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Abstract

Background: Patients with certain genetic diseases, such as autism spectrum disorder, have increased rates of de
novo mutations within some protein-coding genes.

Results: We introduce the VARiant PRIoritization SuM (VARPRISM), a software package which incorporates
functional variant prioritization information to improve the power to detect de novo mutations influencing disease
risk. VARPRISM evaluates the consequence of any given exonic mutation on the protein sequence to estimate the
likelihood that the mutation is benign or damaging and conducts a likelihood ratio test on the gene level. We
analyzed the Simons Simplex Collection of 2508 parent-offspring autism trios using VARPRISM, replicating 44 genes
previously implicated in autism susceptibility and identifying 20 additional candidate genes, including MYO1E,
KCND3, PDCD1, DLX3, and TSPAN4 (false discovery rate < 0.3).

Conclusion: By incorporating functional predictions, VARPRISM improved the statistical power to identify de novo
mutations increasing disease risks. VARPRISM is available at http://www.hufflab.org/software/VARPRISM.

Keywords: De novo mutations, Autism spectrum disorder, Simons Simplex Collection, Likelihood ratio test, Variant
prioritization

Background
De novo mutations contribute substantially to the risk of
several genetic diseases, including Autism Spectrum
Disorder (ASD) [1–3], intellectual disability, and schizo-
phrenia [4–11]. To identify associations between de novo
mutations and disease risk, most existing approaches separ-
ately consider different class of mutations, for example,
loss-of-function mutations [12], missense mutations [12],
or mutations predicted to be damaging [13]. The observed
number of mutations in a gene is compared to the expected
number based on the known mutation rate. A p value is
then calculated as the tail-probability of the expected
distribution under the null, derived either through Poisson
approximations or simulations [12, 14]. This framework,
however, suffers from a difficult optimization problem: in-
cluding too many mutation classes will decrease the signal-
to-noise ratio, while including too few may exclude many

causal mutations. For example, in a previous report esti-
mating the proportion of missense and likely gene disrupt-
ing (LGD) mutations contributing to ASD [12], excluding
missense mutations would eliminate 57 % of causal muta-
tions, while including missense mutations would decrease
the signal-to-noise ratio from 0.75 to 0.22.
Variant prediction algorithms, such as SIFT [15],

Polyphen-2 [16], and MutationTaster [17], assess the po-
tential functional impact of genetic variants on proteins
using a variety of information sources, including amino
acid substitution (AAS), protein structural information,
and phylogenetic conservation. These algorithms are
well suited for classification of individual disease-causing
variants [16]; however, because classification accuracy
rarely exceeds 75 % [18], a binary inclusion-exclusion
approach based on the predicted severity of each muta-
tion will exclude many true positives.
To account for uncertainty in variant effect prediction,

rare variant association tests such as SKAT [19] and
VAAST [20] often use prediction scores as a continuously
scaled weight in various forms, e.g. as the variance of the
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random effect [19] or as the likelihood in the composite
likelihood ratio test [20]. A loss-of-function mutation typic-
ally receives the highest weight and therefore has the largest
influence on the statistical test, while a synonymous muta-
tion often receives a weight of 0. Previously, Jiang et al. [21]
developed the fitDNM de novo mutation load test, which
incorporates functional predictions from variant classifiers
into the de novo mutation load test. fitDNM requires speci-
fication of probabilities for any given mutation in the pro-
tein being damaging, which can be generated, for example,
using PolyPhen-2. Jiang et al. demonstrated that fitDNM
has higher statistical power compared to existing methods
such as Poisson tests and TADA-denovo [13].
Here we present the VARiant PRIoritization SuM

(VARPRISM) software package, which predicts the func-
tional impact of de novo mutations and incorporates these
quantitative predictions using a likelihood ratio test to
evaluate evidence of de novo mutation load. We compared
the power of VARPRISM to fitDNM and Poisson tests with
two simulated datasets. We then analyzed 2508 parent-
offspring autism trios from the Simons Simplex Collection
(SSC) to identify autism candidate genes.

Implementation
Statistical model of VAPRISM
VARPRISM analyzes de novo mutations in the genomes
of affected individuals to identify genes with elevated
de novo mutation rates of functional protein-coding
mutations. Let AASij be the random variable vector
describing functional consequence of the j-th de novo
mutation within the i-th affected individual in the pro-
tein of interest. AASij includes a categorical variable (the
amino acid substitution caused by the mutation, e.g.
Leucine to Proline change) and a continuous variable
(the PhastCons score at the mutation [22]). We use the
random variable Mij to denote the event that the j-th
mutation within individual i occurred in the gene of
interest. Mij can be partitioned into two disjoint events:
(1) a disease-causal mutation occurred (denoted by ran-
dom variable Dij); and (2) a neutral mutation occurred
(denoted by random variable Nij). For any observed de
novo mutation, indexed by i and j, the joint probability
of the Mij and AASij is:

Pr Mij;AASij r;mj� �
¼ Pr Nij;AASij r;mj� �þ Pr Dij;AASij r;mj� �
¼ P Nij r;mj� �

Pr AASij Nij; r;m
��� �

þ P Dij r;mj� �
Pr AASij Dij; r;m

��� �
¼ P Nij r;mj� �

AASij Nij

��� �þ P Dij r;mj� �
Pr AASij Dij

��� �
¼ mPr AASij Nij

��� �þ rm Pr AASij Dij

��� �
where m is the risk-neutral mutation rate (per generation
per base pair) [23] at the corresponding nucleotide, which
we used the average risk-neutral mutation rate in the gene
of interest to approximate. r is the relative mutation rate

of disease-causing mutations to risk-neutral mutations.
The third equality holds because the distribution of AASij
is independent of the mutation rates conditional on the
disease-risk.
For all ki observed mutations in affected individual i,

the joint probability is:

Pr Mi�;AASi� r;mjð Þ
¼

Yki
j¼1

Pr Mij;AASij r;mj� �

¼
Yki
j¼1

mPr AASij Nij

��� �þ rmPr AASij Dij

��� �� �
:

The first equality holds under the assumption that de
novo mutations occur independently, conditional on the
neutral and disease-causal de novo mutation rates. Under
the null (r = 0), this assumption is strictly satisfied; under
the alternative, this is justified because the mutation rate
is sufficiently low to be very unlikely to observe two de
novo mutations in the same gene of the same individual.
To account for genomic sites where no de novo mu-

tations occurred in our model, we use Gi• to denote the
genotype of individual i, with the following density
function:

Pr Gi�;AASi� r;mjð Þ

¼ 1−m−rmð Þn−ki
Yki
j¼1

m Pr AASij Nij

��� �þ rm Pr AASij Dij

��� �� �

where n is 2 times the number of base pairs in the
coding sequence of the gene of interest. If we use G and
AAS to denote the genotypes and functional impact of
amino acid substitutions in all affected individuals and
assume independence across individuals, then the fol-
lowing holds:

Pr G;AAS r;mjð Þ
¼

Yt
i¼1

l−m−rmð Þn−ki
Yki
j¼1

m Pr AASij Nij

��� �þ rm Pr AASij Dij

��� �� �( )

where t is the number of affected individuals. The param-
eter m can be estimated either from literature or from the
data. The quantity above is equivalently the likelihood of
the parameter r (that is, L(r)).
Under the null hypothesis (H0), no de novo mutations

within the gene of interest contribute to disease risk. This
implies that the probability of having a disease-causal de
novo mutation is 0, or formally, Pr(Dij|r,m) = 0 for all
values of i and j. Given Pr(Dij|r,m) = rm and m ≠ 0, we
have r = 0. Conversely, r = 0 suggests that the relative mu-
tation rate of disease-causing mutations to risk-neutral
mutations is 0 (by definition), and therefore no disease-
causing de novo mutation can occur. We can apply a like-
lihood ratio test to calculate the following test statistic:
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D ¼ −2 ln Pr G;AASjr ¼ 0;mð Þð Þ− supr ln Pr G;AASjr;mð Þf g½ �

To obtain the MLE of r under the alternative model,
VARPRISM uses the Newton–Raphson method. Spe-
cifically, we first performed the following transform-
ation on the variable r: r = et. We used the following
initial values of t: log(0.01), log(0.1), log(1), log(5),
log(10), log(20), and log(100), and performed the
maximization procedures on each initial value. Each
time, t is iteratively updated with Newton step

tþ ¼ t− d2 log Pr G;AASjt;mð Þ
dt2

� �−1 d log Pr G;AASjt;mð Þ
dt

	 

until the

maximal number of iterations (by default 20) were
performed. At the end, the t value that generated the
maximum log-likelihood was selected to calculate r
using r = et. To calculate the statistical significance of the
observed D, VARPRISM uses Monte-Carlo methods to
simulate mutations in the gene of interest conditioned on
the local mutation rate of the gene. Assuming n1 out of n2
total simulations have a value of D no less than the ob-
served D, then the p value is calculated as (n1 + 1)/(n2 + 1).

Mutational model
A correct estimation of local mutation rate is essential
for robust statistical characterization of genes with
disease-causing de novo mutations. To control for
heterogeneity in local mutation rates, VARPRISM in-
corporates the mutation rate estimate reported by Fran-
cioli et al. [23]. Specifically, Francioli et al. estimated
the empirical distribution of genome-wide mutation
rates from 250 parent-offspring families, accounting for
flanking sequence context, local mutation rates, muta-
tion type, and the transcribed strand [23]. Based on this
estimate and the actual nucleotide sequence, we
summed the mutation rates at every base pair of the
gene to derive the expected de novo mutation rate (m)
for each protein-coding gene. Similarly, we compute
the distribution of amino acid substitutions caused by
mutations under the null model (Pr(AAS|N)), by con-
sidering all possible mutations at each base pair within
the exons of the gene. Pr(AAS|N) and m are used in
formula (1) and in Monte-Carlo simulations. Under
the alternative model, the distribution of amino acid
substitutions (Pr(AAS|D)) is estimated by the AAS
frequency spectrum observed in the Human Gene

