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Abstract

Background: As whole exome sequencing (WES) and whole genome sequencing (WGS) transition from research tools
to clinical diagnostic tests, it is increasingly critical for sequencing methods and analysis pipelines to be technically
accurate. The Genome in a Bottle Consortium has recently published a set of benchmark SNV, indel, and homozygous
reference genotypes for the pilot whole genome NIST Reference Material based on the NA12878 genome.

Methods: We examine the relationship between human genome complexity and genes/variants reported to be
associated with human disease. Specifically, we map regions of medical relevance to benchmark regions of high or
low confidence. We use benchmark data to assess the sensitivity and positive predictive value of two representative
sequencing pipelines for specific classes of variation.

Results: We observe that the accuracy of a variant call depends on the genomic region, variant type, and read
depth, and varies by analytical pipeline. We find that most false negative WGS calls result from filtering while
most false negative WES variants relate to poor coverage. We find that only 74.6 % of the exonic bases in ClinVar
and OMIM genes and 82.1 % of the exonic bases in ACMG-reportable genes are found in high-confidence
regions. Only 990 genes in the genome are found entirely within high-confidence regions while 593 of 3,300
ClinVar/OMIM genes have less than 50 % of their total exonic base pairs in high-confidence regions. We find
greater than 77 % of the pathogenic or likely pathogenic SNVs currently in ClinVar fall within high-confidence
regions. We identify sites that are prone to sequencing errors, including thousands present in publicly available
variant databases. Finally, we examine the clinical impact of mandatory reporting of secondary findings,
highlighting a false positive variant found in BRCA2.

Conclusions: Together, these data illustrate the importance of appropriate use and continued improvement of
technical benchmarks to ensure accurate and judicious interpretation of next-generation DNA sequencing results
in the clinical setting.

Background
As whole exome sequencing (WES) and whole genome
sequencing (WGS) transition from research tools to clin-
ical diagnostic tests, it is increasingly critical for sequen-
cing methods and analysis pipelines to be technically
accurate. To interpret appropriately the results of any clin-
ical test, the informed clinician should have a working
knowledge of the accuracy and diagnostic characteristics

of the test. Initial evaluations suggest that SNV and
INDEL genotype calls can vary based on exome capture
kit, sequencing platform, and the aligner and variant caller
[1–9]. An absence of technical benchmark data and evalu-
ation methods prompted the National Institute of Stan-
dards and Technology (NIST) to convene the Genome in
a Bottle (GIAB) Consortium to develop infrastructure to
address this problem. The consortium is developing and
disseminating Reference Materials, Reference Data, and
Reference Methods for human genome sequencing.
The complex nature of the human genome presents

significant challenges to achieving technical accuracy in
clinical sequencing (Fig. 1). A human genome contains
3.2 billion basepairs (bp) consisting of 50–69 %
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repetitive sequence [10] encompassing transposable ele-
ments (LINES, SINES, and Long Terminal Repeats),
low complexity regions (such as homopolymers), and
pseudogenes. Larger insertions, deletions, and rear-
rangements within the genome, often termed structural
variants, are not represented in a reference sequence
and thus present additional complexity in alignment. A
total of 19,000–21,000 protein coding genes comprise
1–2 % of the genome [11], and the size of protein-
coding genes is variable. RefSeq genes have a median of
six exons per gene with the titin (TTN) containing the
highest number of exons: 363. Certain disease-related
genes are particularly complex, such as the highly

paralogous families of transmembrane ion channels,
many of which are associated with cardiac arrhythmias
and excitatory abnormalities in the nervous system
[12]. The challenges of repetitive, paralogous sequence
and structural variation complicate the analysis of clin-
ical WGS and WES data. Not only is short-read se-
quencing prone to false negative or false positive
variant calls due to systematic sequencing errors, but
the repetitive nature of the genome introduces global
mapping and local alignment challenges [13].
Over the last several years many groups have dem-

onstrated the clinical utility of genome sequencing
[14–17], developing tools for clinical interpretation of
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Fig. 1 Complexity of the Genome. a The genome consists of several (overlapping) regions. Eighty-six percent of 35 bp sequences and 95 % of
100 bp sequences are unique to one location in the reference genome. b A total of 50.6 % of the non-N reference genome falls into a repeat
(data from RepeatMasker). c There is great variation in exon count and number of exonic bases per gene (data from RefSeq). d An unrooted
phylogenetic tree derived from multiple alignment of cDNA sequences of 10 voltage-gated sodium channel genes within the human genome
illustrates the complexity evolutionary relationship of paralogous sequences which complicates the process of short-read alignment in next-
generation sequencing. A related voltage gated calcium channel CACNA1L is included as an outgroup
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individuals [18], families [19], and for rapid genetic
diagnosis [20–24]. Themes throughout this work in-
clude low concordance across platforms for insertion-
deletion variants, and moderate concordance between
interpreters of genomic variants [1, 5, 25].
In this analysis, we characterize the GIAB [26] high-

confidence regions, benchmark WGS and WES ex-
ample variant calls in relation to publicly available
high-confidence consensus SNV, indel, and homozy-
gous reference genotypes for NA12878, and evaluate
the clinical impact of genomic sites with systematic er-
rors from one or more sequencing platforms. We use
the WGS and WES benchmark to investigate the
causes of extra and missing variants in two call sets
(putative false positive and false negative variants, re-
spectively). We focus on potentially functionally signifi-
cant variants. Finally, we compare performance across
the whole genome to performance for different types of
potentially functional variants in genes that have differ-
ent levels of evidence for disease association and clin-
ical actionability.

