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Abstract

Background: The pathogenesis of neurological and mental health disorders often involves multiple genes,
complex interactions, as well as brain- and development-specific biological mechanisms. These characteristics
make identification of disease genes for such disorders challenging, as conventional prioritisation tools are
not specifically tailored to deal with the complexity of the human brain. Thus, we developed a novel web-
application—brain-coX—that offers gene prioritisation with accompanying visualisations based on seven gene
expression datasets in the post-mortem human brain, the largest such resource ever assembled.

Results: We tested whether our tool can correctly prioritise known genes from 37 brain-specific KEGG pathways
and 17 psychiatric conditions. We achieved average sensitivity of nearly 50%, at the same time reaching a specificity
of approximately 75%. We also compared brain-coX’s performance to that of its main competitors, Endeavour and
ToppGene, focusing on the ability to discover novel associations. Using a subset of the curated SFARI autism gene
collection we show that brain-coX’s prioritisations are most similar to SFARI’s own curated gene classifications.

Conclusions: brain-coX is the first prioritisation and visualisation web-tool targeted to the human brain and can be
freely accessed via http://shiny.bioinf.wehi.edu.au/freytag.s/.

Background
The World Health Organization estimates that around
450 million people worldwide suffer from mental or
neurological conditions, placing these disorders at the
top of the list of global disease burdens [1]. A better
understanding of biochemical and morphological abnor-
malities in affected brains can help alleviate this burden.
Next to non-invasive neuroimaging and post-mortem
histological analysis, the identification of genes involved
in the pathogenesis of these disorders is the most prom-
ising avenue to improve our knowledge and conse-
quently develop better diagnostics, treatments and
targeted therapeutics [2].
In recent years, genome-wide association studies, as

well as high-throughput sequencing of families, have
identified hundreds of variants located in, or near,

coding regions compellingly statistically associated with
mental and neurological disorders [3, 4]. For many of
the variants, however, the functional alleles and mecha-
nisms that give rise or contribute to these disorders
remain elusive. For example, while more than 100 loci
are associated with schizophrenia, few genes have been
implicated in the biological process underlying this gen-
etically complex disease [5]. Similarly, about 1000 copy
number variants and rare and common variants have
been found to be associated with autism [6], but little is
known about how they confer risk.
Designing and performing scientific experiments to

generate functional evidence for the involvement of a
gene in a mental or neurological disorder is often chal-
lenging. The cost of such experiments is typically high,
in particular when human brain tissue is necessary.
Furthermore, because of the large number of putative
disease genes only a subset of genes can be followed up.
Fortunately, computational methods as well as visualisa-
tion techniques exist that can help to prioritise which
candidate genes to pursue with such methods. These
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methods are referred to as in silico prioritisation. These
methods typically rely on knowledge collected in gen-
omic databases, such as the Online Mendelian Inher-
tiance in Man (OMIM) database [7], as well as gene
expression data from healthy individuals [8, 9]. Popular
examples of computational methods offering in silico
prioritisation include Endeavour [10] and ToppGene
[11]. One of the most frequently employed visualisation
tools for gene networks is String [12].
Both in silico prioritisation and gene network visual-

isation tools have been successfully applied to many dis-
eases [13, 14]. Nevertheless, most tools are biased
towards what is already known due to their reliance on
genomic databases and literature searches via databases
such as PubMed [15]. Because of this known bias some
tools also integrate gene expression data from healthy
individuals to implicate disease pathways discovered de
novo from the data. However, such gene expression data
are usually generated from easily obtained sources, such
as blood or lymphocytes, and thus may not reflect the
pathways in the relevant disease tissue [16, 17]. Gene
expression in the brain is uniquely different from other
tissues, reflecting the complex biological processes in
the brain [18]. Leveraging such brain-specific gene signa-
tures has indeed been shown to be beneficial in uncover-
ing disease genes for epileptic encephalopathies [19].
Furthermore, many available tools do not take into
account that gene expression varies considerably over
the course of an individual’s development, especially in
the brain. For example, in the human brain, Kang et al.
[20] observed that gene expression is regulated to a large
degree temporally and only to a lesser extent spatially.
Very few tools offer both in silico prioritisation and