Mutation Database (HGMD) [24]. This approach
(CASM) was previously used to calculate functional
weights of rare variants in gene-based association tests;
the details on the training process of CASM were de-
scribed in the Additional file 1: Supplementary Methods
and in our previous publication [18].
Note that the calculation of Pr(AAS|N) is exact as-

suming the mutation rate reported in [23] is accurate.
However, Pr(AAS|D) is often only an approximation,
given that the AAS distribution for all possible muta-
tions that could influence the risk of a specific disease
within a given gene cannot be known for ab initio risk
gene discovery. When Pr(AAS|D) is correctly specified,
then the likelihood ratio test statistic is approximately
distributed as a 50:50 mixture of two chi-square vari-
ables with 0 and 1 degree(s) of freedom, respectively
[25]. Otherwise, under the null, the likelihood becomes:

lnL r ¼ 0ð Þ ¼ ln l−mð Þ
Xt

i¼1

n−kið Þþ
Xt

i¼1

Xki
j¼1

ln mPr AASij Nij

��� �� �

which does not depend on Pr(AAS|D). Under the alter-
native, the maximal likelihood is:

sup lnL rð Þ : r≥0f g
¼ ln l−m−r̂mð Þ

Xt

i¼1

n−kið Þ þ
Xt

i¼1

Xki
j¼1

ln

�
m Pr AASij Nij

��� �
þ r̂m Pr AASij Dij

��� ��

which is a function of Pr(AAS|D). In other words, al-
though the null model likelihood is correctly specified,
the alternative model likelihood is often not. In this sce-
nario, as Vuong has demonstrated, the likelihood ratio
test still applies (theorem 7.2. in [26]), but the distribu-
tion of the test statistic becomes a linear combination of
χ2 variables whose weights depend on the likelihood in
the alternative model. Since Pr(AAS|D) is unknown, by
default VARPRISM avoids the analytical approximation
for the distribution of the test statistic, instead relying
on Monte-Carlo simulations to sample from its null
distribution. Because the Monte-Carlo simulations do
not use Pr(AAS|D) to generate mutations, a Type I error
rate is correctly specified (Table 1).
Since the observed de novo mutation rate may depend

on factors that differ across studies (for example, paternal

Table 1 Type I error of VARPRISM in the null simulations (showing 95 % CI in the bracket)

Autism HGMD

alpha = 0.05 alpha = 0.01 alpha = 0.05 alpha = 0.01

VARPRISM 0.0499 (0.0456–0.0545) 0.0110 (0.0090–0.0133) 0.0482 (0.0440–0.0527) 0.0104 (0.0085–0.0126)

fitDNM 0.0510 (0.0468–0.0555) 0.0088 (0.0070–0.0108) 0.0470 (0.0429–0.0514) 0.0096 (0.0078–0.0117)

Poisson-all 0.0219 (0.0191–0.0250) 0.0077 (0.0061–0.0096) 0.0213 (0.0185–0.0244) 0.0075 (0.0059–0.0094)

Poisson-LGD 0.0265 (0.0234–0.0299) 0.0018 (0.0011–0.0028) 0.0240 (0.0211–0.0272) 0.0025 (0.0016–0.0037)
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age at conception and variant calling procedures), we
provided a script to calibrate the genome-wide average de
novo mutation rate based on the frequency of de novomu-
tations in the current dataset. The de novo mutation rate
of small insertions and deletions (indels) are estimated
separately from SNVs, because the ratio of indel and SNV
mutations will likely vary by the sequencing platform and
variant calling pipelines [27]. The estimated SNV and
indel mutation rates are required parameters in VARPR-
ISM. When indels are not of interest, the indel mutation
rate can be set to 0.
The mutation simulation framework in VARPRISM is

also implemented into the pVAAST software package
v2.2 [28], which can jointly analyze pedigrees with de
novo mutations, inherited variants, and variants in spor-
adic cases. pVAAST incorporates gene-based linkage
analysis, case-control association, and variant prediction
information to identify genes contributing to disease risk
in pedigrees.

Power analyses
Power analyses in Fig. 1 were generated from simulated
de novo mutation data. The simulated gene length was
2000 bp with a baseline mutation rate of 1.2 × 10–8 per
generation per haploid base pair. The relative causal
mutation rates (r in the formula 1) vary from 0 to 19.
We generated the number of mutations in each simula-
tion from a Poisson distribution, with the expected
mutation count equal to the sum of baseline mutation
rate multiplied by (1 + r). To simulate causal mutations,
we sampled mutations from either HGMD mutations

(excluding mutations used for training VARPRISM) or
de novo protein-altering mutations found in ASD cases
within genes with false discovery rate (FDR) < 0.01 in
[29]. We note that these two sets of mutations (HGMD
mutations and ASD de novo mutations from [29]) do
not have any overlap. To simulate risk-neutral protein-
coding mutations, we sampled mutations from possible
protein-coding mutations in the human exome. The
probability of sampling was proportional to corre-
sponding mutation rates. For each simulated mutation,
the type of nucleotide and amino acid substitution, local
mutation rate, Phastcons score [22], and Polyphen-2 score
[16] were the same as the source mutation in the exome.
All simulations used a sample size of 5000 cases with the
exception of the case of r = 0 (null simulation), which used
a sample size of 100,000 cases to detect any potential
inflation or deflation of type I error. For each r > 0, 1000
repetitions were generated. At r = 0, 10,000 repetitions
were generated.
To accommodate fitDNM, we created customized

scripts to generate necessary input files of fitDNM from
simulated data. Since fitDNM currently does not cur-
rently support indels, we did not include indels in our
simulations.

