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Abstract

Background: The oral cavity is home to one of the most diverse microbial communities of the human body and a
major entry portal for pathogens. Its homeostasis is maintained by saliva, which fulfills key functions including
lubrication of food, pre-digestion, and bacterial defense. Consequently, disruptions in saliva secretion and changes
in the oral microbiome contribute to conditions such as tooth decay and respiratory tract infections. Here we set
out to quantitatively map the saliva proteome in great depth with a rapid and in-depth mass spectrometry-based
proteomics workflow.

Methods: We used recent improvements in mass spectrometry (MS)-based proteomics to develop a rapid
workflow for mapping the saliva proteome quantitatively and at great depth. Standard clinical cotton swabs were
used to collect saliva form eight healthy individuals at two different time points, allowing us to study inter-
individual differences and interday changes of the saliva proteome. To accurately identify microbial proteins, we
developed a method called “split by taxonomy id” that prevents peptides shared by humans and bacteria or
between different bacterial phyla to contribute to protein identification.

Results: Microgram protein amounts retrieved from cotton swabs resulted in more than 3700 quantified human
proteins in 100-min gradients or 5500 proteins after simple fractionation. Remarkably, our measurements also
quantified more than 2000 microbial proteins from 50 bacterial genera. Co-analysis of the proteomics results with
next-generation sequencing data from the Human Microbiome Project as well as a comparison to MALDI-TOF mass
spectrometry on microbial cultures revealed strong agreement. The oral microbiome differs between individuals
and changes drastically upon eating and tooth brushing.

Conclusion: Rapid shotgun and robust technology can now simultaneously characterize the human and
microbiome contributions to the proteome of a body fluid and is therefore a valuable complement to
genomic studies. This opens new frontiers for the study of host–pathogen interactions and clinical saliva
diagnostics.
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Background
Using saliva for the diagnosis of medical conditions would
be particularly attractive because it can be collected non-
invasively and economically [1], but the complexity of the
oral cavity and the multiple entities contributing to its
homeostasis make this challenging. In addition to the secre-
tions of oral grands, saliva contains cells shed from the
epithelium of the oral cavity and harbors the oral micro-
biome. Promising steps towards the establishment of saliva
protein biomarkers have already been undertaken [2, 3].
However, these studies either only considered around 100
proteins with antibody-based assays or employed relatively
low throughput mass spectrometry (MS)-based proteomics
with extensive fractionation, which generally precluded
quantification [4].
Further interest in saliva has recently been fueled by the

discovery that the oral microbiome and the gut microbiome
are the most diverse ones of the human body and that they
correlate well with each other [5]. There is now compelling
evidence for a link between the human microbiome and
conditions such as obesity, allergies, and even autoimmune
diseases like multiple sclerosis [6–8]. In addition, tooth
decay and other diseases of the oral cavity are known to be
caused by bacteria but turn out to be insufficiently
explained by one species alone [9, 10]. Therefore, first
metagenomics and then metaproteomics studies have
already aimed to relate bacterial composition to caries inci-
dence [10, 11]. However, reproducible identification and
consistent quantification of bacteria remain challenging.
Dynamic, quantitative studies would be of great help to un-
cover the functional connections between microbial com-
munities and the prevalent pathologies of the oral cavity.
During the past few years, our laboratory has focused

on simplifying and streamlining the proteomics work-
flow, with the aim of bringing the technology closer to
clinical applications. Here we set out to characterize the
saliva proteome at the greatest depth possible while still
minimizing steps that could compromise quantification.
We also developed a rapid single-run analysis workflow,
starting from standard clinical cotton swabs and deliver-
ing results in a few hours, while retaining a quantifica-
tion depth of thousands of proteins. This allowed us to
investigate changes in the saliva proteome upon perturb-
ation in a healthy cohort. We also analyzed inter-
individual differences in the saliva proteome and quanti-
tatively addressed the long-standing question of the
degree to which the plasma and saliva proteomes are
correlated. Finally, we asked if our in-depth workflow
can characterize the oral microbiome and its dynamics
and confirmed detected species by the established
method of culturing followed by Matrix-assisted laser
desorption/ionization time of flight mass spectrometry
(MALDI-TOF MS) as well as data from next-generation
sequencing projects.