gene network visualisation, which hinders interpretation
and design of functional downstream analysis [8] (one
notable exception is the downloadable application NET-
BAG [21]). brain-coX is a novel web-application focus-
ing on gene prioritisation and exploration of gene
networks for diseases that originate in human brain
tissue. Unlike any of the existing tools, brain-coX’s prior-
itisations are based solely on brain expression data, mak-
ing use of up to seven available large datasets measuring

gene expression in the developing and ageing human
brain. These datasets were processed and cleaned in a
homogeneous manner, ensuring maximal reproducibility
of results across datasets. To our knowledge this is the
first time results from these seven precious brain ex-
pression datasets are directly comparable, within one
resource. Besides prioritisations, brain-coX also allows
users to investigate pathway membership and to
explore changes in gene networks throughout brain
development via interactive visualisations. Such tem-
poral changes in gene networks have been hypothe-
sized to play a key role in many neurological and
mental disorders, with many such disorders showing
distinct ages of onset. Finally, we designed brain-coX
to be user-friendly and easily accessible through a
website to facilitate use by researchers who are not
comfortable with command line tools.

Implementation
Datasets
Dataset descriptions
We downloaded seven published and publicly available
datasets of gene expression from post-mortem human
brain tissue samples (Table 1). For six out of seven data-
sets, samples were collected from individuals deemed to
be normal with respect to mental and neurological dis-
orders. The Hernandez et al. dataset [22] contains some
individuals with unknown disease status. Datasets differ
widely with regards to age range of individuals, number
of individuals and number of samples as well as tissue
types collected from each brain. To cater for this, brain-
coX allows the user to select any combination of these
datasets. Furthermore, users are able to further subset
data by specifying developmental periods of interest. To
this end, the individuals contributing samples were
assigned to 15 different developmental periods according
to their age at death (Table 2). This option facilitates tar-
geted prioritisation and gene exploration for specific dis-
eases. An example would be a disease with onset in
childhood where a focus on brain samples from this
time period are likely to be much more informative than
samples from other time periods.

Table 1 Key features of the seven different gene expression datasets of the developing and ageing brains

Gene expression resource/publication Platform Number of individuals Average number of arrays per brain Number of time periods

Hawrylycz et al. [31] Agilent 10 406 2

Miller et al. [44] Agilent 4 328 2

Colantuoni et al. [45] Custom 266 1 11

Kang et al. [20] Affymetrix 57 24 15

Hernandez et al.a [22] Illumina 397 2 8

Trabzuni et al. [46] Affymetrix 134 9 4

Zhang et al. [47] Agilent 101 3 3
aThis dataset contains some individuals who were not normal with respect to neurological and mental health disorders
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Pre-processing and data cleaning
Different experimental protocols and microarray
platforms were used in the generation of these seven
datasets, leading to diverse sources of unwanted bio-
logical and technical variation. Thus, homogeneous pre-
processing and data cleaning are vital in order to ensure
that these heterogeneous datasets are comparable [23].
During pre-processing each sample was assessed for its
quality and samples with poor quality spot plots, un-
usual plots of log-intensity ratios versus log-intensity av-
erages or abnormal gene expression distributions were
excluded. After pre-processing, each dataset is treated
separately with one of two implemented cleaning strat-
egies. Users can choose between conventional back-
ground correction [24] in combination with quantile
normalisation [25] or removal of unwanted variation
(RUV) [26], a data-driven approach. Unlike most other
cleaning approaches, such as ComBat [27], these two ap-
proaches do not require meta data (i.e. batches, labora-
tory, etc.) on the samples, which in most datasets was
partially or not at all available.
RUV removes unwanted variation in an adaptive man-

ner with the help of negative control genes. Such genes
are affected by unwanted variation, but crucially not by
the biological variation of interest. The default setting in
brain-coX is to take all house-keeping genes as negative
control genes, but these can also be empirically chosen.
When unwanted variation and biological variation of
interest are correlated with each other, RUV removes
biological signal. In order to account for such correlation
to a degree, brain-coX applies a version of RUV with a

regularization parameter, as previously described [28].
To prevent further removal of biological variation of
interest, brain-coX also excludes known disease genes,
candidates and further genes specified by the user from
being negative control genes. This method has been
demonstrated to reliably recover gene–gene correlations,
which form the basis of in silico prioritisation and net-
work visualisations. Furthermore, its application to a
subset of the brain datasets demonstrated improved re-
producibility across datasets compared to other cleaning
strategies [28]. Here, we also demonstrate increased
accuracy prioritising known pathway genes compared to
background correction and quantile normalisation
(Additional file 1: Figures S1 and S2). Furthermore, RUV
also considerably reduces differences between datasets.
When the seven datasets are combined, differences be-
tween the datasets are noticeably reduced and the
remaining clustering can be attributed to developmental
differences rather than data sources (compare Additional
file 1: Figures S3, S4, S5 and S6).