Methods
Reference genome, sequencing platforms, and variant
calling
We recently published a set of high-confidence SNV,
indel, and homozygous reference genotypes for the pilot
whole genome NIST Reference Material 8398 [26]. Briefly
these genotypes were generated by integrating 14 whole
genome and exome sequencing datasets from five differ-
ent technologies. When the datasets had discordant geno-
types, we arbitrated between them using characteristics of
bias typically used for filtering variants, such as strand
bias, mapping quality, and clipping of reads. Specifically,
at sites with discordant genotypes, we used genotypes
from datasets that did not have characteristics of bias. If
the reason for the discordant genotypes could not be auto-
matically determined using the characteristics of bias (for
example, if datasets with no evidence of bias disagreed),
then the variant and surrounding region was excluded
from the high-confidence regions. Additionally, we ex-
cluded regions if all datasets had evidence of bias or fewer
than 5 reads with mapping quality >10. We also excluded
regions in which current sequencing technologies are
prone to errors (specifically, long homopolymers and tan-
dem repeats, segmental duplications, and putative struc-
tural variants). The resulting high-confidence calls and
high-confidence regions for this pilot genome, based on
DNA from subject NA12878, are rapidly being adopted by
clinical and research labs to obtain performance metrics
such as sensitivity and false discovery rate for new library
preparation and informatics methods [3, 27–32].
One whole genome and one Nextera-based whole ex-

ome sequencing dataset from the Illumina HiSeq

sequencing platform were used in this work. The coverage
of coding regions by the Nextera exome kit was found to
be better than other standard exome kits, but worse than
newer enhanced exome library preparation methods like
‘augmented exome sequencing’ [33]. This sequencing was
performed in 2013 and 2014 by two participating institu-
tions of the Genome in a Bottle Consortium: NIST and
the Garvan Institute of Medical Research. The sequencing
was done on the candidate NIST Reference Material 8398,
a large batch of DNA extracted from the cell line
GM12878. The cell line is archived at the Coriell Institute
for Medical Research. These measurements represent typ-
ical approaches that were broadly used at the time of this
study.
Whole genome sequencing of 150 × 150 bp paired end

reads was performed on the Illumina HiSeq 2500 with
PCR-free v2 chemistry at NIST. These data were from 12
flow cells on the same instrument and 14 replicate librar-
ies prepared from a total of six tubes of candidate NIST
RM 8398. The raw data were aligned using BWA MEM
v.0.7.5a with default parameters [34]. Reads from each li-
brary from each lane were independently realigned using
GATK v.2.8-1-g932cd3a IndelRealigner, followed by Base
Quality Score Recalibration following GATK Best Prac-
tices [35]. Then, all reads from all runs and libraries
were combined for a second round of GATK IndelRea-
ligner. The reads were randomly downsampled from
approximately 300× to 30× coverage to give a typical
level of coverage for WGS. Note that this amounted to
31× coverage within the Nextera exome capture re-
gions. Even though these data are from multiple librar-
ies and runs, we expect that these should represent
typical data for the purposes of this work, though they
may contain slightly fewer errors since errors from any
particular library would be diluted by combining with
other libraries. Variants were called using Platypus
v.0.5.2 including assembly-based calling to test a new
pipeline that was recently proposed for clinical variant
calling [36]. Variants were filtered using the defaults for
Platypus (that is, GOF, badReads, alleleBias, hp10, Q20,
HapScore, MQ, strandBias, SC, QualDepth, REFCALL,
and QD) [36]. Separately, INDELs were called using
Scalpel [37] version 0.3.2 in single sample mode for
CCDS regions with default settings. The entire 300×
dataset and the 30× downsampled bam file are available
on the GIAB ftp site at NCBI: ftp://ftp-trace.ncbi.nlm.-
nih.gov/giab/ftp/data/NA12878/NIST_NA12878_H-
G001_HiSeq_300x/.
Approximately 50× coverage whole exome sequen-

cing was performed on a library prepared using the
Nextera rapid capture exome kit at the Garvan Insti-
tute of Medical Research. The raw read data were
aligned using BWA and variants were called using
GATK HaplotypeCaller v.2.7-2-g6bda569 [35]. No
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filtering was applied. Note that the variant calling pipe-
lines for WES differs from that of the WGS. The vcf
file used is available on the GIAB ftp site at NCBI:
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/
analysis/GARVAN_snps_indels_12172013/project.NIST.hc.
snps.indels.vcf Separately, INDELs were called using
Scalpel [37] version 0.3.2 in single sample mode for
CCDS regions with default settings.

Comparison to GIAB benchmark calls
We compared the WGS and WES calls to the latest ver-
sion of high-confidence calls from GIAB, which inte-
grates multi-platform integrated calls from NIST with
two phased pedigree call sets from Real Time Genomics
and the Illumina Platinum Genomes Project (from: ftp://
ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG0
01/GIABPedigreev0.2/). To compare different representa-
tions of complex variants (that is, nearby SNVs and/or
indels), we used the freely available Real Time Genom-
ics tool vcfeval (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/
ftp/tools/RTG/). The resulting calls in the test sets that
were included (true positives), extra (false positives),
and missing (false negatives) in the benchmark were
then annotated for potential functional effect.

Annotation and variant classification
We annotated variant call sets with Sequence to
Medical Phenotypes (STMP), which employs a custom
Annovar-based tool to integrate data into a tabular for-
mat from 94 sources, including segmental duplications,
repetitive elements, ClinVar and OMIM annotations,
and performs separate functional annotations with
transcript information from NCBI RefSeq, Ensembl,
and UCSC [1, 38]. The data were further sorted and
variants tabulated with custom python scripts. Individ-
ual variants were manually curated for technical validity
(JZ) and potential clinical relevance (MG).

Gene sets
We define two gene sets. The American College of Med-
ical Genetics and Genomics (ACMG) reportable genes list
contains the 56 genes that the ACMG recommend for
pathogenic variant discovery and reporting [39]. Though
it contains only a fraction of important disease-related
genes, we selected the list because it represents an exter-
nally defined minimal set of genes where performance
must meet clinical standards. It also represents a group of
genes felt to be medically actionable, a group where we
would hope for optimal technical performance. The sec-
ond gene set contains genes derived from the ClinVar and
OMIM catalogs to represent a total of 3,300 genes with
known relationship to human disease.

Genomic regions
The 35 bp uniqueness scores and 100 bp alignability data
were downloaded from the UCSC Genome Browser. The
Z bp uniqueness metric indicates whether the sequence
(of length-Z) beginning at that base is unique in the gen-
ome, while the 100 bp ‘alignability’ metric tolerates up to
two mismatches.
The 100 bp uniqueness scores were created by breaking

the reference into 100 bp fragments and aligning with
Bowtie (allowing no gaps and only accepting unique align-
ments, options: −v0 –best –m1).

