of the PCSK9 gene association [9,10] raised hopes that
RVASs would yield a large number of strong effect variants
useful in predictive/personalized medicine, and a plethora of
new drug targets. After a few years of RVASs, our expecta-
tions have met reality: most rare variants identified to date
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have modest-to-weak effect sizes. Instead of considering this
a glass half empty, we argue that RVASs still hold tremen-
dous promise in biomedicine, and have significant potential
for drug development. Here, we provide a brief overview of
the various technologies that are useful for discovering and/
or genotyping rare variants. We also discuss, using recent
findings as examples, analytical issues that are relevant to
RVASs, including which statistical methods to use to test
genetic associations with rare variants, genotype imputation,
replication challenges, and variant annotation strategies. Fi-
nally, we comment on how we envision RVASs may impact
our understanding of the genetic architecture of complex
traits.

Identifying rare variants
RVASs are now possible because of next-generation
DNA sequencing (NGS) technologies and the develop-
ment of software to process, control the quality of, and
call DNA variation from the vast amount of sequence
reads generated [11]. The 1000 Genomes Project se-
quenced the whole genomes of >2,500 individuals from
26 populations around the world, and similar or even
larger projects are underway [5,12,13]. Thus, it is now
possible to collect rare genetic variants in large samples
and test their role in human phenotypic variation,
including in disease risk. However, comprehensive
whole-genome sequencing (WGS) at high coverage
(>20×) remains prohibitively expensive in large cohorts
(see Table 1 for cost estimates based on specific study
designs). WGS at low depth (<10×) is a less expensive
alternative that can generate high-quality variant calls
when combined with imputation methods (see below).
The 1000 Genomes Project successfully employed this
strategy [5,12]. Indeed, if the budget is limiting, there is
more statistical power to find genetic associations when
Table 1 Comparison of strategies for rare variant association

Approach Design DNA target size

Whole-genome sequencing 2,000 individuals at
30× (high depth)

3.3 gigabases

2,000 individuals at
5× (low depth)

3.3 gigabases

Whole-exome sequencing 2,000 individuals at
80×

50 to 70 megabase

Targeted sequencing of
candidate genes

2,000 individuals at
100×

500 kilobases (exon
from ~100 genes)

2,000 individuals at
100×

100 kilobases (exon
from ~20 genes)

5,000 individuals at
100×

100 kilobases (exon
from ~20 genes)

Exome array 10,000 individuals ~250,000 coding v

We provide cost estimates for next-generation DNA sequencing or genotyping exp
aWith the recently developed Illumina HiSeq X Ten platform, whole-genome sequen
endorse any specific companies or products. Cost estimates do not include bioinfor
sequencing more individuals at lower depth than fewer
samples at high coverage [14].
Because 98% of the human genome is non-coding and

therefore more difficult to interpret, enrichment methods
were developed to capture only a fraction of the genome
before building sequencing libraries. Whole-exome sequen-
cing (WES) relies on the solution-based capture of exons,
and several companies (such as Illumina (San Diego, USA),
Roche’s Nimblegen (Madison, USA) and Agilent’s SureSe-
lect (Santa Clara, USA)) offer well-designed exome-wide
capture reagents. In the last few years, WES has been in-
strumental in defining the culprit gene(s) for dozens of
Mendelian diseases [15]. Recently, the National Heart,
Lung, and Blood Institute (NHLBI) Exome Sequence Pro-
ject (ESP) sequenced the exome of 6,515 individuals to
characterize protein-coding variants and to identify rare
genetic variations associated with different complex human
diseases and traits [3,16].
In many applications - for instance, to follow up candidate

genes from a GWAS or to screen clinically important genes
in a genetic clinic - sequencing 50 to 1,000 kilobases is often
desirable (Table 1). The first option for targeted NGS is to
design and order custom solution-based capture reagents
that target only the sequences of interest (for example, Agi-
lent’s SureSelect or Roche’s Nimblegen offer these products).
The second method, which is usually cheaper but may result
in sequencing libraries of lower complexity, uses PCR to
amplify the targeted sequences (for example, Illumina Tru-
seq Amplicon, Haloplex, Raindance, Fluidigm) prior to
NGS. Both enrichment methods have been successfully
applied to find rare genetic variants [17-20].
Another approach to performing RVASs consists of

genotyping rare variants directly. Large-scale projects like
the 1000 Genomes Project and ESP have generated an ex-
tensive catalogue of coding DNA sequence variants. Once
studies