Results
Overview of VARPRISM
VARPRISM tests the null hypothesis that de novo
mutations in a gene are not associated with disease. We
derived the log-likelihood of the observed de novo muta-
tions and their corresponding amino acid substitutions

Autism HGDM
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Fig. 1 Power comparison between fitDNM, Poisson-all, Poisson-LGD, and VARPRISM. Left: Power benchmark using de novo mutations in ASD risk
genes as damaging mutations. Right: Power benchmark using Human Gene Mutation Database (HGMD) variants as damaging mutations. The
sample size is 5000 genomes and the number of trials is 1000. We set the statistical significance threshold at 5 × 10–4
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(AAS). VARPRISM calculates the AAS likelihoods using a
conservation-controlled amino acid substitution matrix
(CASM), which was introduced in VAAST 2.0 [18].
CASM is a variant prediction algorithm that incorporates
AAS and phylogenetic conservation information and is
calibrated using disease mutation databases (Additional
file 1: Supplementary Methods). To illustrate the ability of
the CASM score to differentiate between benign and
disease-causing mutations, we calculated CASM scores
for each de novo mutation in 15 previously reported ASD
risk genes [30] in an ASD whole-exome sequencing study
[29]. For comparison, we randomly generated 1000 single
nucleotide de novo mutations in these genes according to
the actual genomic sequences and performed the same
calculation. The mean CASM score (likelihood of AAS
under alternative divided by null) of ASD mutations was
1.83, compared to 1.13 for randomly generated mutations
(p = 6.4 × 10–4, Wilcoxon rank sum test).
To conduct a gene-based test of de novo mutation

load, VARPRISM estimates the relative mutation rate of
disease-causing mutations (r) among individuals with
the disease compared to a baseline mutation rate in each
gene. Under the null hypothesis that de novo mutations
in a gene are not associated with the disease phenotype,
r is equal to 0, indicating that the mutation rate among
affected individuals is the same as the baseline rate.
VARPRISM then calculates the likelihood ratio statistics
using the maximum likelihood estimate (MLE) of r and
evaluates statistical significance via Monte-Carlo simula-
tions. The details of the statistical model are elaborated
in the “Implementation” section.
To control for mutation rate heterogeneity resulting

from flanking sequence context, DNA replication start
sites, nucleotide composition, etc., VARPRISM incorpo-
rates site-specific mutation rate estimates throughout
the genome. By default, VARPRISM uses the mutation
rate estimates from Francioli et al. [23], although alter-
native estimates can be provided. The mutation simula-
tion pipeline used by VARPRISM is also implemented
in pVAAST v2.2 [28], which can jointly analyze de novo
and inherited mutations in pedigrees.

Power in simulations
To evaluate the statistical power of VARPRISM, we
simulated mutation data for 5000 parent-offspring trios
using mutations from the HGMD [24] or the 13 genes
with FDR < 0.01 in [29] based on an excess of de novo
mutations identified in ASD cases, varying the relative
mutation rate of damaging mutations in the simulated
causal gene (see “Implementation”). We calculated power
as the proportion of simulations in which we found a
significant association (α = 5 × 10–4). For each simulation,
we evaluated four tests: VARPRISM, fitDNM, a Poisson
test using all non-synonymous mutations (Poisson-all),

and a Poisson test using only likely gene-disrupting
(nonsense, frameshift, and splice sites) mutations
(Poisson-LGD). For fitDNM, we used Polyphen-2 to
predict mutation impact as in the original fitDNM art-
icle [21] and suggested by the User Manual; however,
we also explored using transformed CASM scores
(Additional file 1: Supplementary Methods; Figure S1).
In both simulations, the statistical power of VARPRISM
was consistently higher than the other three tests (Fig. 1).
In the HGMD simulation, when VARPRISM achieved
85 % power, the power of the other three methods was
82 %, 70 %, and 25 % for fitDNM, Poisson-all, and
Poisson-LGD, respectively. In the ASD simulation, when
VARPRISM achieved 86 % power, the power of the other
three methods was 84 %, 70 %, and 58 %, for fitDNM,
Poisson-all, and Poisson-LGD, respectively. The average
damaging mutation rates estimated by VARPRISM closely
approximated their simulated values (Additional file 1:
Figure S2). The type I error rates of each method are
shown in Table 1. For VARPRISM, the observed type I
error rate was consistent with the nominal rate at all levels
(alpha = 0.05 and 0.01).