Methods
Experimental design
We collected saliva at two different time points from
four female and four male, healthy, non-smoking indi-
viduals aged 24 to 40 years with Caucasian backgrounds.
All subjects were asymptomatic, did not take any drugs
or antiseptics, visited the dentist regularly, and showed
no signs of inflammation, bleeding, or infection as
judged by a medical student (N.G.). The study was
approved by the ethics committee of the Max Planck
Society and all donors provided their written informed
consent to participate in this study and to publish the
acquired results. The first collection was immediately
after waking, before eating, drinking, or tooth brushing.
The second collection took place at 10 a.m., at least
30 min after the donors had eaten breakfast and brushed
their teeth. In addition, we collected three samples
immediately after one another from the same donor,
processed them in parallel, and determined the reprodu-
cibility of our workflow. Because this showed very high
reproducibility (mean R2 = 0.92, Additional file 1: Figure
S3b), we did not perform technical replicates in this
study but decided to use our measurement time for the
analysis of several donors and proteome states.

Protein digestion and peptide purification
Following collection, the swabs were transferred to an
Eppendorf tube containing 200 μl of lysis buffer (1 % so-
dium dodecyl carbonate (v/v), 10 mM tris (2-carbox-
yethyl) phosphine, 40 mM 2-chloroacetamide, 100 mM
Tris buffer pH 8.5), thoroughly squeezed against the
inner wall of the Eppendorf tube, and removed. We re-
producibly recovered more than 100 μg of protein in this
way as estimated by the Bradford protein assay. Sample
preparation followed essentially the in-StageTip protocol
[12]. Briefly, a total of 20 μg of protein was digested by
adding 0.4 μg trypsin and LysC to our lysis buffer and incu-
bating for 60 min at 37 °C while shaking. Following this
short digestion, we acidified the peptides to a final concen-
tration of 1 % trifluoroacetic acid (TFA) and loaded them
on an SDB-RPS StageTip [13]. The filter was then washed
and peptides were finally eluted with 60 μl 80 % acetonitrile
(ACN) (v/v) and 1 % ammonium (v/v), dried in a SpeedVac
concentrator, and resuspended in A* buffer (2 % ACN (v/
v), 0.1 % TFA (v/v), pH 2) to a concentration of 1 g/l.

Single run and prefractionated liquid chromatography-MS
measurement
To obtain a deep saliva proteome, we used basic re-
versed phase chromatography to fractionate our eight
waking samples prior to liquid chromatography (LC)-
MS measurement. Approximately 15 μg of peptides were
separated in an 80-min gradient on a 20-cm, 75-μm
inner diameter column that was in-house packed with
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ReproSil-Pur C18 beads (Dr. Maisch GmbH, Germany).
Concatenated fractions [14, 15] were dried in the
SpeedVac concentrator and resuspended in A* buffer to a
concentration of 1 g/l. Both the fractionated and the single
run samples were subjected to a 100-min chromatography
gradient using an EASY-nLC 1000 ultra-high pressure
system (Thermo Fisher Scientific) and an in-house-made
40-cm column of the type described above. The chroma-
tography was on-line coupled to a Q Exactive HF mass
spectrometer (Thermo Fisher Scientific) by applying a spray
voltage of 2.2 kV. The MS scan resolution was set to
120,000 at m/z 200, the scan range to 300 to 1650 m/z, and
the maximum injection time to 55 ms. The 15 most intense
ions per MS scan were selected for higher-energy collisional
dissociation (HCD) fragmentation with an isolation width
of 1.5 m/z and were measured at a resolution of 30,000.
Dynamic exclusion was used with an exclusion time of 30 s.

Raw data processing of human proteins
The raw files were analyzed in MaxQuant [16] (version
1.5.3.15). We analyzed the single runs and the fraction-
ated samples together in order to exploit the match
between runs algorithm, which enables the identification
of peptides that were not selected for fragmentation in
one run by checking whether these peptides were se-
quenced in another run (the maximum time deviation
was 30 s of the recalibrated retention times) [17]. We
used the Andromeda search engine [18] to search the
detected features against the human reference proteome
from Uniprot (downloaded on 24 June 2015; 90.5 K
sequences, 3.2 million unique peptides of which 0.64
million were seven amino acids or more in length) and a
list of 247 potential contaminants [16]. Only tryptic pep-
tides that were at least seven amino acids in length with
up to two missed cleavages were considered. The initial
allowed mass tolerance was set to 4.5 ppm at the MS level
and 0.5 Da at the MS/MS level. We set N-acetylation of
proteins’ N-termini (42.010565 Da) and oxidation of me-
thionine (15.994915 Da) as variable modifications and car-
bamidomethylation of cysteine as a fixed modification
(57.021464 Da). A false discovery rate (FDR) of 1 % was
imposed for peptide-spectrum matches (PSMs) and pro-
tein identification using a target–decoy approach. Relative
quantification was performed using the default parameters
of the MaxLFQ algorithm [19] with the minimum ratio
count set to 1.