Technology Cost/sample
(US$)

For example, Illumina
(DNA library and sequencing)

~4,000a

~800

s Agilent SureSelect (capture); Illumina
(DNA library and sequencing)

~750

s TruSeq Custom Amplicon Illumina (capture);
Illumina (DNA library and sequencing)

~325

s ~250

s ~125

ariants Illumina ExomeChip array ~70

eriments using different study designs.
cing at high coverage is 60 to 70% cheaper. We do not recommend or
matics processing.
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genomic coordinates and alleles are known (from sequen-
cing), it is possible to interrogate these variants using
standard genotyping arrays. After an important contribu-
tion from the human genetics community, exome-wide
genotyping arrays (exome chips) are now available (for
instance, those developed by Illumina and Affymetrix) that
test hundreds of thousands of exonic variants at modest
costs (Table 1). Genotyping data also have the advantage
of being computationally simpler to analyze than NGS
data. But exome chips do have important limitations. First,
they are not as exhaustive as sequencing and will miss a
large amount of very rare genetic variation. Second, be-
cause most of the sequence data used to design the arrays
that have been developed so far were from Europeans or
individuals of European ancestry, exome chips may not
interrogate rare variants in other populations very well.
Despite these limitations, exome chips have already been
used successfully to identify rare coding variants associ-
ated with insulin traits [4], liver disease [21], lipid levels
[22,23] and blood cell counts [24].

Designs for rare variant association studies
Motivated by the prediction that rare variants have large
effect sizes that explain some of the missing heritability
in complex traits [25], a variety of study designs can be
utilized for finding rare variant associations. The success
of such a study depends on multiple factors that influ-
ence the range of observable effect sizes (for example,
sample size and the magnitude and direction of natural
selection) [26].

Extreme phenotype sampling
For studies of quantitative traits, it has been shown that the
power to detect rare variant associations can be increased
by sampling from the extremes of the trait distribution
[27,28]. To do so, typically the phenotype (or a transformed
version of the phenotype) is assumed to follow a normal
distribution. Then, the largest and smallest nth percentile of
the distribution are chosen for study, where n is typically less
than five. For disease outcomes, the power of the study may
be increased by sampling from the extremes of known risk
factors (such as looking at early onset disease) [29]. For
instance, Lange and colleagues [30] sampled from the ex-
tremes of the distribution of LDL-cholesterol levels to select
individuals for WES. They combined these ‘extreme’ sam-
ples with other ‘normal’ samples to discover a burden of rare
and low-frequency variants in the PNPLA5 gene that were
associated with LDL-cholesterol. Similarly, Emond and co-
workers [31] chose samples for exome sequencing based on
the extremes of the first time to Pseudomonas infection in
individuals with cystic fibrosis. This approach yielded a novel
genetic association between rare coding variants in the
DCTN4 gene and time to first Pseudomonas infection, a
surrogate measure of cystic fibrosis severity. More recently,
Flannick and colleagues [32] selected individuals from the
extremes of type 2 diabetes (T2D) risk by including both
young and lean T2D cases as well as elderly, non-obese
controls. The initial analysis discovered a nonsense variant
in SLC30A8 that was strongly protective against T2D.
Additional genotyping of over 44,000 cases and controls
confirmed a 53% reduction in T2D risk for carriers of the
nonsense variant.
Although extreme sampling may boost the statistical

power of a study to detect associations, data analysis often
requires sophisticated statistical techniques to remove
sampling bias [33,34]. Furthermore, the results may be dif-
ficult to generalize to the underlying population from
which the extremes were drawn. For rare variants, tens of
thousands of samples may still be necessary in order to
detect modest effects even for extreme trait designs [27].

Population isolates
Owing to a variety of demographic forces (for example, fam-
ine, war, migration), many subpopulations around the world
have undergone extreme population bottlenecks, and have
become isolated and remained so for many generations
[35,36]. These extreme bottlenecks and the resultant popu-
lation isolates produce several genetic and phenotypic con-
sequences that are interesting to a geneticist. From a
phenotypic perspective, population isolates often demon-
strate environmental and cultural homogeneity, resulting in
a lack of phenotypic variability that can be advantageous for
an association study. Furthermore, because of this reduced
genetic diversity (due to the bottleneck) and increased gen-
etic drift (due to isolation), population isolates often show a
lack of concordance in allele frequencies with other non-
isolated populations [37]. Because the power to detect an as-
sociation is partly determined by allele frequency, population
isolates can be very useful in discovering rare variant associ-
ations [37]. If the disease-causing variant(s) occurs at high
frequency in the population isolate, the power to detect an
association may be high.
Recently, a study of WGS data from 1,795 Icelanders