VARPRISM analysis of de novo mutations in congenital
heart disease
Previously, Zaidi et al. [31] investigated the role of de
novo mutations in the etiology of congenital heart dis-
ease (CHD) from whole-exome sequencing data on 362
CHD parent-offspring trios with affected probands and
unaffected parents. Within probands, they identified
eight genes with de novo mutations that are involved in
the production, removal, or reading of H3K4 methylation
(H3K4me pathway) [31]. The authors also found that the
gene SMAD2, a regulator of H3K27 methylation, was mu-
tated twice. VARPRISM identified SMAD2 and all eight
genes with nominal significance (p < 0.05). In comparison,
Poisson-all, Poisson-LGD, and fitDNM identified six, four,
and seven genes, respectively, with nominal significance
(Additional file 1: Figure S3). SMAD2 was genome-wide
significant (p = 2.1 × 10–6) with VARPRISM but not with
Poisson-all (p = 2.3 × 10–5), Poisson-LGD (p = 9.6 × 10–4),
or fitDNM (p = 4.6 × 10–6). We also jointly evaluated the
association of genes in the H3K4me pathway with CHD
by combining p values for each of the four tests from
all 30 genes in the H3K4me pathway using Fisher’s
method [32]. VARPRISM was the only test that identi-
fied a statistically significant enrichment of genes in the
H3K4me pathway, with p equal to 0.017 compared to
0.36, 0.95, and 0.18 by Poisson-all, Poisson-LGD and
fitDNM, respectively.

VARPRISM analysis of de novo mutations in ASD
The SSC, established by the Simons Foundation Autism
Research Initiative (SFARI), is a genetic resource for
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autism studies that includes samples from thousands of
simplex pedigrees with one affected child and unaffected
parents and siblings [12, 33, 34]. Previously, Iossifov et
al. [12] described results from whole-exome sequencing
of 2,508 affected children from the SSC dataset. In this
study, they identified 391 de novo LGD mutations in 353
genes, among which 27 target genes contain recurrent
LGD mutations. They also identified 2801 missense
mutations within 1500 genes, although the original
study focused on analyzing LGD mutations [12].
We perform a joint analysis of LGD and missense
mutations using VARPRISM, fitDNM, Poisson-all, and
Poisson-LGD to identify additional candidate ASD risk
genes [12, 33, 34]. Note that the current implementa-
tion of fitDNM does not support indels, and thus only
single nucleotide variants were included in the fitDNM
analysis.
With an FDR of 0.1, VARPRISM identified 19 genes,

compared to four by fitDNM, four by Poisson-all, and
three by Possion-LGD (Table 2). Of the 19 candidate
genes identified by VARPRISM, 17 were in genes previ-
ously reported to harbor de novo mutations in ASD
cases (Additional file 1: Table S1). With one exception
(PTEN), all the candidate genes found by fitDNM,
Poisson-all, and Poisson-LGD were identified by
VARPRISM. We then tested enrichment among genes
in AutDB, which is a large collection of ASD candidate
risk genes created by first performing data-mining on
published scientific articles and then manually annotat-
ing each gene entry by expert biologists [35]. Four types
of genes were collected in AutDB: genes implicated in
rare monogenic forms of ASD; genes implicated in syn-
dromic forms on autism; genes that carry a relatively
small risk for ASD identified in genetic association
studies; and genes previously reported to be function-
ally relevant to ASD biology. Fifteen out of the 19 genes
identified by VARPRISM at an FDR of 0.1 were present
in AutDB (0.7 expected by chance; p < 2.2 × 10–16), in-
cluding: DYRK1A, WAC, TBL1XR1, KDM6B, GRIN2B,

DSCAM, POGZ, SCN2A, SUV420H1, CHD8, TBR1,
KDM5B, KATNAL2, TCF7L2, and CHD2.
Due to the sparsity of de novo mutations and the lim-

ited statistical power in our dataset, we also explored a
more relaxed FDR threshold of 0.3, as applied previously
in a recent study of de novo mutations in ASD [29].
VARPRISM identified 64 candidate genes, compared to
seven by fitDNM, 10 by Poisson-LGD, and five by
Poisson-all (Table 2 and Fig. 2). With an FDR of 0.3, the
expected number of true positive ASD risk gene found
by VARPRISM was 45, which was 2.6 times higher than
the expected number under FDR of 0.1(17). Of the 64
genes identified by VARPRISM, 33 were present in
AutDB (2.3 expected by chance; p < 2.2 × 10–16). Thus,
the relaxed cutoff increased the proportion of false
positive discoveries in our candidate genes, but also
substantially improved the power to identify novel ASD
risk genes. Excluding genes that were also identified by
Poisson tests or fitDNM, 28 of the 47 remaining genes
have been previously reported to contain de novo mu-
tations among ASD cases in other datasets. Many of
these were repeatedly reported to be associated with
ASD, including CTCF, SYNGAP1, SLC6A8, NTNG1,
and GLRA2 (Additional file 1: Table S1). Three of the
19 remaining VARPRISM candidate genes without de
novo association evidence, MYO1E, KCND3, and
PDCD1 are potentially promising candidates, due to
their associations with social communication problem
(MYO1E) [36], deficits in non-verbal communication
(KCND3) [37] and 2q37-deletion syndrome (PDCD1)
[38]. Two additional genes with FDR < 0.3, DLX3 and
TSPAN4, are involved in mechanisms related to ASD.
We described the potential implications of these genes
in ASD in more details in the “Discussion” section.