Sites with systematic errors in relevant databases
We defined sites with systematic errors as sites that
were first determined to be homozygous reference by
the Genome in a Bottle arbitration process, and second,
a non-homozygous reference genotype was called from
any sequencing platforms that had reads containing a
variant at the site. Specifically, we considered a site to
have a systematic error if all sequencing datasets from a
platform had evidence for an incorrect genotype or if
more than two sequencing datasets from a platform
had evidence for an incorrect genotype. No filtering
was performed and all variants with a quality score >2
were called using GATK v2.8-1. A low quality score
threshold was used to be more comprehensive in finding
sites that might have bias. These sites can be downloaded
from the GIAB ftp site (ftp://ftp-trace.ncbi.nlm.nih.gov/
giab/ftp/data/NA12878/analysis/NIST_union_callsets_061
72013/NISTIntegratedCalls_14datasets_131103_allcall_U
GHapMerge_HomRef_VQSRv2.18_all_bias_nouncert_ex-
cludesimplerep_excludesegdups_excludedecoy_excludeR-
epSeqSTRs_noCNVs.vcf.gz), and the platform or platforms
with systematic errors are listed in the INFO field, ‘plat-
formbias’. We used bedtools [40] to intersect the coordi-
nates of these variants with those in annotation databases
and custom perl scripts to filter out variants in annotation
databases with different alternative alleles.

Characterizing the GIAB high-confidence regions
We restricted benchmarking to regions of the Genome in
a Bottle reference material determined to be high confi-
dence. As described above and in our previous work [26],
we excluded regions from the high-confidence regions if
they were low coverage, prone to mapping error (paralo-
gous sequences, repetitive elements, structural variants,
and segmental duplications) or systematic errors in all se-
quencing chemistries (repetitive elements, low-complexity
regions). We characterized the high-confidence regions in
terms of uniqueness, repeat sequences, and the proportion
of the genome and exome that fall inside these high-
confidence regions.
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Results
Accuracy of variant calls in high-confidence regions
In the high-confidence regions, we assessed the accuracy
of variant calls from Illumina whole genome (BWA MEM
followed by Platypus) and Illumina Nextera exome se-
quencing (BWA followed by GATK).
We compared the performance for different types of

potentially functional SNVs in medically relevant genes
from ClinVar/OMIM as well as genome wide. For all
functional annotations (non-synonymous, synonymous,
splicing, and truncating) WGS enabled equal or higher
average sensitivity compared to WES (Table 1). Simi-
larly, for INDELs, sensitivity was higher for WGS
(72.7 %) than WES (22.7 %) within consensus coding
and high-confidence regions using Scalpel [37].
False negatives and false positives arise for different

reasons in each platform. For WES, poor read depth was
the primary driver of sensitivity as 95 % of false negative
variants (FNVs) fell within regions having a read cover-
age of <10. Note that variant calls remained consistent
with increased overall coverage (Additional file 1: Table
S1). Further analysis of FNVs revealed that 16 % of
whole genome FNVs fall inside simple repeats, low com-
plexity regions, or satellite repeats, compared to 8.6 % of
whole exome FNVs. In contrast, 16 % of whole exome
FNVs are in regions with GC content >75 %, compared
to <1 % of whole genome FNVs.
For WGS, most FNVs resulted from filtering by Platy-

pus due to their presence within difficult-to-sequence
and/or difficult-to-call regions. Specifically, 87 % of
FNVs were called but removed by filtering using the de-
fault parameterization of Platypus (that is, low base qual-
ities, allele frequency, homopolymers >10 bp, variant
quality <20, too many haplotypes, low mapping quality,
strand bias, low complexity regions). Thirty-six percent

of whole genome FNVs fell within the short interspersed
nuclear elements (SINE) class of repetitive elements,
compared to 13 % of all whole genome bases residing
within SINEs, and less than 1 % of FNVs within genic
SINEs. Since most FNVs for WGS calls in the whole
genome were caused by filtering, we characterized
which filters were most and least specific in distin-
guishing likely false positives from likely true positives
(Additional file 2: Table S2). The least specific filters for
Platypus were haplotype score (HapScore), mapping
quality (MQ), sequence context (SC), and QUAL by
depth (QD). When these were the only filters, they
contained only 3 % to 5 % false positives and together
made up 77 % of the FNVs. In contrast, strandBias, a
filter indicating that a significantly higher proportion of
variants falls on one sequencing strand compared to
the other, contained 68 % false positives when it
occurred on its own or 99 % false positives when it oc-
curred in addition to another filter. In general, sites
with multiple reasons for filtering had a higher false
positive rate (39 %) than all filtered sites (15 %). These
results highlight the importance of characterizing and
tuning filters to obtain the most accurate and complete
call-set possible [41].
Less than 3 % of variants in both whole genome and

exome sequencing were absent from benchmark calls
but fell within high-confidence regions; therefore, one
could consider these variants false positives. However,
manual inspection of alignments around these variants
suggests a variety of etiologies, so we instead call them
questionable variants (QVs). For WES, most QVs were
correctly identified as non-reference but had incorrect
genotypes due to insufficient coverage (for example, the
sites were identified as homozygous variant when they
were in fact heterozygous). Since exome variant calls
were unfiltered, there were also a few QVs that were
likely to be systematic sequencing errors; these had clear
evidence of strand bias and would be easily filtered if a
strand bias filter were applied, including a variant
rs200691513 (K856N) in the clinically-relevant, ACMG
gene DSG2, which is associated with arrhythmogenic
right ventricular cardiomyopathy. For WGS, almost all
of the QVs represent difficulties in our simple classifica-
tion schema, in that many likely represent true variants
occurring near the boundary between high-confidence
and low-confidence regions. In fact, except for a series
of seven QVs in SERPINA1 (discussed below), all six of
the remaining synonymous and non-synonymous QVs in
ClinVar/OMIM genes were within 50 bp of the inside
edge of high-confidence regions. Complex variants are
occasionally missing from the high-confidence calls as
they overlap the borders of the high and low confidence
delineation. Therefore, we recommend manual inspec-
tion of QVs near the edge of high-confidence regions.