Data analysis of human proteins
The “proteinGroups.txt” file produced by MaxQuant
was further analyzed in Perseus (version 1.5.2.12). Pro-
teins from the reverse database, proteins only identified
by site, and contaminants were removed. We decided to
consider all keratin type I and II proteins contaminants
because we could not exclude the possibility that their

presence in our samples was due to skin desquamation.
Proteins were ranked according to the mean label-free
quantification (LFQ) intensities of the fractionated wak-
ing and the postprandial samples of all donors. We per-
formed one-dimensional (1D) annotation enrichment of
the resulting logarithmized LFQ distribution for Gene
Ontology (GO) terms and Uniprot keywords with a
Benjamini–Hochberg FDR cutoff of 2 % as described
[20]. For the comparison of plasma and saliva pro-
teomes, we used triplicate plasma proteomes of two of
our saliva donors measured with 45-min HPLC gradi-
ents [21]. These six raw files were processed together
with the single run saliva files from the two donors using
the MaxQuant settings from above. Principal component
analysis (PCA) was done on the logarithmized LFQ inten-
sities of all 16 single shot runs. The differences between
the waking and postprandial proteomes were analyzed by
filtering the list of quantified proteins for 100 % valid
values in all 16 single run analyses and performing a two
sided t-test on the logarithmized LFQ intensities with a
Benjamini–Hochberg FDR cutoff of 5 % and the s0 par-
ameter set to 0.1. We determined whether the significantly
upregulated proteins at waking were enriched for certain
Uniprot keywords compared with the entire proteome
using a Fisher exact test with 2 % permutation-based FDR.
The analogous analysis was performed for the significantly
upregulated postprandial proteins.

Raw data processing of human and bacterial proteins
For the analysis of human and bacterial proteins, we
downloaded the fasta files of all named species of the
human oral microbiome database [22] with more than
five protein sequences (downloaded 24 June 2015;
1118.9 K bacterial protein sequences in total). Together
with the human sequences the resulting database con-
tained 1209.4 K protein sequences which correspond to
58.6 million unique peptides after in silico digestion and
5.9 million peptides seven amino acids or more in
length, which we considered in our MaxQuant settings.
Search parameters were essentially identical to the raw
file processing of human proteins alone, except that we
applied the split by taxonomy feature on the phylum
level and only used unique peptides for quantification.
Due to the split by taxonomy on the phylum level, pep-
tides that are part of human and bacterial proteins or
peptides that occur in proteins from two different phyla
are neglected for protein identification. This, as well as
using only unique peptides rather than razor peptides
for quantification, guarantees that peptides shared by
different phyla are not attributed to the wrong organism.

Data analysis of the oral microbiome
For creating the taxonomic tree in Fig. 4, we determined
the number of peptides that uniquely belonged to one
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species of our database and wrote this number above the
respective edge of the genus. Peptides shared by certain
genera were added to the number of the lowest taxonomy
edge shared by these genera (Operating Taxonomy Unit).
For Fig. 4 we excluded all genera that did not have at
least one unique peptide. We extended the analysis
for streptococci down to the species level. Bacterial
genus abundance was estimated by adding the ten
peptides of highest intensity per genus in analogy to
the protein quantification in [23, 24]. Genera with less
than ten peptides were excluded from quantification.

Co-analysis with whole genome sequencing data from
the human microbiome project
To compare our data with results obtained from whole
genome sequencing (WGS), protein multifasta (PEP)
was downloaded from the Human Microbiome Project
(HMP) [25]. Fractionated and single run raw files were
analyzed with the MaxQuant settings described above
against the human reference proteome from Uniprot
and the fasta file from HMP (3.8 million protein se-
quences, 127.3 million unique peptides). From the gen-
omic side we downloaded 764 fastq files from the HMP
(release of 2012) and trimmed them using Trimmomatic
[26] (we removed adapter as well as leading and trailing
sequences with quality lower than 10 Phred quality score;
we also did not accept reads for further analysis with
lengths less than 36 nucleotides) and aligned using BWA
with default parameters [27]. A PCA of the reads per
genus of the WGS dataset together with the top ten
peptide intensities per genus across the median of all sam-
ples from MaxQuant was performed after Z-score scaling
within each sample (Fig. 5d). We combined the body sites
“saliva”, “tongue dorsum”, “attached keratinized gingiva”,
“palatine tonsils” and “throat” from the HMP for our def-
inition of mouth because these sites clustered tightly in a
PCA. Furthermore, we performed hierarchical clustering
(Euclidean distance coupled with Ward’s agglomeration
method was used) on the resulting dataset and visualized
the genus abundance per sample in a heatmap (using the
R package heatmap.2) (Additional file 1: Figure S1).