Prioritisation
brain-coX prioritises user-supplied candidate genes via
the guilt-by-association principle [29]. This principle as-
sumes that the most promising candidate genes will be
the ones that are associated with genes already known to
be involved in the disease. Such candidates are likely to
be part of the same biological network(s) that, when dis-
rupted, lead to the development of the disease. The reli-
ance on this principle means that the user is required to
supply already known disease genes in order to prioritise
their candidate genes. This approach has been shown to
work well in many neurodevelopmental disorders where
the list of discovered genes continues to grow. However,
it should be noted that the guilt-by-association principle
assumes that all disease genes fall into a small number
of convergent pathways. If this is not the case, discovery
of new disease genes is unlikely.
As gene prioritisation is the focus of brain-coX, we

implemented an improved version of a prioritisation
strategy, BrainGEP, proposed by Oliver et al. [30]. Using
a retrospective analysis, they were able to assess the val-
idity of their prioritisations. In Oliver et al. 179 putative
epileptic encephalopathy candidates were examined, of
which 19 had been prioritised in 2013. They found that
six candidates had since been confirmed, of which their
prioritisation had predicted five [19]. This result is based
on the use of only the Allen Human Brain Atlas expres-
sion dataset [31] while brain-coX prioritises candidates
on up to seven datasets simultaneously and compares
the results. Furthermore, brain-coX employs a different
weighting of the simple Pearson correlation to Brain-
GEP. In brain-coX, correlations are weighted by the in-
verse of the number of samples contributed by the

Table 2 Fifteen developmental periods of the human brain as
defined by Kang et al.

Period Description Age range

1 Embryonic 4–8 PCW

2 Early fetal 8–10 PCW

3 Early fetal 10–13 PCW

4 Early mid-fetal 13–16 PCW

5 Early mid-fetal 16–19 PCW

6 Late mid-fetal 19–24 PCW

7 Late fetal 24–18 PCW

8 Neonatal and early infancy Birth to 6 M

9 Late infancy 6 M–1 Y

10 Early childhood 1–6 Y

11 Middle and late childhood 6–12 Y

12 Adolescence 12–20 Y

13 Young adulthood 20–40 Y

14 Middle adulthood 40–60 Y

15 Late adulthood 60+ Y

Mmonths, PCW post-conception weeks, Y years
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respective donor in order to take into account
dependencies.
The prioritisation can be summarised in three steps,

which are conducted on each of the seven datasets avail-
able in brain-coX separately (also compare Additional
file 1: Figure S7).

Step 1: Determination of background correlation
A random set of genes, the size of the candidate gene
set, is selected. The absolute weighted correlation be-
tween these random genes and the known disease genes
is then calculated. For each gene only the maximum ab-
solute correlation is retained. This step is repeated 1000
times.

Step 2: Determination of correlation threshold
The user selects a proportion of non-disease genes
allowed to be prioritised. The 1000 repeats of step 1 can
then be used to determine the threshold for the absolute
correlation, ensuring the user-selected proportion of
random genes gets prioritised on average. Note that this
proportion is an overestimate as not all randomly se-
lected genes will be truly biologically independent of the
disease genes.

Step 3: Prioritisation
Finally, brain-coX calculates the correlation between the
candidate genes and the disease genes. With the cutoff
for the absolute correlation established, candidate genes
that have a maximum absolute correlation with any dis-
ease gene greater than the cutoff are prioritised.
As prioritisation is performed separately in every se-

lected dataset, the number of datasets a candidate gene
is prioritised in can thereby be seen as an indicator of
the likelihood that the candidate gene is truly associated
with the disease genes. Candidate genes can be further
ranked by their sum of all absolute correlations, above
the calculated threshold with any known disease gene.