Table 1 Sensitivities for whole genome sequencing (WGS) and
whole exome sequencing (WES) SNVs

Function Gene set WGS SNV
sensitivity

WES SNV
sensitivity

Non-synonymous ClinVarOMIM 0.979 (0.970,0.985) 0.936 (0.923,0.948)

Non-synonymous Exome 0.979 (0.975,0.982) 0.936 (0.930,0.942)

Splicing ClinVarOMIM 0.889 (0.565,0.994) 0.556 (0.267,0.811)

Splicing Exome 0.951 (0.865,0.983) 0.629 (0.505,0.738)

Synonymous ClinVarOMIM 0.988 (0.982,0.992) 0.952 (0.942,0.961)

Synonymous Exome 0.985 (0.983,0.988) 0.952 (0.947,0.956)

Truncating ClinVarOMIM 1.000 (0.646,1.000) 1.000 (0.646,1.000)

Truncating Exome 1.000 (0.924,1.000) 0.915 (0.801,0.966)

Whole genome N/A 0.954 (0.954,0.955) 0.053 (0.053,0.053)

Sensitivity for different categories of potentially functional variants across
different gene categories. Parentheses contain 95 % binomial confidence
intervals
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In one particular region, appropriate alignments and
variant calls against the hg19 reference yielded a series
of five synonymous and two non-synonymous phased
heterozygous QVs between chr14:94844936-94844975 in
the gene, SERPINA1 (Additional file 3: Figure S1a). As
shown in Additional file 3: Figure S1b, this gene resides
within a larger region that has a curation issue from the
Genome Reference Consortium (GRC Curation Issue
HG-1930, http://www.ncbi.nlm.nih.gov/projects/genome/
assembly/grc/human/issues/?id=HG-1930). These variants
are contained in a new alternative sequence that is part of
GRCh38 constructed from the 1000 Genomes decoy refer-
ence sequence. The GeT-RM browser allows a BLAST
search of the sequence in a region, revealing the same
series of SNVs in the homologous sequence (Additional
file 3: Figure S1c). These seven variants were classified as
QVs, because they come from an alternate locus that is
unlocalized in the reference assembly. This result high-
lights that future work is needed to further understand
how alternate loci in GRCh38 will be employed in variant
calling pipelines to minimize the types of errors classified
as QVs and FNVs in our analysis.

Sites prone to systematic errors may have clinical relevance
Short-read sequencing technologies and analysis pipe-
lines are prone to systematic errors at some genomic
locations. These systematic errors may result from PCR
amplification, errors sequencing particular sequence
contexts, local alignment errors, and/or global mapping
errors. We identified 39,301 loci where the benchmark
data contain a high-confidence homozygous reference
call, but at least one sequencing technology incorrectly
called a variant. For this analysis, we define these posi-
tions as sites with systematic errors. Strikingly, 7,467 of
these variants are present in one or more of the follow-
ing databases: ClinVar, ESP, 1000 Genomes, COSMIC,
and dbSNP (Table 2). These variants in publicly avail-
able databases may arise from two sources: they may be
false positives that were submitted to the databases, or
they may be real variants in the population that are not

present in the NA12878 genome. In the first case, sys-
tematic sequencing errors interpreted as true positives
may detrimentally affect algorithms that use these data-
bases, such as GATK Base Quality Score Recalibration.
In the second case, it may be difficult to distinguish be-
tween real variants and systematic sequencing errors at
these positions in any individual. Of note, only four
sites with systematic errors were in ClinVar, all of
which were indels in homopolymers from Ion Torrent
sequencing experiments, and would likely be filtered by
Ion Torrent Variant Caller, which calls more accurately
in such contexts (Additional file 4: Table S3). These
four sites appeared likely to represent real, disease-
associated variants previously reported in other individ-
uals, including a truncating variant in BRCA2 discussed
below.

Large areas of medically actionable genes fall within low
confidence regions
We sought to characterize the high-confidence regions in
the context of clinical applications. Towards this goal, we
calculated the proportion of exonic bases present in the
high-confidence regions for each ACMG gene (Fig. 2a). In
total, 82.1 % of exonic bases in ACMG genes are in high
confidence regions. Individual genes ranged from 0 % to
100 % of exonic bases in high-confidence regions. Table 3
displays the reason for low confident bases in ACMG
genes. The most common reasons for low confidence
were overlapping with STRs or segmental duplications
found in previous studies [42] or purported structural var-
iants in dbVar from NA12878.
Next, we calculated the proportion of exonic bases

present in the high-confidence regions for ClinVar and
OMIM genes and all coding genes (Fig. 2b). Surprisingly,
only 74.6 % of ClinVar and OMIM genes’ exonic bases
and 72.7 % of the exonic bases in all coding genes are
found in high-confidence regions. Of the 18,667 coding
genes, 990 were 100 % within high-confidence regions;
these genes tend to be smaller (mean: 1,787 bp) than the
rest (mean: 3,371 bp).
Large portions of clinically important genes fall outside

of the high-confidence regions. A total of 593 of 3,300
ClinVar and OMIM genes have less than 50 % of the ex-
onic bases in high-confidence regions and 2,616 of 18,667
coding genes’ exonic bases are entirely excluded from
high-confidence regions.
We also examined ClinVar and OMIM genes at the

exon-level; Fig. 2c shows the distribution of the propor-
tion of first, second, middle, penultimate, and last exons
inside the high-confidence regions. Notably, first exons
have a lower than average proportion of their bases in
high-confidence regions, which is likely explained by the
well-known higher GC content in first exons.

Table 2 Sites with falsely-called variants in one or more
technologies and their presence in several databases

Sites (n)

Total variants with bias 39,301

Total variants with bias in databases 7,467

ClinVar 4

ESP 38

1000 Genomes 89

dbSNP (v138) 7,363

COSMIC 123
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High-confidence regions are enriched for unique and
non-repetitive sequences
The repetitive sequences in the reference assembly fre-
quently cause difficulties in short-read alignment since a
sequence read from a repeated region could align with
equal probability to multiple locations. In these situations,
results vary by aligner (and chosen alignment parameters);
the read will be either: (1) placed randomly in any one of
the equally best locations; (2) placed in all possible loca-
tions; or (3) not aligned at all. Aligning to repetitive se-
quences is particularly problematic if the patient’s genome

contains a variant in one copy of a repeated sequence but
not in other copies. In this case, misaligned sequence
reads can create false positive or false negative variant
calls, which could have clinical significance. Clearly, less
repetitive regions (that is, more unique sequence) allow
for improved alignments and thus improved variant calls.
Therefore, we examined the uniqueness of the sequences
in high and low confidence regions. We found that 90.6 %
of 35 bp sequences in high-confidence regions are unique
to one location in the genome compared to 47.5 % of
35 bp sequences in low-confidence regions (Fig. 3a).
Further, we evaluated the fraction of each RepeatMasker
repeat class in high-confidence regions. Many classes of
repeats – particularly low complexity (48.6 %), simple
repeats (18.5 %), and microsatellites (28.3 %) – are infre-
quently seen in high-confidence regions (Fig. 3b). These
repetitive regions are depleted in the current high-
confidence regions because regions with low mapping
quality or long repeats and segmental duplications are ex-
plicitly excluded to form conservative high-confidence
calls. More work is needed to form high-confidence calls
in these regions.