identified a non-coding, low-frequency variant associated
with prostate cancer [38]. The risk allele was observed at
much higher frequency in Iceland (3% in cases, 1% in con-
trols) compared to other populations that served for replica-
tion (for example, 0.4% and 0.1% in Spanish cases and
controls, respectively). The same group later identified
several low-frequency and rare variants that were associated
with T2D [39]. These variants occurred at much higher
frequency in Icelandic and Danish populations compared to
an Iranian population used for replication. Perhaps the
most well-known examples of risk variants found in a
population isolate are the BRCA1 and BRCA2 mutations,
which occur at high frequency in the Ashkenazi Jewish
population and are associated with risk for breast and
ovarian cancer [40]. However, the lack of genetic diversity
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Figure 1 Comparison of power for trios and case–control designs.
Power to detect associations for 10,000 cases and 10,000 controls (blue)
and 10,000 trios (red) across a range of minor allele frequencies (MAFs).
Power was calculated with a significance threshold of P< 0.05, a
prevalence of 0.1 and a relative risk of 1.1, using the Genetic Power
Calculator tool [112].
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in population isolates can serve as a serious disadvantage
as well. Disease-causing variant(s) may be exceedingly rare,
or monomorphic in the population isolate, leaving little
chance of detecting an association.

Family studies
A different type of design for identifying disease-causing
rare variants is to study a family with multiple affected
members. Often referred to as ‘family studies’, such a
design involves sequencing co-affected family members
and searching for overlapping variants that co-segregate
with the condition of interest. Both linkage-based and
genetic association methodologies are amenable to fam-
ily studies. This type of design has been very successful
in identifying large effect, highly penetrant mutations
that underlie Mendelian disorders [41,42]. However, for
many common diseases co-segregation analysis cannot
sufficiently distinguish among a large set of candidate
pathogenic variants [43]. Given the challenges of per-
forming a comprehensive analysis of pedigree sequen-
cing data, most studies rely on a series of ad hoc
filtering criteria, although there has been recent pro-
gress in developing unified and rigorous methods for
analyzing sequence data from pedigrees [44]. If the
disease-causing variant occurs with high frequency in
the affected families (compared with the general popula-
tion), a family study may provide a significant boost in
statistical power compared to other designs. For family
studies, as well as population isolates, this is sometimes
referred to as ‘hitting the jackpot’, because investigators
are essentially hoping to ‘get lucky’ by observing the
disease-causing variant with high frequency in the
affected families (or population isolate) [45].
In addition to co-segregation analysis, genotype data

from trios (an affected offspring and his or her parents)
are often used in studies with a family-based design. The
transmission disequilibrium test (TDT) [46] has been
developed to detect associations in these types of de-
signs. For rare diseases (for instance, those with a preva-
lence <0.5%) the TDT for n number of trios provides the
same statistical power as a case–control design, with n
cases and n controls [47]. For common diseases, case–
control designs are more powerful (Figure 1).
The underlying genetic architecture of the trait of

interest determines which study design is best powered
to detect the association [48]. For most complex traits,
the genetic architecture is unknown or at best partially
known. Thus, there is no way to predict a priori which
design will be most powerful. Both population-based
studies (such as extreme phenotype sampling or popula-
tion isolates) and family designs are powerful and useful
in differing contexts and should serve as complementary,
rather than competing, approaches for uncovering the
genetic contribution of rare variants to complex traits.
Statistical methods for RVASs
In the GWAS literature, single nucleotide polymorphisms
(SNPs) that reach association P-values <5 × 10−8 are gener-
ally labeled as significant genome-wide. The HapMap Pro-
ject established this significance threshold by examining
common genetic variation in populations of European,
African and Asian ancestry [49]. The researchers on the pro-
ject noted that when considering linkage disequilibrium
(LD), there are approximately one million independent loci
in the human genome (α= 5 × 10−8 is the Bonferonni-
corrected threshold for a million tests). However, because
rare variants are more numerous and less correlated with
each other than common variants, a simple α = 5 × 10−8