Microbiological processing of the samples
Together with the cotton swab collection after wak-
ing, all donors also collected whole saliva by passive
drooling into a sterile tube. Samples were processed
immediately after collection as follows. One Columbia
and one chocolate blood agar plate for the aerobic
and two Schaedler agar plates for the anaerobic culture
were plated out with 50 μl saliva each. Aerobic cultures
were incubated for 3 days at 37 °C and 5.8 % CO2. Anaer-
obic cultures were grown under anaerobic conditions at
37 °C for a minimum of 5 days. Plates were evaluated

visually and all morphologically different colonies were
subcultured for identification by MALDI-TOF MS.

Identification by MALDI-TOF MS
Samples were measured in duplicates according to the
standard protocol recommended by the manufacturer.
In brief, a thin layer of bacteria taken from a single col-
ony was smeared onto a polished steel target and over-
laid with 1 μl of matrix solution containing 10 mg/ml of
α-cyano-4-hydroxy-cinnamic acid in 50 % acetonitrile/
2.5 % TFA (α-HCCA portioned matrix, Bruker Daltonik
GmbH, Bremen, Germany). For measurements, a
Microflex LT benchtop instrument operated by flex-
Control 3.3 software (Bruker Daltonik GmbH, Germany)
was used. Spectra were acquired in the linear positive ion
mode at a laser frequency of 60 Hz within a mass range of
2 to 20 kDa. The acceleration voltage was 20 kV, the IS2
voltage was maintained at 18.6 kV, and the extraction
delay time was 200 ns. For data analysis, spectra were
matched with the Bruker Taxonomy database version
4.0.0.1.

Results and discussion
In-depth quantification of the saliva proteome
We obtained saliva from four male and four female healthy
individuals using sterile cotton swabs as is done in routine
clinical practice (Fig. 1, “Methods”). Donors were required
to abstain from eating and drinking for at least 30 min prior
to the collection to avoid food-based contamination or dilu-
tion effects. They were instructed to wipe the vestibule of
the oral cavity, followed by the teeth and the sublingual
compartment. Around 200 μg of total protein was recov-
ered from each swab, an ample amount for repeated meas-
urement using our recently developed in-StageTip
digestion procedure [12]. Following an immediate digestion
for one hour and purification, the resulting peptides were
separated into eight fractions with basic reversed-phase
chromatography [14, 15]. Each fraction as well as unfractio-
nated sample was measured with a 100-min LC gradient
on a Q Exactive HF mass spectrometer [28, 29]. Data were
analyzed using the MaxQuant environment [16, 19].
Across our eight donors we identified more than

54,000 sequence-unique peptides and more than 5500
proteins, both at a false discovery rate (FDR) of 1 %. A
total of 78 % of these proteins were detected in each
donor, 90 % in at least six of eight donors, and only
1.3 % were unique to single donors (Fig. 2a). Thus,
our sample collection protocol is robust and allows
comparison of thousands of saliva proteins across individ-
uals. For an individual donor, we identified a remarkable
5213 human proteins in the eight fractions—to our know-
ledge the deepest body fluid proteome recorded from an
individual to date (Additional file 1: Figure S2a). To inves-
tigate the reasons for this extensive coverage, we inspected
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the MS signal of the most abundant proteins. Unlike other
body fluids, the 15 most abundant proteins in saliva make
up only 32 % of the total proteome mass (Fig. 2b), whereas
in plasma and urine they already account for more than
90 % and 58 % of the total, respectively [30, 31].
The abundance ranked plot of the entire measured sal-

iva proteome spans a dynamic range of six orders of
magnitude of estimated absolute abundance (Fig. 2c). To
bioinformatically investigate the saliva proteome as a
function of abundance, we used 1D annotation enrich-
ment in the Perseus environment for GO terms and
Uniprot keywords [20]. “Antibacterial humoral response”
and “defense response to bacterium” scored in the upper
part of the abundance distribution (Fig. 2c). “Extracellu-
lar space” and “Extracellular exosome” were significant
near the median, indicating that proteins making up this
category are somewhat less abundant than most of the
functional saliva proteins. The terms in the lowest abun-
dance range included typical intracellular terms such as
“cytoplasm” and “mitochondrial translation”.
There is an ongoing debate as to the extend that easily

obtainable saliva could be used to measure plasma
biomarkers by proxy [32]. We measured the plasma pro-
teomes of two of our saliva donors in singe-run triplicate
measurements [21] and compared them with the single-
run saliva proteomes of the same donors. Due to the dy-
namic range challenges, fewer proteins were identified in
plasma but more than 50 % of these were also identified