Characterizing ClinVar pathogenic variants
To understand how these analyses would be used in
practice, we characterized the genomic context of all
pathogenic and likely pathogenic ClinVar SNVs, whether
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Fig. 2 a The fraction of each ACMG gene within GIAB high-confidence regions. b Violin plots showing the distribution of the fraction each gene
in the GIAB high-confidence regions for NA12878 for relevant gene sets: ACMG reportable genes, genes with variants in OMIM or ClinVar, and all
genes. c Boxplots showing the distribution of the fraction of first, second, middle, penultimate, and last exon in ClinVar or OMIM genes in the
GIAB high-confidence regions

Table 3 Reasons for low confident bases in ACMG genes

Reason for low confidence Percentage of
bases

CNVs or other SVs that have been reported in dbVar
for NA12878

47

STRs in RepSeqSTRdb 34

Regions with known segmental duplications 15

Simple Repeats from repeat masker 1.7

<3 datasets have at least 5 reads with mapping
quality >10

1.3

Abnormal allele balance 0.17

Unresolved conflicting genotypes after arbitration 0.03

Calls with support from <3 datasets after arbitration 0.0082

Local alignment problems 0.0041
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they were in NA12878 or not. 77.14 % of the pathogenic
or likely pathogenic SNVs currently in ClinVar fall
within high-confidence regions, 97.17 % are at the start
of a 35 bp sequence that is only present once in hg19,
and 98.11 % are at the start of a 100 bp sequence that is
only present once in hg19 (with up to two mismatches).
These values are even higher for likely pathogenic or
pathogenic SNVs with > = level 2 ClinVar review status
(Table 4) and are higher than genome-wide averages
(Fig. 4).
Subsequently, we looked at the distribution of ClinVar

pathogenic variants within ACMG genes from 60,706
exomes in ExAC (Additional file 5: Table S4) [43]. Of
the 5,146 positions classified as pathogenic, 423 were
identified in this cohort. Several technical and ultimately
clinical observations emerge. From the technical

standpoint, a substantial number of variants were in low
confidence regions (100), failed VQSR (38), had dramat-
ically low coverage (32 were covered by less than 15
reads on average) or had suspiciously high coverage
(three were covered by more than 100 reads on average)
indicative of compression tracks within the reference. We
examined the number of samples with uncalled genotypes
as a function of read depth, and found that 26 of the 423
variant positions had low coverage and uncalled genotypes
for over 1,000 of the 60,706 individuals (Fig. 5).

Discussion
To better understand the clinical impact of technical as-
pects of genome sequencing, we used high-confidence
consensus calls from a benchmark genome to characterize
clinically relevant genetic variation at the gene and variant
level across the genome. We characterized the high-
confidence regions and examined the proportion of med-
ically relevant genes that fall outside of high-confidence
regions.

Disease causing variation occurs in complex regions of
the genome
We report that large areas of key genes, as well as a sig-
nificant proportion of known disease-causing variation,
lie outside of high-confidence regions, highlighting the
importance of technical accuracy in benchmarking clin-
ical genomics. While less than 1,000 genes across the
genome are found entirely within the high-confidence
regions, it is perhaps more concerning that, of the genes
we regard as most medically important – the ‘actionable’

Fig. 3 a The number of sites in the genome where each 35 bp
sequence appears for Genome in a Bottle high-confidence and low-
confidence regions. b The fraction of each RepeatMasker repeat class
in high-confidence regions

Table 4 Genomic context of ClinVar (likely) pathogenic SNVs

n %

Total likely pathogenic or pathogenic SNVs 15,735

Likely pathogenic or pathogenic SNVs in
high-confidence regions

12,138 77.14

Likely pathogenic or pathogenic SNVs that start a
35 bp unique sequencea

15,289 97.17

Likely pathogenic or pathogenic SNVs that start a
100 bp alignable sequenceb

15,438 98.11

Total likely pathogenic or pathogenic SNVs
with > = level 2 ClinVar review status [32]

1,212

Likely pathogenic or pathogenic SNVs with > =
level 2 ClinVar review status in high-confidence regions

998 82.34

Likely pathogenic or pathogenic SNVs with > =
level 2 ClinVar review status that start a 35 bp
unique sequencea

1,190 98.18

Likely pathogenic or pathogenic SNVs with > =
level 2 ClinVar review status that start a 100 bp
alignable sequenceb

1,195 98.60

aThe 35 bp sequence that starts at the SNV’s genomic loci is only present once
in the whole reference genome (hg19)
bThe 100 bp sequence (with up to two mismatches) that starts at the SNV’s
genomic loci is only present once in the whole reference genome (hg19)
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list of 56 genes from the ACMG, only 82.1 % of their ex-
onic structure is found within high-confidence regions.
Indeed, the knowledge that nearly one fifth of each gene,
for which laboratory directors are recommended to pro-
vide clinical reporting for every patient undergoing clin-
ical exome or genome sequencing, would not reach
consensus across different chemistries and pipelines, is
sobering. But it is a call to arms for those interested in
clinical grade technical accuracy for genome sequencing.
We hope by highlighting and scrutinizing the challen-
ging areas of the genome, we can optimize our pipelines
for greater consensus and, at the very least, provide
transparency regarding our confidence level in every call.
In contrast with the lack of immediate personal implica-
tion of a false call in a discovery cohort study, a false call
on a clinical report could have immediate detrimental
consequences in the life of an individual, family, or dis-
ease community.