threshold is not enough to declare significance in association
studies that target rare variants. Thus, RVASs suffer from an
increased multiple testing burden and a decrease in statis-
tical power owing to the rarity of individuals carrying these
variant alleles. It is generally recognized that a better strategy
for analyzing rare variants is to combine them within units
of association, defined using gene annotations, genomic co-
ordinates or functional characterization (see below). Because
rare variants are traditionally grouped by genes, these tests
are referred to as gene-based tests and use α = 2.5 × 10−6 as
a significance threshold in a genome-wide search (assuming
approximately 20,000 genes in the human genome).
We can divide most gene-based tests into two main cat-

egories: burden and variance-component tests [50]. In its
simplest form, a burden test asks whether individuals that
carry a rare variant in a gene are phenotypically similar to
individuals that do not. To run this analysis, one simply
aggregates carriers of rare variants and compares their
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phenotype mean or disease prevalence (for quantitative or
dichotomous traits, respectively) with non-carriers. The
generalization of this approach in various software pack-
ages (CAST [51], CMC [52], VT [53], and so on) allows
for the inclusion of covariates when appropriate, or for
different weighting of each variant based on allele fre-
quency or other functional annotations. The main limita-
tion of burden tests is that they assume that all tested
variants influence the phenotype in the same direction.
However, we know from several examples in animal
models (such as CED9 alleles in Caenorhabditis elegans
and their effect on programmed cell death) and Mendelian
genetics (such as loss- and gain-of-function PCSK9
alleles and their effect on LDL-cholesterol) that the
same gene can carry alleles that have dramatic pheno-
typic consequences, but in opposite directions. To allow
for this scenario, tests that consider the distribution of
genetic effects (that is, the variance instead of the mean)
for a group of variants were developed. For instance, the
widely used SKAT test offers flexibility in terms of co-
variate adjustment, study design (for example, modeling
family structure) and different variant prioritization/
weighting strategies [54]. Recently, Lee and colleagues
[55] combined burden and variance-component tests of
rare variants into the SKAT-O test, which maximizes
discovery power under different genetic architecture
models. The development of new methods to analyze
rare genetic variants in association studies, as well as to
control for confounders such as population stratifica-
tion, is a very active research area in statistical genetics
(recently reviewed in [56]). In particular, recent work
suggested that approaches that are commonly used in
GWASs to account for population structure, such as
principal component analysis and linear mixed effect
models, are in many instances not appropriate for
RVASs [57-60]. Indeed, because stratification of rare
variants is different and often stronger than for com-
mon variants, inflated significance of gene-based tests is
possible despite traditional correction methods. Consid-
ering family-based designs or including spatial/geo-
graphical information in the tests might be strategies to
limit confounding due to population structure [57].
As for GWASs of common variants, large sample sizes

are required to identify significant associations in RVASs.
Because ethical concerns usually prevent the sharing of
genotype and phenotype information between collabora-
tors, genetic consortia tend to analyze summary statistic
data; that is, association results for each variant across all
participating studies [61]. This approach works well when
we analyze one variant at a time, but is limited when con-
sidering groups of correlated genetic markers aggregated
in the same test. The solution is to generate a matrix that
summarizes the correlation (LD) between each marker.
Investigators can then share association results from each
variant as well as the LD matrix, such that the correlation
between markers is considered when meta-analyzing test
statistics. The LD matrix offers the additional advantage of
allowing for conditional analyses - testing the independ-
ence of an association signal when several markers are
genotyped at the same locus - without the need to access
genotype data. This meta-analysis strategy is implemented
in software packages such as rareMETAL [62] and skat-
Meta [63] (see also [64]).

Genotype imputation
Owing to the costs associated with genotyping or sequen-
cing large numbers of samples, many studies of rare variant
associations do not have sufficiently large sample sizes for a
well-powered analysis. Genotype imputation can be used to
increase sample sizes by imputation of sequence variants
(from a sequencing study) into large numbers of samples
with genome-wide array data. Genotype imputation (or in
silico genotyping) is a statistical technique for predicting
genotypes at variants that are not directly measured [65],
and several methods are available for large-scale imputation
of genotypes [66-69]. Genotype imputation utilizes a set of
reference samples that have been densely genotyped to
identify segments of haplotypes that are shared with the
study or ‘target’ population. Data from the HapMap and
the 1000 Genomes projects serve as popular reference sets
for imputation [5,70].
Genotype imputation is particularly convenient for