in saliva. A scatter plot of the label-free quantification
(LFQ) intensities of the proteins [19] that were identified
in both body fluids reveals little correlation between
these values (R2 = 0.11; Fig. 2d). Over the two individuals
and all replicates, it was never higher than R2 = 0.20. We
also considered the possibility that particular saliva com-
ponents might show a higher correlation with the
plasma proteome and collected one saliva sample from
the opening of the duct of the parotid gland, one from
the opening of the sublingual and submandibular gland,
and one from gingiva. All these saliva proteomes re-
vealed R2 values below 0.1 (Additional file 1: Figure S3).
Thus, we conclude that the plasma and saliva proteomes
show little overall correlation and that saliva cannot dir-
ectly be used as a substitute for the determination of
plasma protein levels.
To make our saliva results available to the community

in a user-friendly format, we uploaded them to the
MaxQB database [33]. For each protein of interest, a
query will reveal whether it is present in our saliva
proteome, its abundance rank, estimated absolute abun-
dance, and other protein level information (Additional
file 1: Figure S2b). Additionally, peptide evidence leading
to protein identification as well as high-resolution
precursor–fragment relationships are available for
constructing targeted assays. The protein illustrated in
Additional file 1: Figure S2b is transcobalamin-1
(TCN1), which is known to be secreted by the salivary
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glands and to protect cobalamin or vitamin B12 against
acidity of the stomach. In addition, TCN1 functions as a
transport protein in the blood, carrying excess cobala-
min to the liver for storage. Cobalamin deficiency occurs
in 20 % of individuals over the age of 60 years [34] and
causes anemia, demyelinating disease, or both [35]. Due
to cobalamin’s clinical significance, the physiological
levels of TCN1 in blood have been characterized exten-
sively in dedicated studies [36, 37], whereas here its
levels are determined in the context of our system-wide
investigation of thousands of other saliva proteins.

A deep single-run workflow
The high proteome coverage achieved using fraction-
ation motivated us to determine how much of the saliva
proteome could be retrieved in a single-run or “single-
shot” experiment [17]. We used the same 100-min gradi-
ents as before and measured saliva proteomes from the
eight individuals mentioned above, each at two different

time points, once immediately after waking before tooth
brushing and once post-prandial after tooth brushing.
Remarkably, an average of 3835 proteins could be identi-
fied and almost all of them (94 %) were also quantifiable
(Additional file 1: Figure S4a). The results from three
swabs taken at nearly the same time and processed inde-
pendently but equally were highly similar with a mean
coefficient of determination R2 of 0.92 (Additional file 1:
Figure S4b). The difference between individuals was
somewhat higher, with an R2 of 0.89, indicating that bio-
logical differences between individuals can also be
captured by single-run measurements. Plotting the CVs
for saliva proteome variation between the individuals
showed that they did not primarily depend on protein
abundance (Additional file 1: Figure S4c). This suggests
that single-run analysis should be able to determine bio-
logical differences across a wide abundance range. As
the single-shot proteome still quantifies more than
3700 proteins, which include nearly all the functional
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categories described above, very rapid and medium
throughput characterization of saliva may be possible in
the clinic.

Dynamics of the saliva proteome in a cohort
The oral cavity is subject to a variety of conditions in
daily life. Despite several studies investigating, for in-
stance, changing cortisol levels [38], to our knowledge
intraday changes in the saliva proteome have not yet
been investigated in depth.
To uncover dynamic changes, we first performed a

principal component analysis (PCA) on all 16 single-run
proteomes. Component 1 of the PCA separated weakly
by sex (Additional file 1: Figure S5), whereas component
2 separated the two proteome states (waking versus
post-prandial after tooth brushing) and this difference was
even more pronounced when inspected on a person-by-
person basis (Fig. 3a). To determine the proteins respon-
sible for the PCA clustering, we filtered for 100 % valid
LFQ values and plotted significance (5 % FDR) versus fold
change (Fig. 3b). The proteins that were significantly
upregulated at waking were enriched in the keywords
“antibiotic” (p = 7.7 × 10−9, enrichment factor (ef) = 33)
and “antimicrobial” (p = 6.6 × 10−8, ef = 24). The proteins
with significantly higher abundance in the postprandial
state were enriched for the terms “thiol protease inhibitor”
and “secreted” (p = 3.3 × 10−5, ef = 42, and p = 8.7 × 10−9,

ef = 6, respectively). Serving as a positive control, levels of
alpha amylase (AMY1A), a protein that initiates the break-
down of complex oligosaccharides, were consistently
upregulated after the meal. Thus, the shifts in protein
abundance between our two measurement time points
demonstrate that MS-based proteomics can now robustly
capture biologically meaningful dynamic changes in body
fluid proteomes.