False negative and false positive variants may have
clinical impact
Our analysis revealed false negatives and false positives
in both WES and WGS. For exome sequencing, many of
false negatives were due to low or no coverage, which
emphasizes the importance of choosing a sequencing
platform that adequately covers all medically-relevant
genomic regions [33]. Most false negatives from WGS
resulted from overly aggressive filtering.
In one example of a false positive from our systematic

error call set, one sequencing chemistry and one pipeline

called a recognized, pathogenic frameshift deletion in
BRCA2. Pathogenic variants in the BRCA genes are impli-
cated in hereditary breast and ovarian cancer syndrome
(http://www.ncbi.nlm.nih.gov/books/NBK1247/). The vari-
ant, rs80359760, is currently categorized in ClinVar as
pathogenic/likely pathogenic based on several entries from
the Breast Cancer Information Core, the Sharing Clinical
Reports Project, and the literature (http://www.ncbi.nlm.
nih.gov/clinvar/variation/52831/). Based on GIAB’s con-
sensus sequence, this variant is known to be a false positive
call for this patient. However, it might be reported to an-
other patient as an incidental finding, and one with evi-
dence for pathogenicity that might even lead to medical
action. Examples like this highlight the importance of con-
firmatory testing by an orthogonal method. Additionally,
we hope that our analyses and the reference materials can
provide helpful meta-data for bioinformatics analysis of
loci such as these, since this dataset allows positions with
systematic biases and medically relevant annotations in
public databases to be identified [44, 45].

Analytical choices impact variant calls
Our findings highlight the influence of informatic choices
upon the final variant calls. For example, the newest human
reference GRCh38 employs alternate contigs, encom-
passing a more accurate but complex representation of
normal human variation. To maximize the benefit from this
significant advance requires the development of mapping,
variant calling, and variant comparison [46] software that
recognizes complex variation (for example, SERPINA1 vari-
ation corresponding to an alternate locus in GRCh38, see
Results) [47]. Additionally, the choice of ethnicity-specific
reference genomes has been shown to impact the sensitivity
of variant calling [19]. Furthermore, differences within the
annotation schema employed may also influence the
clinical impact of the call set [48]. Within the ACMG 56
genes in the NA12878 true positive confident call set, there
were five variants that were annotated differently by one of
the three gene models employed (see Additional file 6:
Table S5). For example, the voltage-gated sodium channel,
SCN5A, is associated with dilated cardiomyopathy and long
QT syndromes and displays a complex developmentally-
regulated pattern of multiple splice isoforms [49]. Though
the common variant rs6599230 is unlikely to be of func-
tional significance, it was annotated as a synonymous vari-
ant p.A29A using Refgene and Gencode transcript models,
and alternately annotated as a non-synonymous variant
p.Q32R with a UCSC Knowngene transcript model. Each
of these annotations is a true and accurate representation,
each corresponding to a different splice isoform and sup-
ported by either computationally-predicted or manually-
curated transcript data. However, among the multiplicity of
variants, it is not clear which (or all) of these should be dis-
played to the ordering clinician for the purposes of clinical

Fig. 4 Bar graphs displaying the fraction of ClinVar pathogenic or
likely pathogenic SNVs in high-confidence regions, unique sequences
(35 bp), and alignable sequences (100 bp). The black line represents
the genome-wide value
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decision-making. Disease domain specific expertise and
standardization efforts, such as those already in process by
the ClinGen Resource (http://clinicalgenome.org/) will
prove necessary to develop the most clinically appropriate
gene models or transcripts for a particular gene. Addition-
ally, emerging resources such as the Genotype-Tissue
Expression (GTEx) project may provide relevant informa-
tion for deconvoluting the isoform specific mutations in the
tissue of interest.

Conclusions
Using the reference materials developed by the Genome
in a Bottle Consortium, we show that the predictive char-
acteristics of WES and WGS for any given variant appear
to depend on the genomic region, the class of variant, and
the informatic tools employed. We discuss false positive
and questionable variant calls from these reference mate-
rials that could significantly impact clinical care. Thus, the
discussion of the technical aspects of clinical sequencing,
and the continued development of reference materials to
characterize more challenging parts of the genome, are
critical steps toward enabling a better understanding of
the predictive and technical characteristics of these tests.
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Platypus WGS. (XLSX 52 kb)
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alignments around a series of false positive variant calls resulting from
alignment of paralogous sequence that is not in the GRCh37 reference
assembly but is in a GRCh38 ALT sequence. (a) Alignment of Ion Torrent
reads containing the series of FP SNPs. (b) Overview, including alignment
of GRC Curation Issue HG-1930, marked with a red asterisk. (c) BLAST
search of region revealing the same series of SNPs in ALT_REF_LOCI_1
HSCHR14_7_CTG1, which is an alternate locus in the new GRCh38
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that are present in ClinVar. (XLSX 40 kb)

Additional file 5: Table S4. A listing of pathogenic variants from
ClinVar present in ExAC. (TXT 602 kb)

Additional file 6: Table S5. Multiple annotations with transcript
evidence for five variants in ACMG genes detected in the NA12878
consensus standard dataset. (XLSX 39 kb)

Competing interests
EA is a founder and advisor to Personalis, Inc. The other authors do not have
competing interests.

Authors’ contributions
RLG, JRP, JMZ, and DW performed bioinformatics analyses. RLG, JRP, and JMZ
drafted the manuscript. MEG performed variant curation and interpretation.
MTW, MS, and EAA conceived and coordinated the study and helped draft
the manuscript. All authors read and approved the final manuscript.

Acknowledgments
We thank Jiang Tao and colleagues at the Garvan Institute of Medical
Research for contributing the exome sequencing data used in this work
to the Genome in a Bottle Consortium. Certain commercial equipment,
instruments, or materials are identified in this report to specify adequately the
experimental procedure. Such identification does not imply recommendation
or endorsement by the National Institute of Standards and Technology, nor
does it imply that the materials or equipment identified are necessarily the
best available for the purpose. JRP is supported by the Pediatric Scientist
Development Program, (NIH-NICHD K12-HD000850). RLG is supported by
the National Library of Medicine Training Grant T15 LM7033 and an NSF
graduate research fellowship. MEG's current address is Stanford Health Care,

Fig. 5 ClinVar variants within ACMG genes in the ExAC database. Depth of coverage in log2 space versus the number of samples that were unable to
be called for that variant. The size of the points is relative to quality scores from GATK during joint calling. Orange indicates that the variant is in a
high-confidence NA12878 region while blue is considered to be in low confidence. Triangles highlight variants that failed VQSR filtering

Goldfeder et al. Genome Medicine  (2016) 8:24 Page 10 of 12

http://clinicalgenome.org/
dx.doi.org/10.1186/s13073-016-0269-0
dx.doi.org/10.1186/s13073-016-0269-0
dx.doi.org/10.1186/s13073-016-0269-0
dx.doi.org/10.1186/s13073-016-0269-0
dx.doi.org/10.1186/s13073-016-0269-0
dx.doi.org/10.1186/s13073-016-0269-0


Stanford, California. The information presented represents the author’s own views
and does not necessarily represent the views of Stanford Hospital and Clinics,
Lucile Packard Children’s Hospital and/or Stanford University or its affiliates.