Over-representation of candidate autism genes in
functional gene classes
Iossifov et al. identified six functional gene classes that
were significantly overrepresented among their candidate

Table 2 List of genes identified by VARPRISM, fitDNM, Poisson-all, and Poisson-LGD in the SSC dataset

FDR 0.1 FDR 0.3

VARPRISM CHD8, DYRK1A, SCN2A, GRIN2B, POGZ, SUV420H1, KDM5B, TBR1,
KATNAL2, MYH10, TCF7L2, TBL1XR1, DSCAM, KDM6B, OR10Z1,
CHD2, WAC, PDCD1, MFRP

CHD8, DYRK1A, SCN2A, GRIN2B, POGZ, SUV420H1, KDM5B, TBR1,
KATNAL2, MYH10, TCF7L2, TBL1XR1, DSCAM, KDM6B, OR10Z1, CHD2,
WAC, PDCD1, MFRP, SLC6A8, FOXP1, ANK2, PPP2R5D, ZC3H4,
ARID1B, KCND3, ADNP, KRTAP4-4, ZNF555, PTEN, CTCF, USP45,
MYO1E, DNMT3A, DIP2A, GLRA2, SYNGAP1, NCKAP1, MPP6, NR3C2,
ELAVL3, PLEKHA8, PTK7, TSPAN4, TERF2, GIGYF1, PHF2, MLL5, TSR2,
S100G, AKR1C2, SLC6A1, MED13L, BST2, C2orf42, GLI4, DLX3, NUDT4,
CTNNB1, RIPPLY1, NTNG1, DCAF4L2, PAFAH1B2, TUBGCP4

fitDNM SCN2A, PTEN, SUV420H1, KDM5B SCN2A, PTEN, SUV420H1, KDM5B, SLC6A1, PTK7, PRB4

Poisson-all CHD8, SCN2A, DYRK1A, PTEN CHD8, SCN2A, DYRK1A, PTEN, POGZ

Poisson-LGD CHD8, DYRK1A, GRIN2B CHD8, DYRK1A, GRIN2B, CHD2, DSCAM, KATNAL2, TCF7L2, WAC,
ANK2, FOXP1
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autism genes: fragile X mental retardation protein,
chromatin modification, embryonic development, es-
sential genes, schizophrenia de novo mutation, and
intellectual disability de novo mutations gene classes
[12]. Genes identified by VARPRISM with FDR < 0.3
from SSC were significantly over-represented in each of
these six functional gene classes (Fig. 3 and Additional
file 1: Table S2). In particular, VARPRISM identified six
genes in the intellectual disability gene class, which was
a 59.0-fold enrichment relative to expectation (p = 1.1 ×
10–9). In comparison, fitDNM, Poisson-all, and Poisson-
LGD identified two (p = 5.3 × 10–5), one (p = 7.9 × 10–3),
and two (p = 1.1 × 10–4) genes in the intellectual disability
gene class, respectively. Similarly, in the fragile X mental
retardation protein gene class, VARPRISM identified 17
genes (6.3-fold enrichment; p = 8.5 × 10–10), while fitDNM
identified three (p = 2.30 × 10–3), Poisson-all identified
three (p = 7.0 × 10–4), and Poisson-LGD identified four
(p = 5.4 × 10–4).
To search for additional functional gene classes

involved in ASD, we evaluated the VARPRISM candi-
date gene list in the Database for Annotation,
Visualization and Integrated Discovery (DAVID)
(Additional file 1: Table S3). After removing closely
related GO terms, the top 3 terms were GO:0016568

(chromatin modification, Benjamini FDR = 9.3 × 10-4),
GO:0006325 (chromatin organization, Benjamini
FDR = 1.5 × 10-3) and GO:0060070 (Wnt receptor
signaling pathway through beta-catenin, Benjamini
FDR = 0.047). These findings were in agreement with
the autism-related functional pathways identified by
Iossifov et al [12] and De Rubeis et al [29].

Discussion
Most existing de novo mutation load tests classify de
novo mutation as either damaging or neutral in a dichot-
omous fashion and include only the putatively damaging
mutations in the test [12, 14]. However, many different
criteria of choosing damaging mutations exist, for
example: (1) protein-coding mutations; (2) mutations
predicted as damaging by variant classification software;
or (3) loss-of-function mutations. Choosing a more
stringent criterion can increase the signal-to-noise ratio
of the analyses but carries the risk of missing a true risk
gene. Some researchers opt to perform multiple de novo
mutation load tests with different classification criteria;
doing so, however, increases the burden of multiple-
testing correction and can also result in loss-of-power
power for causal genes with mutations from multiple
risk tiers. For most disease-gene associations, no existing