Identification of bacterial proteomes in human saliva
Due to the prominent role of the oral microbiome in
health and disease, we investigated whether we could de-
tect bacterial species in the deep saliva proteomes. For
this purpose, we downloaded the complete Uniprot pro-
tein sequences of all named oral bacterial species that
had been identified by 16S rRNA sequencing in a recent
study [22]. The resulting database was about 11 times
larger than the human one alone.
In metaproteomics it is not straightforward to assign

peptides to bacterial phyla because some amino acid se-
quences are part of proteins from different phyla. We
addressed this issue by applying the “split by taxonomy”
feature in MaxQuant, which avoids the formation of
protein groups between different phyla. Together with
the exclusive use of unique peptides for protein quantifi-
cation, this functionality prevents the same peptide from
contributing to the identification and quantification of

a b

Fig. 3 Intraday dynamics of the human saliva proteome. a PCA of the 16 saliva samples showing that component 2 separates samples based on
the collection time (w = waking and p = postprandial). b Differentially regulated proteins between w and p as determined by plotting the t-test
significance (5 % permutation-based FDR) versus the logarithmized fold change of LFQ intensity (volcano plot). Protein data points are labeled by
their gene names. The green gene names indicate genes with the Uniprot keyword “antibiotic” or “antimicrobial”, the purple gene names indicate
proteins with the Uniprot keyword “secreted”
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proteins in different phyla (“Methods”). Split by taxonomy
id is, therefore, relevant only for protein identification but
not for peptide identification or quantification. However,
bacteria in the oral cavity can have substantial sequence
identity (Additional file 1: Figure S6a, b) [39]. As closely
related bacteria share many sequences, one therefore
needs to find the most appropriate taxonomy rank for ap-
plying the split by taxonomy id. To address this question,
we placed identified bacterial peptides on a taxonomic
tree such that the number of shared peptides is noted on
each branch (Fig. 4). These shared peptides do not allow
discrimination of the branches below. Split by taxonomy
at a certain taxonomic rank prevents peptides shared at
the ranks above from contributing to the identification of
proteins. As in the case of human and microbial proteins
above, this prevents the misassignment of peptides to
phyla from which they do not necessarily originate. Pla-
cing the split at the phylum level turned out to be a good
compromise between use of peptides for identification
and quantification on the one hand and stringency
of identification of bacteria on the other hand
(Additional file 1: Figure S6) and we used this setting
for all following analyses.
The presence of bacteria in the oral cavity also raises

the question of whether proteins from them might con-
siderably impair the human protein quantification

presented above. To address this question we deter-
mined the nonredundant tryptic peptides that were
seven or more amino acids long in our human and our
oral bacteria database, which is the minimum length
considered in our analysis. Among these tryptic pep-
tides, the percentage of peptides with identical se-
quences between humans and bacteria was only 0.043 %
(Fig. 5a). Hence, the quantification bias of human pro-
teins due to bacteria is marginal. This analysis also indi-
cates that bacterial contamination of mammalian
proteome samples does not impair protein quantification
considerably as long as only peptides of seven amino
acids or more in length are considered.
Similarly, ingested proteins from food could, in

principle, be erroneously assigned to human or bacterial
proteins. To estimate the magnitude of these effects, we
performed an analogous analysis on bovine and wheat as
representative parts of a Western breakfast diet and
determined the number of sequence identical peptides
to humans and bacteria (Additional file 1: Figure S7).
Except for bovine and human the percentage of overlap-
ping peptide sequences is far below 1 %. Due to an over-
lap of 20.7 % among the considered human and bovine
peptides, our in silico analysis does not exclude the pos-
sibility of quantification bias. However, proteins that
substantially differ between waking and the postprandial
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state in Fig. 3 do not include proteins from human milk
or human muscle, as would be expected if these differ-
ences were due to a bovine diet.
Remarkably, a search of our deep saliva proteome data