Author details
1Department of Medicine, Stanford University, Stanford, CA 94305, USA.
2Genome-scale Measurements Group, National Institute of Standards and
Technology, Gaithersburg, MD 20899, USA. 3Stanford Center for Inherited
Cardiovascular Disease, Stanford University, Stanford, CA 94305, USA.
4Department of Genetics, Stanford University, Stanford, CA 94305, USA.
5Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.

Received: 21 August 2015 Accepted: 21 January 2016

References
1. Dewey FE, Grove ME, Pan CP, Goldstein BA, Bernstein JA, Chaib H, et al.

Clinical Interpretation and Implications of Whole-Genome Sequencing.
JAMA. 2014;311:1035–44.

2. Dewey FE, Grove ME, Priest JR, Waggott D, Batra P, Miller CL, et al.
Sequence to Medical Phenotypes: A Framework for Interpretation of Human
Whole Genome DNA Sequence Data. PLoS Genet. Public Library of Science.
2015;11(10):e1005496.

3. Meynert AM, Ansari M, FitzPatrick DR, Taylor MS. Variant detection sensitivity
and biases in whole genome and exome sequencing. BMC Bioinformatics.
2014;15:247.

4. Fang H, Wu YY, Narzisi G, O’Rawe JA, Barron LTJ, Rosenbaum J, et al.
Reducing INDEL calling errors in whole genome and exome sequencing
data. Genome Med. 2014;6:17.

5. O’Rawe J, Jiang T, Sun GQ, Wu YY, Wang W, Hu JC, et al. Low concordance
of multiple variant-calling pipelines: practical implications for exome and
genome sequencing. Genome Med. 2013;5:18.

6. Wall JD, Tang LF, Zerbe B, Kvale MN, Kwok PY, Schaefer C, et al. Estimating
genotype error rates from high-coverage next-generation sequence data.
Genome Res. 2014;24:1734–9.

7. Meienberg J, Zerjavic K, Keller I, Okoniewski M, Patrignani A, Ludin K, et al.
New insights into the performance of human whole-exome capture
platforms. Nucleic Acids Res. 2015;43:e76.

8. Parla JS, Iossifov I, Grabill I, Spector MS, Kramer M, McCombie WR. A
comparative analysis of exome capture. Genome Biol. 2011;12:R97.

9. Clark MJ, Chen R, Lam HYK, Karczewski KJ, Euskirchen G, Butte AJ, et al.
Performance comparison of exome DNA sequencing technologies. Nat
Biotechnol. 2011;29:908–14.

10. de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD. Repetitive elements
may comprise over two-thirds of the human genome. PLoS Genet. 2011;7:
e1002384.

11. Clamp M, Fry B, Kamal M, Xie X, Cuff J, Lin MF, et al. Distinguishing protein-
coding and noncoding genes in the human genome. Proc Natl Acad Sci
U S A. 2007;104:19428–33.

12. Moreau A, Gosselin-Badaroudine P, Chahine M. Biophysics,
pathophysiology, and pharmacology of ion channel gating pores.
Front Pharmacol. 2014;5:53.

13. MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K,
et al. A systematic survey of loss-of-function variants in human protein-coding
genes. Science. 2012;335:823–8.

14. Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, et al. Genetic
diagnosis by whole exome capture and massively parallel DNA sequencing.
Proc Natl Acad Sci U S A. 2009;106:19096–101.

15. Gonzaga-Jauregui C, Lupski JR, Gibbs RA. Human genome sequencing in
health and disease. Annu Rev Med. 2012;63:35–61.

16. Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, et al. DNA
sequencing of a cytogenetically normal acute myeloid leukaemia genome.
Nature. 2008;456:66–72.

17. Link DC, Schuettpelz LG, Shen D, Wang J, Walter MJ, Kulkarni S, et al.
Identification of a novel TP53 cancer susceptibility mutation through
whole-genome sequencing of a patient with therapy-related AML. JAMA.
2011;305:1568–76.

18. Ashley EA, Butte AJ, Wheeler MT, Chen R, Klein TE, Dewey FE, et al.
Clinical assessment incorporating a personal genome. Lancet.
2010;375:1525–35.

19. Dewey FE, Chen R, Cordero SP, Ormond KE, Caleshu C, Karczewski KJ, et al.
Phased whole-genome genetic risk in a family quartet using a major allele
reference sequence. PLoS Genet. 2011;7:e1002280.

20. Priest JR, Ceresnak SR, Dewey FE, Malloy-Walton LE, Dunn K, Grove ME, et al.
Molecular diagnosis of long QT syndrome at 10 days of life by rapid whole
genome sequencing. Heart Rhythm. 2014;11:1707–13.

21. Willig LK, Petrikin JE, Smith LD, Saunders CJ, Thiffault I, Miller NA, et al.
Whole-genome sequencing for identification of Mendelian disorders in
critically ill infants: a retrospective analysis of diagnostic and clinical findings.
Lancet Respir Med. 2015;3:377–87.

22. Soden SE, Saunders CJ, Willig LK, Farrow EG, Smith LD, Petrikin JE, et al.
Effectiveness of exome and genome sequencing guided by acuity of illness for
diagnosis of neurodevelopmental disorders. Sci Transl Med. 2014;6:265ra168.

23. Saunders CJ, Miller NA, Soden SE, Dinwiddie DL, Noll A, Abu Alnadi N, et al.
Rapid whole-genome sequencing for genetic disease diagnosis in neonatal
intensive care units. Sci Transl Med. 2012;4:154ra135.