large-scale GWAS meta-analyses and has largely been
utilized in this context. Studies that contribute to meta-
analyses often do not genotype their data on the same
platform. Thus, imputed genotypes are frequently used
to ‘square-off ’ datasets so that the meta-analysis can
consider the union (rather than the intersection) of the
variants that were considered by each study [71,72].
In addition to GWAS meta-analyses, genotype imput-

ation can be used to search for rare variants associated with
complex traits. Auer and co-workers took sequence data
from the ESP and imputed them into over 13,000 samples
with genome-wide array data [3,73]. This approach yielded
associations between variants at the LCT locus and circulat-
ing white-blood-cell counts as well as between variants in
the MPL gene and platelet counts. Imputation of ESP data
was also used to find loci associated with height [74]. By se-
quencing the whole genomes of 2,630 Icelanders, followed
by imputation into large sets of GWAS data, novel associa-
tions between rare variants in APP and Alzheimer's disease
and between rare variants in PDX1 and T2D were identi-
fied [39,75]. The SardiNIA Medical Sequencing Discovery
Project imputed WGS data from 828 unrelated subjects to
find loci associated with immune-cell levels [76], and the
genomes of 1,325 individuals from the Minnesota Twin
Family registry were sequenced and imputed into approxi-
mately 7,000 subjects to find loci that were associated with
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a variety of psychophysiological endophenotypes [77].
These studies highlight the power of utilizing study-specific
reference panels for imputation.
Study-specific reference panels can also enhance the

quality of imputation for rare variants. Duan and col-
leagues [78] showed that imputation with the ESP refer-
ence panel outperformed imputation with the 1000
Genomes reference panel for rare coding variants. Fur-
thermore, imputation of variants from a Sardinian-specific
reference panel into Sardinian GWAS samples provided
improved imputation accuracy compared with 1000 Ge-
nomes imputation [79]. This study showed that a combin-
ation of 1000 Genomes data and a Sardinian reference
panel provided the best imputation quality for rare vari-
ants, compared to using either reference panel alone.
Imputation of sequence variants from related individ-

uals or extended pedigrees can also boost imputation
accuracy. The Genome of the Netherlands project se-
quenced 769 Dutch samples at 14× coverage, derived
from 231 trios and 19 quartets, resulting in 998 unre-
lated haplotypes. Imputation of these variants into other
Dutch as well as English and Italian samples showed
improvement over 1000 Genomes imputation [80],
highlighting how imputation accuracy can be improved
by matching the ancestries of the reference and target
panels. In addition, the trio design enabled phasing that
accurately reconstructed long-range haplotypes, leading
to improved imputation of rare variants [81].
Imputation accuracy decreases with MAF, making it

difficult to impute very rare variants. However, imput-
ation accuracy also increases with the size of the refer-
ence set. With larger reference sets, imputation of very
rare variants should become more accurate. To this end,
there has been a recent effort to establish a Haplotype
Reference Consortium that contains sequence data on
over 30,000 subjects [82]. With these data as a reference
set, accurate imputation of variants with MAFs as low as
0.01% may be possible.
A gold-standard association study would include dir-

ectly measured genotypes from tens or even hundreds of
thousands of study samples. However, even though the
cost of sequencing continues to fall, it is not currently
feasible directly to genotype rare variants across the gen-
ome in tens of thousands of samples. Thus, for the fore-
seeable future, genotype imputation is likely to remain
an efficient and cost-effective means of inferring geno-
types and increasing sample sizes for association studies.

Functional annotation of rare variants
In addition to the choice of statistical approach to test for
rare variant associations, another important consideration
is whether one should include all discovered rare variants
in a group-based analysis. Many tools and resources exist
to annotate DNA sequence variants (Table 2). For instance,
upon sequencing a candidate gene, should you include all
coding as well as non-coding (promoter, untranslated re-
gions, introns) variants in the test? Even for coding vari-
ants, should synonymous changes (DNA changes that
result in the same encoded amino acids because of redun-
dancy in the genetic code) be considered? Variants that
are probably detrimental - nonsense, splice site and frame-
shift - are often prioritized because of their enrichment
among true loss-of-function alleles, such as in human syn-
drome genes [83-85]. For most missense variants, how-
ever, the distinction between phenotypically active and
neutral alleles is not straightforward, especially as popula-
tion genetic theory and empirical observations suggest
that even functional missense variants will mostly have
small effect sizes [86]. Large efforts are currently under-
way to attempt to catalogue all loss-of-function alleles in
the human genome [87].
Bioinformatic methods based on conservation, struc-