Exploration through visualisation
Network visualisation
brain-coX has extensive visualisation options that allow
an intuitive understanding of the prioritisation results.
The tool offers two types of network visualisations. The
first uses the datasets separately and is designed to high-
light the effect of individual datasets on prioritisation re-
sults. The user can also interactively assess how different
choices of parameters, such as the proportion threshold,
influence the results. For the second visualisation, data-
sets were combined and the user can investigate differ-
ent clustering algorithms on the gene–gene correlation
heatmap. Furthermore, users also have the option to
explore partial correlations, which control for indirect
interactions between genes.

Investigating the effect of brain development
Gene expression networks are known to alter in re-
sponse to environmental cues and factors during devel-
opment [32]. Users can explore such changes with
heatmaps of gene–gene correlations estimated for each
time period independently. They can also focus on the
changes occurring in gene regulation in the normal hu-
man brain between sets of time periods. We believe that
this feature in particular may help to pinpoint disease-
relevant developmental mechanisms that are disrupted
in patients. We have included a case study in Additional
file 1 to explain the use of these features in learning
more about candidate genes.

Interface
The graphical user interface of brain-coX was built using
shiny [33]. Like other shiny applications, brain-coX le-
verages R [34] and Bioconductor [35] resources for the
underlying calculations and plot output. Due to shiny’s
inherent reactive programming framework, output is
only updated when the user changes the settings or in-
stigates a new query. There are two ways to run brain-
coX: firstly, it can be accessed through our web-server
(http://shiny.bioinf.wehi.edu.au/freytag.s/), requiring no
further programmes to be installed; secondly, it is avail-
able as a local version once the software is downloaded
and installed. The latter has the advantage of reducing
computational time and not being limited by the host
web-server’s current load. However, this requires a
recent version of R and several additional R and Biocon-
ductor packages on which several steps rely. Further-
more, executing the application requires basic
knowledge of R.
For a detailed example explaining the use of brain-coX

to identify zinc transporter genes that may play a role in
febrile seizures see Additional file 1 and Additional files
2, 3 and 4 for the associated data.

Results
Statistical benchmarking
We followed the leave-one-out cross-validation ap-
proach described by Aerts et al. [10]. In this approach
one gene is deleted from the known set of genes and
termed the “defector” gene. The ability to prioritise this
gene in a list of 99 other candidates, made up of random
genes not known to be associated, determines the accur-
acy. Unlike Aerts et al., we used two different types of
known gene sets that will reflect a spectrum of net-
works, with some gene sets likely to be connected within
one network and other gene sets showing very little con-
nection. The former gene sets will do well with our ap-
proach, the latter will not. The first set of genes consists
of 37 KEGG pathways [36] which function in the human
brain as judged by keywords search (Additional file 1:
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Table S2). The second set of genes was automatically
mined from the PsyGeNet database [37], a resource that
stores genes associated with psychiatric diseases (for a
full list see Additional file 1: Table S3). This set con-
tained 17 diseases, such as major affective disorder and
anhedonia, and their known genes.
For the prioritisation approach implemented in brain-

coX with RUV normalisation, we also examined the
effect of using multiple datasets. To do this we defined a
successful prioritisation as a gene prioritised in at least k
datasets. We then found the average number of false
positives and true negatives as well as the number of
false negatives and true positives in every pathway for
each k. This allowed us to calculate the specificity, sensi-
tivity, precision and negative prediction value. In this
context, sensitivity thus quantifies the prioritisation
approach’s ability to correctly prioritise the “defector
gene”. Similarly, specificity allows judging an approach’s
tendency to prioritise random genes that are not
involved in the disease. Generally, a prioritisation ap-
proach with high specificity is preferred, as this reduces
costs involved in the follow-up of false candidate genes.
Our prioritisation approach (at 20% correlation thresh-

old) has mean specificity above 0.70 for any one of the
brain array resources, or combinations thereof, for both
the KEGG and PsyGeNet set of known genes (compare
Figs. 1 and 2). Sensitivity rapidly decreases with the
number of datasets required to prioritise the “defector”
genes. Requiring a gene to be prioritised in at least two
datasets seems to result in the best trade-off between
specificity and sensitivity of the method when precision
and negative prediction value (Additional file 1: Figures
S8 and S9) are also considered. It is interesting to note
that the sensitivity values for the PsyGeNet sets are only
slightly below those found for the KEGG gene sets. This

suggests that gene expression networks can be utilized
for the identification of disease genes in psychiatric dis-
eases much like for the construction of pathways. A
large gene co-expression network functionally related to
synaptic transmission and recently identified to be differ-
entially regulated in schizophrenia is further testament
to this [38]. It also suggests the utility of brain-coX for
the interpretation of neuropsychiatric GWAS results.