Genes identified by more than one test: POGZ, SLC6A1, FOXP1, PTK7, CHD8, WAC, ANK2, 
 KATNAL2, GRIN2B, PTEN, SCN2A, CHD2, TCF7L2, DYRK1A, DSCAM, SUV420H1, 
 KDM5B
Genes identified by fitDNM only: PRB4
Genes identified by VARPRISM only:
 Tier 1. Genes previously implicated from de novo mutation studies: ADNP,  AKR1C2,  ARID1B,  
  CTCF,  CTNNB1,  DIP2A,  DNMT3A,  GIGYF1,  GLRA2,  KDM6B,  MED13L,  MFRP,  
  MLL5,  MPP6,  MYH10,  NCKAP1,  NR3C2,  NTNG1,  PHF2,  PLEKHA8,  PPP2R5D,  
  S100G,  SLC6A8,  SYNGAP1,  TBL1XR1,  TBR1,  TSR2,  TUBGCP4
 Tier 2. Genes previously identified from association studies: KCND3,  MYO1E
 Tier 3. Genes causing related symptoms: PDCD1
 Tier 4. Novel candidates: BST2,  C2orf42,  DCAF4L2,  DLX3,  ELAVL3,  GLI4,  KRTAP4-4,  
  NUDT4,  OR10Z1,  PAFAH1B2,  RIPPLY1,  TERF2,  TSPAN4,  USP45,  ZC3H4,  
  ZNF555

Identified by VARPRISM and 
at least one other test 

26% 

Identified by fitDNM only 
1% 

Tier 1. Candidate autism 
genes with prior de novo 

evidence 
43% 

Tier 2. Candidate autism genes with association evidence 

3% 

Tier 3. Genes causing related symptoms 
2% 

Tier 4. Other 
25% 

Identified by VARPRISM only
           (73%)

Fig. 2 Candidate de novo mutated genes identified by VARPRISM, Poisson tests, and fitDNM. Left, the pie chart shows the relative proportion of
genes found by VARPRISM and any other tests (Poisson-all, Poisson-LGD, or fitDNM). Right, the pie chart further illustrates the level of evidence for
genes found by VARPRISM only. Gene names in each category were listed below
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variant classification scheme can generate sufficiently ac-
curate classifications to produce an optimal dichotom-
ous de novo mutation test. For example, we previously
reported that SIFT, PolyPhen-2, and MutationTaster cor-
rectly predicted disease causing and benign variants only
57 %, 62 %, and 74 % of the time, respectively, on the
HGMD and 1000 genomes testing sets [18], which is
consistent with findings reported elsewhere [39–41]. As
a result, dichotomous classification schemes will typic-
ally exclude many true disease-causing mutations. An
alternative approach, adopted by TADA-denovo [13], is
to analyze multiple categories of mutations (e.g. LGD
and missense) separately, and then combine the Bayes
factor of individual analyses. This method, however,
requires classifying mutations into broad categories and
cannot readily incorporate functional prediction scores
generated by variant classification tools. Indeed, Jiang
et al. have previously shown that a de novo mutation
test (fitDNM) using continuously scaled functional
weight outperforms TADA-denovo in simulations and
in neurological-disorder datasets [21].
We have developed an alternative approach, imple-

mented in the software package VARPRISM, which
jointly considers the full likelihood of the observed
mutations and the predicted impacts on protein func-
tion. By default, VARPRISM calculates the CASM score

of each mutation to predict potential pathogenicity, al-
though external variant prediction scores from other
tools can alternatively be provided on the command
line. VARPRISM exhibited increased statistical power
for detecting de novo mutation disease risk genes com-
pared to alternative approaches (fitDNM and Poisson
tests) in both simulated and real datasets. VARPRISM
derives baseline mutation rates under the null model
from site-specific mutation rate estimates across the
genome. The software defaults to the mutation rate es-
timates from Francioli et al. [23], but also supports user
provided site-specific mutation rate estimates. Thus,
VARPRISM is compatible with alternate null models
that modify mutation rates under the null model to ac-
count for the estimated strength of purifying selection
(i.e. level of selective constraint) [14].
VARPRISM shares a few similarities with the fitDNM

test. Both tests derived the full likelihood of observed de
novo mutations among affected individuals; both also
incorporated a functional prediction term for each muta-
tion. However, a few differences exist. First, fitDNM is
based on a score test while VARPRISM is based on a
likelihood ratio test. Although asymptotically equivalent
[42], in practice the performances of these two tests
frequently vary [43–45]. Second, fitDNM considers the
posterior probability of a mutation being damaging as
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Fig. 3 Overlap between candidate ASD genes and six functional gene classes. Four methods for identifying candidate genes were compared. The
upper plot shows the p-values under the null hypothesis that the candidate ASD gene list is independent from the functional gene classes, calculated
using a binomial test; the lower plot shows the actual number of overlapping genes between candidate genes and the functional gene classes
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the functional weight (e.g. PolyPhen-2 score), while
VARPRISM employs the likelihood ratio of a mutation
being damaging versus risk-neutral (e.g. CASM score).
Finally, although the fitDNM model can in theory analyze
small indels, this functionality is not available in the
current implementation, which likely accounts for the dif-
ferences in performance between fitDNM and VARPRISM
in the SSC dataset. For example, among the 64 genes with
FDR < 0.3 in VARPRISM, 34 contained at least one de
novo indel.
In VARPRISM, the likelihood distribution of AAS