tural information and/or amino acid physico-chemical
properties have been developed to estimate the likeli-
hood that a given missense variant is detrimental
[100,101]. But these algorithms are not perfect, as re-
cently illustrated by the study of genetic coding vari-
ation in the T2D gene PPARG [102]. In that study,
investigators sequenced PPARG in approximately
20,000 individuals and identified 49 new rare non-
synonymous variants. In aggregate, these rare variants
were not associated with T2D risk, even when consider-
ing in the analysis their frequency or in silico predic-
tions. The authors then tested the effect of each rare
PPARG non-synonymous variant in an adipocyte differ-
entiation assay, and noted that only 12 of these variants
were truly functional. Interestingly, individuals that
carry these rare functional PPARG alleles have a seven-
fold increase in their odds of developing T2D [102].
This example is a striking demonstration that simply
relying on computer-based predictions to assess the im-
pact of rare missense variants is not ideal, and empha-
sizes a need to develop high-throughput functional
characterization methods.
Non-coding variants are even more difficult to ascertain,

and until recently the estimation of their biological impact
relied mostly on conservation scores. Publically available
data generated by the ENCODE, Roadmap Epigenomics
and FANTOM5 projects now offer an alternative strategy to
focus on ‘more likely’ functional non-coding variants in gen-
etic association studies [89-91]. These projects used applica-
tions of NGS (for example, chromatin immunoprecipitation
assays, DNase I hypersensitive site mapping and cap analysis
of gene expression) to localize DNA sequences that may
regulate gene expression, such as promoters and enhancers
in different human cells and tissues (Figure 2). These anno-
tated regulatory regions are enriched for GWAS findings,
and the enrichment is usually stronger when the relevant



Table 2 Partial list of tools and resources to annotate DNA sequence variants

Tool/resource Description URL Reference

CADD A framework that integrates multiple annotations into one
metric by contrasting variants that survived natural selection
with simulated mutations

http://cadd.gs.washington.edu/ [88]

ENCODE Annotation of potential functional elements (for example,
histone tail modifications) in several cell lines

https://www.encodeproject.org/ [89]

Epigenomics Roadmap Annotation of potential functional elements (for example,
DNAse I hypersensitive sites) in many human tissues and
primary cells

http://www.roadmapepigenomics.org/ [90]

FANTOM5 Annotation of transcriptional enhancers in many human tissues
and primary cells through detection of bidirectional capped
transcription

http://enhancer.binf.ku.dk/ [91]

GERP Identifies constrained elements in multiple alignments by
quantifying substitution deficits

http://mendel.stanford.edu/SidowLab/
downloads/gerp/

[92]

HaploReg Visualization of DNA polymorphisms along with their predicted
chromatin state, their sequence conservation across mammals,
and their effect on regulatory motifs

http://www.broadinstitute.org/mammals/
haploreg/haploreg.php

[93]

Phen-Gen Method that combines patients' disease symptoms and
sequencing data with prior domain knowledge to identify
the causative genes for rare disorders

http://phen-gen.org/about.html [94]

PolyPhen-2 A tool that predicts the possible impact of an amino acid
substitution on the structure and function of a human
protein using straightforward physical and comparative
considerations

http://genetics.bwh.harvard.edu/pph2/ [95]

RegulomeDB A database that annotates SNPs with known and predicted
regulatory elements in the intergenic regions of the human
genome using gene expression, ENCODE and literature-mining
data

http://regulomedb.org/ [96]

RVIS This score is designed to rank genes in terms of whether
they have more or less common functional genetic variation
relative to the genome-wide expectation given the amount
of apparently neutral variation the gene has

http://chgv.org/GenicIntolerance/ [97]

SIFT Predicts whether an amino acid substitution affects protein
function based on the degree of conservation of amino acid
residues in sequence alignments derived from closely related
sequences

http://sift.jcvi.org/ [98]

VEP Determines the effect of your variants (SNPs, insertions,
deletions, CNVs or structural variants) on genes, transcripts
and protein sequence, as well as regulatory regions.

http://useast.ensembl.org/info/docs/tools/
vep/index.html?redirect=no

[99]

CNV, copy number variant; SNP, single nucleotide polymorphism.
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cells or tissues are considered (for instance, SNPs associated
with multiple sclerosis preferentially localized in regulatory
sequences defined in immune cells) [90,103-106]. As for
SNPs, we can use this functional annotation of the human
genome in RVASs by grouping variants not only by genes
but also on the basis of regulatory sequence coordinates de-
fined in the appropriate human cell type or tissue.