Benchmarking of different cleaning strategies
We also compared prioritisation accuracy for the two
different normalisation techniques implemented in
brain-coX, RUV and background correction combined
with quantile normalisation. We determined sensitivity
and specificity from leave-one-out cross-validation on
the 37 KEGG pathways as described previously. Using
these pathways, sensitivity appears to be roughly simi-
lar for the two approaches (Additional file 1: Figure
S10). There are statistically significant gains in specifi-
city (t-test, t-statistics = 8.49, p value = 7.73e-12) when
using RUV normalisation compared to conventional
normalisation with background-correction and quan-
tile normalisation. Our previous work published on
RUV normalisation applied to correlations indicated
greater reproducibility of prioritisation results between
datasets for epileptic encephalopathy candidates when
using the RUV approach compared to the conven-
tional approach [28].

Comparison with other web-applications
Comparing the performance of brain-coX with other
prioritisation web-tools is challenging. Most web-based
prioritisation tools already integrate databases such as
OMIM, DisGeNet [39] and KEGG in order to improve
their performance. Thus, neither the KEGG pathways
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Fig. 1 Accuracy of brain-coX in predicting KEGG pathways. The displayed accuracy measures were generated from leave-one-out cross-validation
using 37 KEGG pathways that function in the human brain. We also examine the effect of requiring a gene to be prioritised in multiple datasets
on the accuracy measures. a Specificity of brain-coX prioritisation approach. b Sensitivity of the brain-coX prioritisation approach
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nor the PsyGeNet disease genes should be used to com-
pare performance of different tools, as such a compari-
son would be heavily biased in favour of web-tools that
make use of these resources. Moreover, such a compari-
son does not reflect the real user case where these tools
are being used to discover novel disease genes and
pathways.
We compare brain-coX to two competing web-based

prioritisation approaches, Endeavour and ToppGene.
Both approaches rank candidate genes with the help of
known disease genes. We chose not to compare the per-
formance of brain-coX to prioritisation approaches that
do not offer web interfaces. We acknowledge that such
tools could potentially offer superior performance, but
they cannot be used without some knowledge of pro-
gramming. One example is Weighted Gene Co-
Expression Network Analysis (WGCNA) [14], the most
commonly used network construction tool. While this
tool requires extensive optimization of parameters, it al-
lows temporal effects to be taken into account. We did
investigate how the performance of WGCNA compares
to our approach for a subset of 37 KEGG pathways de-
scribed above. We found that brain-coX performs better,
distinguishing between genuine pathway genes and ran-
dom genes, than WGCNA (Additional file 1). Note that
we also do not compare brain-coX to prioritisation tools
specialised for only one disease, such as the algorithm
Detecting Association With Network (DAWN) for aut-
ism [6], which uses expert knowledge. Such tools might
outperform brain-coX. However, for most neurological
and mental diseases specialised tools do not yet exist.
In order to overcome the bias in the leave-one-out

cross-validation studies with known pathways, we also
investigated a set of genes that a priori is expected to
harbour several true positive genes. We made use of the

curated Simons Foundation Autism Research Initiative
(SFARI) Gene database [40], which is expected to con-
tain likely disease-causing autism genes. These genes are
furthermore ranked in terms of confidence, providing a
further source of data for validation. The 826 genes in
the database are scored from 1 to 6; each value indicat-
ing a category. The first category includes high-
confidence autism genes and the last category contains
genes that are currently not supported by any evidence
for their involvement in autism.
To compare the performance of Endeavour, ToppGene

and brain-coX, we used the 17 genes in the high-
confidence group (category 1) as our known autism
genes. We designated 340 genes in categories 2 to 6 that
were not associated with autism in DisGeNet as candi-
date autism genes. We restricted brain-coX to only use
samples collected from early mid-fetal development to
early childhood (periods 4–10). Autism typically mani-
fests in the first or second year of life [41], but there is
robust evidence for the involvement of early mid-fetal
development in this disease [42]. We used both Topp-
Gene and Endeavour largely with default settings;
however, we excluded the use of BLAST Annotation
for Endeavour to ensure completion of the prioritisa-
tion with large sets of candidates. brain-coX priori-
tised 222 genes at 20% threshold in at least one
dataset, while ToppGene prioritised all candidates and
Endeavour prioritised only two genes according to the
associated p values.
In order to assess the quality of the prioritisation of