sets using our standard, stringent search criteria (1 % FDR

at the peptide and protein levels) resulted in the identifica-
tion of 2234 different bacterial proteins. In total, we found
evidence for 50 different bacterial genera from nine
different phyla. This represents 50 % of the named
genera identified by next-generation sequencing with
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corresponding, annotated UniProt proteomes and
therefore present in our database. The proteomic
coverage of bacterial genera is remarkably high given
the restricted database and the modest measuring
time. The distribution of peptides specific for particu-
lar genera was highly unequal, ranging from only 1 to
1069 for the genus Streptococcus, for which Fig. 4
shows a detailed taxonomic tree down to the species
level. At least 12 different such Streptococcus species
were present in our deep saliva proteome. The most
abundant species was Streptococcus mitis, but we also
detected peptides unique to Streptococcus mutans, a
main contributor to dental caries formation.
Standard MALDI-TOF MS as now routinely used in

clinical microbiology found evidence of 14 different
genera in our saliva samples, with an average of six
genera per donor (“Methods”). In each case, shotgun
proteomics had also identified the genus in the same
sample without the need to cultivate the bacteria
prior to processing. A rough comparison with the
number of MS-identified peptides for genera identi-
fied by MALDI-TOF MS suggests that they were
generally the more abundant ones (Fig. 4). While the
goal in clinical microbiology is to identify the pres-
ence of one or a few pathogens responsible for an
infection, rather than a total inventory of the micro-
biome, it is nevertheless notable that unbiased and
relatively straightforward shotgun proteomics of saliva
identified these bacteria without intervening cultiva-
tion directly from a cotton swab. This identification
would presumably have been much easier still in the
case of a dominating pathogen.

The quantitative oral metaproteome
To further investigate the unexpectedly large number of
bacterial protein identifications, we plotted their cumu-
lative percentage as a function of abundance rank
(Additional file 1: Figure S8). Among the first 1000 pro-
teins only 5 % were bacterial proteins. This proportion
increased steadily until it reached 35 % for the total set
of about 6000 proteins. Expressed as the percentage of
bacterial proteins per 100 proteins, the chance to iden-
tify bacterial proteins reached more than 50 % towards
the limit of detection. This suggests that increasing the
depth of proteomic analysis would preferentially uncover
further bacterial proteins and that our coverage of the
oral metaproteome is far from saturation. As the
depth of our bacterial detection increases in the fu-
ture, it may also be possible to analyze bacterial path-
ways and how they change across different conditions
of the oral cavity.
The simultaneous detection of bacterial and human

proteomes in our samples allowed us to directly
compare them quantitatively (Fig. 5b). The most

abundant bacterial protein was F1WNZ3, the Moraxella
catarrhalis homolog of chaperone protein HscA, which
is involved in maturation of iron-sulfur-containing
proteins. Its abundance was only 100-fold lower than
the top human protein, alpha-amylase 1. Further highly
abundant proteins of the bacterial metaproteome in-
cluded proteins with household functions, such as
A0A096BHY1, which is a glyceraldehyde-3-phosphate
dehydrogenase, or E0Q9Q6, a subunit of DNA polymer-
ase III. Sequence alignment in Perseus showed that
many of the very abundant bacterial proteins were highly
conserved. Therefore, peptides from different species
likely contribute to their abundance.
The number of significantly identified human proteins

decreased to about 4000 in the combined search space
(Fig. 5b). Thus, almost a third of the overall protein
count of 6197 is due to the microbiome. The bacterial
proteins originated from four main phyla, with 300 to
800 uniquely assigned proteins, each of which spanned
the entire abundance range (Additional file 1: Figure S9).
In analogy to the top-three-peptide method commonly
used in label-free abundance estimation of proteins
[23, 24], we defined an approximate quantitative
measure of the abundance of a bacterial genus as the
summed MS intensity of the top ten most abundant
peptides across all samples. These data were available
for nearly all genera and, as in the protein case, com-
paring just the ten highest peptide intensities should
be a better measure than summing all peptides, which
would tend to overestimate abundance differences.
The top ten peptides were determined among all peptides
of a genus, not just unique peptides. This comes at
the disadvantage that peptides shared by two genera
could lead to an overestimation of the taxon’s abundance.
Considering only unique peptides would have put genera
with large sequence identity at a great disadvantage com-
pared with genera with relatively distinct peptide se-
quences. However, this shows that adequate quantification
of bacterial genera by their proteomes is challenging
and at the present coverage our quantitative readouts
should be considered as approximations rather than exact
quantifications.
We applied our bacterial quantification measure to