Strategies for replication
An important consequence of GWASs has been the
standardization of the statistical evidence needed for an
association to be accepted. An independent replication of
results and a genome-wide cutoff of P < 5 × 10−8 are now
considered requirements for novel associations to be pub-
lished [107]. For publication of novel rare variant associa-
tions, independent replication is equally important, but
can be more challenging than for SNPs identified by
GWASs. Indeed, because these variants are rare and often
population-specific, it might be difficult to find appropri-
ate replication panels. For instance, Sanna and colleagues
[108] reported a rare LDLR variant (MAF = 0.5%) associ-
ated with LDL-cholesterol that is polymorphic only in
Sardinians. In such cases, attempting to replicate the asso-
ciation by discovering other variants in the same gene that
are associated with the same phenotype in other popula-
tions might be the only approach to confirm the initial
genetic association.
Rare variant associations are typically tested in two ways:

by considering each variant individually (similar to in a
standard GWAS analysis); or by aggregating rare variants
into a single unit (typically a gene) and utilizing any number
of aggregate rare variant association tests [52-55]. Thus, rare

http://cadd.gs.washington.edu/
https://www.encodeproject.org/
http://www.roadmapepigenomics.org/
http://enhancer.binf.ku.dk/
http://mendel.stanford.edu/SidowLab/downloads/gerp/
http://mendel.stanford.edu/SidowLab/downloads/gerp/
http://www.broadinstitute.org/mammals/haploreg/haploreg.php
http://www.broadinstitute.org/mammals/haploreg/haploreg.php
http://phen-gen.org/about.html
http://genetics.bwh.harvard.edu/pph2/
http://regulomedb.org/
http://chgv.org/GenicIntolerance/
http://sift.jcvi.org/
http://useast.ensembl.org/info/docs/tools/vep/index.html?redirect=no
http://useast.ensembl.org/info/docs/tools/vep/index.html?redirect=no


Figure 2 Functional annotation of regulatory sequences in the human genome. Genome tracks from the UCSC Genome Browser. CXCL2
(blue) encodes a chemokine produced by activated monocytes and neutrophils at sites of inflammation. Single nucleotide polymorphisms (SNPs;
rs546829 and rs1371799, green) are associated with monocyte count by a genome-wide association study. The red box upstream of CXCL2 includes
a predicted enhancer identified in monocytes by FANTOM5 (black rectangles). FANTOM5 did not annotate an enhancer in hepatocytes, a less
relevant cell type for CXCL2. Using histone tail modification information, ENCODE predicted strong enhancers (orange) at the same position in
erythroleukemic (K562) and endothelial (HUVEC) cells. Chr, chromosome; hESC, human embryonic stem cell; HMM, hidden Markov model;
kb, kilobases.
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variant association signals are observed in two different var-
ieties, either by implicating a single variant or by implicating
an entire gene. Replication of a rare variant association can
therefore also be thought of in two ways, by either replicat-
ing the association with a single variant or with an entire
gene.
Replication of single variant associations can be done

in a multitude of ways. Using an independent population
(that is, one that is distinct from the population used for
discovery), it is possible to perform selected genotyping
of the variant of interest, selected genotyping of a perfect
tag SNP, or in silico genotyping (that is, imputation) of
the selected variant, although the latter option is sub-
optimal. If the association signal from the independent
population is statistically significant, then the discovery
has been replicated. Note that the proper threshold for
statistical significance for replication is P < 0.05/n, where
0.05 is the traditional significance threshold for a single
test and n is the total number of variants brought for-
ward for replication; this corresponds to the Bonferroni
correction for multiple testing.
There are several different options for replication of

aggregate or ‘gene-based’ associations. Liu and Leal [109]
considered various replication strategies in this context and
compared the power of each approach. Briefly, using inde-
pendent samples, researchers can choose to sequence the
gene that was implicated in the discovery analysis, or geno-
type the same set of variants that were observed in the gene
in the discovery analysis. The difference between the two
approaches being that by sequencing the gene it is possible
to observe variants in the replication stage that were not
observed in the discovery stage. All other things being equal
(for example, error rates and cost), Liu and Leal [109] show
that sequencing in the replication stage is consistently more
powerful than genotyping across a number of different sce-
narios. However, sample size in the replication stage is the
most important determinant of power. Practically speaking,
whichever strategy (sequencing or genotyping) results in
the largest sample size should be the preferred approach.
Both strategies for replication have been successful in