each approach we examined the cumulative average of
the gene score assigned by SFARI Gene to the first 100
ranked genes (compare Fig. 3). Thus, a low score indi-
cates good performance. The cumulative average score
for the genes prioritised by brain-coX was either equal
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Fig. 2 Accuracy of brain-coX in predicting disease genes in PsyGeNet. The displayed accuracy measures were generated from leave-one-out
cross-validation using 17 PsyGeNet diseases that function in the human brain. We also examine the effect of requiring a gene to be prioritised in
multiple datasets on the accuracy measures. a Specificity of brain-coX prioritisation approach. b Sensitivity of the brain-coX prioritisation approach
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to or lower than that with either Endeavour or Topp-
Gene. While there was not much difference between
the different prioritisation approaches for the first 20
genes, brain-coX yielded considerably lower scores for
genes ranked from 21 to 59. This indicates that
brain-coX prioritises genes at least until rank 50 that
have more support for involvement in autism than
the other tools.
The SFARI Gene database relies on the research com-

munity for the collection of autism genes and is thus ex-
pected to be incomplete. Furthermore, it is governed by
its own set of annotation rules, which may create certain
biases. Because of this, we conducted a second perform-
ance analysis which was identical to the first in all but
the choice of candidate genes. Here, the candidate genes
were chosen from an association analysis conducted by
Sanders et al. [43] on data from the Autism Genome
Project, the Autism Sequencing Consortium and the
Simons Simplex Collection. In total, we used 41 genes
that reached significance (false discovery rate (FDR)
≤0.1) for association with autism and were not found in
DisGeNet.
To compare the approaches we examined the Spear-

man correlation between the prioritisation rank and the
FDR value of association with autism for all prioritised

genes. Given the wealth of data used by Sanders et al.,
the FDR value can be viewed as a proxy of the likelihood
of true involvement in autism. The Spearman correlation
for brain-coX was the highest at 0.259 (0.135 for
Endeavour, 0.165 for ToppGene).

Conclusions
brain-coX will help researchers explore candidate genes
and their potential involvement in mental or neuro-
logical disorders via in silico prioritisation methods as
well as allowing novel visualisation approaches. Thus,
brain-coX is the ideal first step in the discovery of novel
biomarkers for brain disorders or the development of
new treatments for such illnesses. It is important to re-
member that any candidate genes prioritised by brain-
coX need to be followed up to confirm their suspected
involvement in the investigated brain disorder. Follow-
up usually includes multiple different experimental as
well as observational avenues, including, but not limited
to, animal models and human iPSCs studies.
brain-coX is underpinned by the world’s largest

resource of human brain microarray datasets ever as-
sembled. By exclusively focusing on gene expression
measurements in post-mortem human brain, we created
a tool that is not biased by what is already known from
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Fig. 3 Cumulative mean score for SAFRI candidate genes. We prioritised 340 genes in the SAFRI database for autism with three different
prioritisation approaches given 17 known autism genes. For the first 100 prioritised genes of each method we calculated the cumulative
mean of the respective SFARI scores (2–6). Lower scores indicate genes that are more likely to be involved in autism
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literature or experimental approaches, but targeted to
diseases originating in the brain. brain-coX also allows
insights into the temporal complexity of the human
brain within an easy to use web-tool. This means that
brain-coX is uniquely suited towards improving our
understanding of normal regulation throughout brain
development. Unfortunately our effort to also make use
of brain regions was thwarted due to the large inconsist-
encies in brain anatomical annotation between the
different datasets and remains a future research goal and
extension for brain-coX.

Availability and requirements
brain-coX is available via http://shiny.bioinf.wehi.edu.au/
freytag.s/. A stand-alone version is available upon re-
quest, but requires R.

Additional files

Additional file 1: Manuscript outlining further details. (DOCX 4166 kb)

Additional file 2: List of known febrile seizure genes. (CSV 64 bytes)

Additional file 3: List of zinc transporter genes. (CSV 189 bytes)

Additional file 4: List of genes associated with epilepsy. (CSV 509 bytes)
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