24. Kingsmore SF, Petrikin J, Willig LK, Guest E. Emergency medical genomes: a
breakthrough application of precision medicine. Genome Med. 2015;7:82.

25. Highnam G, Wang JJ, Kusler D, Zook J, Vijayan V, Leibovich N, et al. An
analytical framework for optimizing variant discovery from personal
genomes. Nat Commun. 2015;6:6.

26. Zook JM, Chapman B, Wang J, Mittelman D, Hofmann O, Hide W, et al.
Integrating human sequence data sets provides a resource of benchmark
SNP and indel genotype calls. Nat Biotechnol. 2014;32:246–51.

27. Aziz N, Lynn B, Driscoll D, Gibson J, Grody W, Hegde M, et al. College of
American pathologists’ laboratory standards for next generation sequence
clinical testing. J Mol Diagn. 2012;14:742.

28. Cantarel BL, Weaver D, McNeill N, Zhang JH, Mackey AJ, Reese J. BAYSIC: a
Bayesian method for combining sets of genome variants with improved
specificity and sensitivity. BMC Bioinformatics. 2014;15:104.

29. Cleary JG, Braithwaite R, Gaastra K, Hilbush BS, Inglis S, Irvine SA, et al. Joint
variant and de novo mutation identification on pedigrees from high-
throughput sequencing data. J Comput Biol. 2014;21:405–19.

30. Klein HG, Bauer P, Hambuch T. Whole genome sequencing (WGS),
whole exome sequencing (WES) and clinical exome sequencing (CES) in
patient care. LaboratoriumsMedizin-Journal of Laboratory Medicine.
2014;38:221–30.

31. Xu HL, DiCarlo J, Satya RV, Peng Q, Wang YX. Comparison of somatic
mutation calling methods in amplicon and whole exome sequence data.
BMC Genomics. 2014;15:244.

32. Linderman MD, Brandt T, Edelmann L, Jabado O, Kasai Y, Kornreich R, et al.
Analytical validation of whole exome and whole genome sequencing for
clinical applications. BMC Med Genomics. 2014;7:20.

33. Patwardhan A, Harris J, Leng N, Bartha G, Church DM, Luo S, et al. Achieving
high-sensitivity for clinical applications using augmented exome
sequencing. Genome Med. 2015;7:71.

34. Li H. Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. arXiv:13033997 [q-bioGN] 2013.

35. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A
framework for variation discovery and genotyping using next-generation
DNA sequencing data. Nature Genetics. 2011;43:491–8.

36. Rimmer A, Phan H, Mathieson I, Iqbal Z, Twigg SRF, Wilkie AOM, et al.
Integrating mapping-, assembly- and haplotype-based approaches for
calling variants in clinical sequencing applications. Nat Genet. 2014;46:912–8.

37. Narzisi G, O'Rawe JA, Iossifov I, Fang H, Lee YH, Wang ZH, et al. Accurate de
novo and transmitted indel detection in exome-capture data using
microassembly. Nat Methods. 2014;11:1033–6.

38. Wang K, Li MY, Hakonarson H. ANNOVAR: functional annotation of genetic
variants from high-throughput sequencing data. Nucleic Acids Res.
2010;38:e164.

39. Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, et al. ACMG
recommendations for reporting of incidental findings in clinical exome and
genome sequencing. Genet Med. 2013;15:565–74.

40. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics. 2010;26:841–2.

41. Gargis AS, Kalman L, Bick DP, da Silva C, Dimmock DP, Funke BH, et al.
Good laboratory practice for clinical next-generation sequencing informatics
pipelines. Nat Biotechnol. 2015;33:689–93.

42. She XW, Jiang ZX, Clark RL, Liu G, Cheng Z, Tuzun E, et al. Shotgun
sequence assembly and recent segmental duplications within the human
genome. Nature. 2004;431:927–30.

Goldfeder et al. Genome Medicine  (2016) 8:24 Page 11 of 12



43. Lek M, Karczewski K, Minikel E, Samocha K, Banks E, Fennell T, et al. Analysis
of protein-coding genetic variation in 60,706 humans. BioRxiv. 2015.
doi: 10.1101/030338.

44. Alkan C, Sajjadian S, Eichler EE. Limitations of next-generation genome
sequence assembly. Nat Methods. 2011;8:61–5.

45. Chaisson MJ, Huddleston J, Dennis MY, Sudmant PH, Malig M, Hormozdiari F,
et al. Resolving the complexity of the human genome using single-molecule
sequencing. Nature. 2015;517:608–11.

46. Cleary JG, Braithwaite R, Gaastra K, Hilbush BS, Inglis S, Irvine SA, et al.
Comparing variant call files for performance benchmarking of next-
generation sequencing variant calling pipelines. 2015. doi: 10.1101/023754.

47. Rosenbloom KR, Armstrong J, Barber GP, Casper J, Clawson H, Diekhans M,
et al. The UCSC Genome Browser database: 2015 update. Nucleic Acids Res.
2015;43(Database Issue):D670–81.

48. McCarthy DJ, Humburg P, Kanapin A, Rivas MA, Gaulton K, Cazier JB, et al.
Choice of transcripts and software has a large effect on variant annotation.
Genome Med. 2014;6:26.

49. van Stuijvenberg L, Yildirim C, Kok BG, van Veen TA, Varró A, Winckels SK,
et al. Alternative promoter usage and splicing of the human SCN5A gene
contribute to transcript heterogeneity. DNA Cell Biol. 2010;29:577–87.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Goldfeder et al. Genome Medicine  (2016) 8:24 Page 12 of 12

http://dx.doi.org/10.1101/030338
http://dx.doi.org/10.1101/023754

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Reference genome, sequencing platforms, and variant calling
	Comparison to GIAB benchmark calls
	Annotation and variant classification
	Gene sets
	Genomic regions
	Sites with systematic errors in relevant databases
	Characterizing the GIAB high-confidence regions

	Results
	Accuracy of variant calls in high-confidence regions
	Sites prone to systematic errors may have clinical relevance
	Large areas of medically actionable genes fall within low confidence regions
	High-confidence regions are enriched for unique and non-repetitive sequences
	Characterizing ClinVar pathogenic variants

	Discussion
	Disease causing variation occurs in complex regions of the genome
	False negative and false positive variants may have clinical impact
	Analytical choices impact variant calls

	Conclusions
	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References