practice. Crosby and co-workers [110] describe how they
identified an association between rare variants in the
APOC3 gene and triglyceride levels using exome sequen-
cing in 3,734 subjects. For replication of this finding, four
loss-of-function variants in APOC3 were included on the
Illumina ExomeChip and successfully genotyped in 41,671
additional subjects. The gene-based test replicated at
P = 7 × 10−6. In contrast, Emond and co-workers [31] dis-
covered an association with rare variants in the DCTN4
gene and time to Pseudomonas infection in individuals
with cystic fibrosis. This discovery was made via exome
sequencing and was replicated by Sanger sequencing of
the entire gene.

Rare variants in common human diseases
With the technology and analytic tools now in place, and
motivated by successes such as the identification of low-
frequency coding variants in PCSK9, which led to the de-
velopment of new therapies to treat hypercholesterolemia
[7-9], RVASs are starting to characterize (and quantify)
the contribution of rare variants to human phenotypic
variation. Although there are a few exceptions (for ex-
ample, the association of PCSK9 with LDL-cholesterol
and coronary artery diseases, TREM2 and APP with
Alzheimer’s disease), our early findings suggest that most
rare variants will have small effect sizes on phenotypes,
and may therefore have only limited value in predictive
medicine. But that should not undermine the intrinsic
value of RVASs. For one, such experiments may lead to
the identification of new genes implicated in human dis-
eases. For instance, using the ExomeChip approach, we
identified a series of rare missense variants in the chemokine
receptor gene CXCR2 that are associated in aggregate with
low white-blood-cell counts in individuals of European
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ancestry [24]. CXCR2 had not been implicated in white-
blood-cell biology by GWASs. We also confirmed that rare
familial mutations in CXCR2 cause congenital neutropenia
through an effect on leukocyte migration [24].
RVASs of coding variants are also useful to explore

GWAS loci further. Indeed, one of the limitations of
GWAS findings is that they usually highlight non-coding
SNPs in LD with many other markers across large gen-
omic intervals that may contain several genes. Although
we generally accept that most GWAS SNPs have regula-
tory functions [90], it is sometimes difficult to localize the
causal genes based only on this information. Although it is
not a definitive proof, finding coding variants that are
associated with the same trait is a strong argument in
favor of specific gene(s) within GWAS loci being causal.
As such, RVASs and GWASs should not be considered as
competitive but rather as complementary approaches to
study common diseases and complex traits. As an
example, two groups recently identified a low-frequency
missense variant in TM6SF2 that is associated with total
cholesterol levels and alanine transaminase, and that ex-
plains GWAS signals at the locus for coronary artery and
non-alcoholic fatty liver diseases [21,23]. We anticipate
that one of the main outcomes of RVASs will be to clarify
mechanistically - through the identification of causal genes
and coding loss- and gain-of-function alleles - results from
GWASs.

Conclusions and future directions
New technological advances now enable human geneti-
cists to explore the contribution of low-frequency and rare
genetic variants in phenotypic variation. For obvious rea-
sons, the scientific community initially focused on the 2%
of the human genome that is protein coding, identifying
new genes implicated in common human diseases and
complex traits, or new alleles located in previously impli-
cated loci (either by GWASs or Mendelian genetics).
While we continue to explore coding variation, we need
to start considering how to tackle the remaining 98% of
the human genome. Indeed, there is no reason why rare
non-coding variants should not influence human pheno-
typic variation. However, there remain challenges ahead in
terms of developing statistical methods and experimental
tools to distinguish rare neutral variants from functional
variants. Without doubt, some of the progress in this field
will come from studying other populations (isolates or
different ethnic groups) or using different designs (such as
family-based designs) where rare variants might be more
common. We also need to develop phenotype-relevant
high-throughput assays in cells or model organisms to
characterize the biological impacts of these rare variants.
Despite these challenges, we believe that studying the
influence of rare genetic variants in human biology is a
worthwhile endeavor. The premise of RVASs was that rare
genetic variants would have strong effect sizes on pheno-
types; with a few exceptions, this is clearly not what we
observe. However, we should not forget that we do not
need to find strong-effect alleles to gain insights into hu-
man biology, disease pathophysiology, or to consider and
develop new therapeutic strategies [111].
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