all detected genera and plotted the abundance of the
top 20 (Fig. 5c). As expected from quantification per-
formed by 16S RNA sequencing [40, 41], Streptococcus
was the most abundant genus. The top ten genera did
not show drastic differences in abundance (the inte-
grated MS peptide signal of the top ten peptides was
4.0 × 1010 for Streptococcus and 1.4 × 1010 for Lactococ-
cus). While we believe that the quantitative trends
between bacteria are correct, more accurate quantifi-
cation would require deeper sequence coverage of the
bacterial proteomes.
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The Human Microbiome Project (HMP) has generated
large datasets of human microbiomes using next-
generation sequencing [25]. We compared our quantita-
tive bacterial proteomes with the whole genome sequen-
cing data of the HMP in a PCA (Fig. 5d) and a heatmap of
genera against samples (Additional file 1: Figure S1). The
different body sites clustered separately in the genome
data, with our proteomic data strikingly co-localizing with
the oral microbiome. We did not expect such close co-
localization given that both datasets originate from differ-
ent samples and individuals. However, these results are in
agreement with previous findings showing that the
oral microbiome has relatively low diversity among
individuals (beta diversity) [25]. The human micro-
biome study had collected samples from different lo-
cations in the mouth, but these data cluster together
in the PCA, suggesting that the microbiome is similar
throughout the oral cavity.

Variation and dynamics of the metaproteome
Apart from estimating bacterial abundances, our data
allow a quantitative comparison of the same genus upon
perturbation or across individuals. Overall, individuals

varied little in their bacterial diversity in accordance with
the HMP [25]. A scatterplot of two typical donors
reveals that bacterial abundances are similar for many of
them, with a strong mean R2 of 0.82 (Fig. 6a shows a
typical scatter plot). However, there are also genera that
varied up to tenfold.
The cumulative abundances of the top eight bacterial

genera across all donors indicate differences in total bac-
terial mass of up to threefold (Fig. 6b). Variation in the
relative abundance of genera is much smaller (Fig. 6c)
and the same analysis at the level of the five most abun-
dant phyla showed similar variation.
When aggregating males and females separately, the

two groups exhibited very comparable bacterial abun-
dances that were highly correlated (R2 = 0.94; Fig. 6d).
Thus, proteomics indicates that sex differences in the
oral microbiome are minor. In contrast, bacterial abun-
dance changed drastically after eating breakfast and
tooth brushing. The high abundance bacterial genera
were reduced 2.5-fold on average, while the lower abun-
dant ones generally showed even stronger reduction
(Fig. 6e, f ). The Streptococcus genus, which contains
S. mutans, was reduced by almost threefold after
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tooth brushing (Fig. 6f ). It has been established that
the S. mutans species is not the only one involved in
cavity formation [42] and it would now be interesting
to study the effects of different oral hygiene regimes on
the oral bacterial community at the proteome level.
Our deep saliva proteomes also allow combined ana-

lysis of the human and bacterial proteome changes in
response to the same perturbations. For instance, at
waking, when bacterial abundance is high, the human
saliva proteome was primed towards bacterial defense
with substantial enrichment of proteins annotated with
the Uniprot keywords “antibiotic” and “anti-microbioal”.
Given the higher abundance of the microbiome at
waking, this likely reflects the body’s effort to limit
bacterial proliferation during the night when these popu-
lations are relatively undisturbed. This example illus-
trates the utility of the simultaneous detection of the
human and bacterial proteomes for the study of the
interplay of the host and microbiome.

Conclusions
Here we employed shotgun proteomics with a state of
the art workflow and identified more than 5500 proteins,
the largest number of human proteins in a body fluid to
date. Comparison with the plasma proteome established
that the quantitative protein levels do not correlate.
We showed that shotgun proteomics can now readily

determine 50 bacterial genera in saliva but the sequence
coverage of bacterial proteins and organisms suggests
that we have only scratched the surface of the oral
bacterial proteome. Quantitative comparison to next-
generation sequencing data from the HMP [25] revealed
excellent agreement, suggesting that proteomics could
provide a valuable complement to sequencing-based
measurements of the human microbiome. Furthermore,
proteomics appears uniquely positioned to study the
interplay of the human immune system with commen-
surate and pathogenic bacteria on the protein level.
With improving technology, our workflow might even
become attractive for clinical microbiology since bacteria
do not need to be grown and rapid bacterial resistance
testing could become possible by directly measuring pro-
teins that confer resistance to antibiotics. An important
task for the future is to better characterize and annotate
bacterial sequences in order to provide comprehensive,
non-redundant databases for bacterial proteomics.
In conclusion, the depth and relatively straightforward

nature of our workflow should make it a powerful new
tool in the detection of biomarkers of diseases of the
oral cavity as well as facilitate complementary studies of
the microbiome in different contexts. In particular, pro-
teomics appears uniquely positioned to study the inter-
play of the human immune system with commensurate
and pathogenic bacteria at the systems level. We hope

that such approaches will help to open new avenues in
clinical application and for microbiology in the future.
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