caused by damaging mutations was trained using the
HGMD. While this distribution may not accurately rep-
resent the true AAS distribution for de novo mutations,
only the alternative model is potentially affected. Thus,
mis-specification of the AAS distribution for damaging
mutations will not inflate Type-I error (Table 1; also see
“Implementation”), but may compromise power. We
explored this possibility by comparing VARPRISM’s
power between our HGMD and ASD simulations. In the
former dataset, the training and testing mutations were
both random disjoint subsets from HGMD, and there-
fore is the scenario where the AAS distribution used by
VARPRISM reflects the true distribution under the
alternative model. In the latter dataset, the training set
remained the same, but mutations in the testing set
were sampled from de novo mutations in known ASD
risk genes in cases. Interestingly, despite the mis-
specified AAS distribution, the power from the HGMD
simulations was consistently 3–5 % lower than in ASD
simulations. This unexpected difference in power was
the result of underlying differences in the proportion
of LGD mutations in each dataset, which was 37 % in
ASD and 19 % in HGMD. Because LGD mutations are
rare under the null model, a large proportion of LGD
mutations under the alternative model increased the
signal-to-noise ratio in VARPRISM, resulting in a
corresponding increase in statistical power. Given that
purifying selection has less of an effect on the distri-
bution of de novo mutations compared to inherited
variation, in most disease datasets analyzed by VARPR-
ISM, the proportion of LGD mutations will probably
be higher than that of HGMD. Therefore, we expect
VARPRISM to exhibit robust performance in the
context of mis-specified AAS distributions in most
situations.
Our VAPRISM analysis of the SSC dataset identified

64 candidate ASD risk genes (FDR < 0.3) compared to
18 from the union of the other three tests (fitDNM,
Poisson-all, and Poisson-LGD). The majority (44 out of
64) of these genes were either annotated by AutDB as
candidate risk genes or previously found to contain de
novo mutations in ASD cases. Three novel VARPRISM
candidate genes, MYO1E (q = 0.21), KCND3 (q = 0.19),

and PDCD1 (q = 0.10), were especially promising due
to their implications in autistic symptoms in previous
association studies. MYO1E encodes a member of the
myosin protein family and is involved in intracellular
movement and membrane trafficking [46]. In a previous
cohort study on UK population-based birth cohort [36], a
common variant, rs4218 in MYO1E, was the top genome-
wide signal associated with Short Pragmatic Composite
Score (SPC), which measures social communication
abilities (p = 2.6 × 10–8). Another sequencing study found
mutations within the putatively regulatory regions of
the MYO1E gene in autism-affected probands [47].
KCND3 encodes potassium channels and functions in
creating action potentials [46] and has been signifi-
cantly associated with Non-Verbal Communication
(NVC) score in haplotype-block based association tests
of two independent samples [37]. In that study, two
haplotype blocks in the introns of KCND3 were signifi-
cantly associated with NVC with the Family-Based As-
sociation Test (p = 0.02 and 0.0006). The third gene,
PDCD1, is one of the genes disrupted in 2q37-deletion
syndrome. The 2q37 locus is one of the most frequently
deleted subtelomric region; the symptoms of its deletion
include autistic phenotypes, intellectual disability, and
seizures [38].
Two other VARPRISM candidate genes are poten-

tially interesting due to the similarity of their molecular
functions to known ASD risk genes. DLX3 (q = 0.29)
belongs to the distal-less homeobox gene family, which
is essential in regulating forebrain and basal ganglia
development [48]. Variants in both DLX1 and DLX2,
which are genes homologous to DLX3, increase the risk
of ASD in a previous association study. [49] TSPAN4
(q = 0.24) is a member of the tetraspanin family. A
missense variant in TSPAN7, a homolog of TSPAN4, is
associated with X-linked mental retardation [50]; the
same variant was also present in an autistic child in an
independent study [51]. These potential associations
should be interpreted with caution given the relaxed
FDR cutoff.

Conclusion
We presented a new statistical framework and soft-
ware package, VARPRISM, which incorporates variant
prioritization information to identify genes with a sta-
tistically significant excess of de novo mutations con-
tributing to genetic diseases. We applied our method
to the ASD dataset in Iossifov et al. [12] and identified
64 ASD candidates risk genes with FDR < 0.3, of which
44 have previously been implicated in ASD. Our results
demonstrate that incorporating AAS and phylogenetic
conservation information into the statistical analyses of de
novo mutations can substantially improve the power of
disease gene discovery.
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Availability and requirements
VARPRISM runs under Linux or OS X environment and
requires Perl and CPAN installed. The main input file of
VARPRISM is a list of mutations with annotated impacts
on the protein function, which can be generated with
either VAAST [20] or ANNOVAR [52]. The running
time for a genome-wide VARPRISM analysis on a 2500-
sample dataset on an Intel Xeon 2.00 GHz CPU was
14.6 h. VARPRISM is available for download at http://
www.hufflab.org/software/VARPRISM/.

Additional file

Additional file 1: Contains: Supplementary Methods, Tables S1–S3, and
Figures S1–S3. (DOCX 389 kb)
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