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Abstract

A major aim of cancer genomics is to pinpoint which somatically mutated genes are involved in tumor initiation
and progression. We introduce a new framework for uncovering cancer genes, differential mutation analysis, which
compares the mutational profiles of genes across cancer genomes with their natural germline variation across
healthy individuals. We present DiffMut, a fast and simple approach for differential mutational analysis, and
demonstrate that it is more effective in discovering cancer genes than considerably more sophisticated approaches.
We conclude that germline variation across healthy human genomes provides a powerful means for characterizing
somatic mutation frequency and identifying cancer driver genes. DiffMut is available at https://github.com/Singh-
Lab/Differential-Mutation-Analysis.
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Background
Large-scale cancer genome sequencing consortia, such
as TCGA [1] and ICGC [2], have provided a huge influx
of somatic mutation data across large cohorts of pa-
tients. Understanding how these observed genetic alter-
ations give rise to specific cancer phenotypes represents
a major aim of cancer genomics [3]. Initial analyses of
cancer genomes have revealed that numerous somatic
mutations are usually observed within each individual
and yet only a subset of them is thought to play a role in
tumor initiation or progression [4]. Further, such ana-
lyses have shown that somatic mutations in cancer are
highly heterogeneous, with each individual presenting a
distinct set of mutations across many genes [3, 4]. As a
result, computational methods are necessary for analyz-
ing cancer genomics datasets in order to uncover which
of the many observed altered genes are functionally
important in cancers [5].
Perhaps the most commonly applied approach to

identify cancer-related genes is to analyze a cohort of

individuals and find the genes in which somatic muta-
tions frequently occur [6, 7]. However, gene-specific
characteristics, such as length, replication timing, and
expression, all play a role in any given gene’s propensity
for acquiring mutations [4, 5, 7, 8]. Thus, a gene’s
frequency of mutation is typically compared to a back-
ground mutation rate, computed across either the entire
gene or a specific genomic region, that represents how
frequently we would expect that gene to be mutated by
chance alone; only genes with mutation rates signifi-
cantly higher than background mutation rates are
predicted to be relevant for cancer [8–12]. Background
mutation rates have been estimated based upon a variety
of data, including silent mutation frequency [11, 12],
mutational frequencies per nucleotide contexts (e.g. CG
dinucleotides) [9], and known gene-specific characteris-
tics [8, 10], as well as combinations of these features as
inferred using machine learning techniques [13]. A high
background mutation rate in a gene is indicative of that
gene’s propensity to accumulate mutations, thereby
suggesting that mutations within it are more likely to be
neutral [11].
Here we introduce a new framework, differential

mutation analysis, that uncovers cancer genes by com-
paring the mutational profiles of genes across cancer
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genomes with their natural germline variation profiles
across healthy individuals. We hypothesize that if a gene
is less constrained with respect to variation across the
healthy population, it may also be able to tolerate a
greater amount of somatic mutation without experien-
cing a drastic detrimental functional change. Our ration-
ale is that the propensity of a gene to acquire neutral
mutations is likely subject to many of the same gene
specific characteristics (e.g. length) regardless of whether
these mutations occur in germline cells or somatic cells
[6, 14]. Furthermore, genomic breakpoints tend to be
shared across genomic samples leading to instability and
mutations in the same regions in both somatic and
germline cells [15]. Thus, we propose that just as differ-
ential gene expression analysis in cancer studies identi-
fies genes that are differentially expressed between
cancer samples and normal samples, so differential mu-
tation analysis can reveal genes that are differentially
mutated between cancer genomes and the genomes of
healthy individuals. While genes that are found to be
differentially expressed are thought to reflect functional
differences in regulation [16], we propose that genes
that are differentially mutated are candidate cancer
“driver” genes.
We present a fast and simple method for differential

mutational analysis. Our approach leverages large-scale
human variation data from the 1000 Genomes project
[17] and identifies genes whose mutational profiles
across cancer genomes are enriched compared to their
relative variability across healthy populations. Previously,
natural variation data have been used to interpret muta-
tions found in the genomes of individuals with a disease
of interest [12, 18–20]. For example, mutations that fall
in highly polymorphic sites are frequently assumed not
to play a significant role in disease [12, 18, 19]. Further-
more, genic regions with a high ratio of rare variants to
common ones have been found to be more intolerant to
functional variation and thus changes within them are
more likely to be responsible for inherited diseases [20].
Somatic mutations that fall into such regions can also
have a large functional impact [18, 19]. Moreover, per-
gene rare variant frequency has been used to prioritize
cancer genes and distinguish tumor samples from nor-
mal samples [21]. In contrast to these earlier approaches
that consider allelic frequencies at individual sites to
help elucidate the impact of mutations, our work intro-
duces the idea of comparing the variability of a gene
across a healthy population with its mutational profile
across a cancer cohort in order to determine whether it
is likely to be relevant for cancer.
Our method for identifying genes differentially mu-

tated in cancer does not rely on any parameter fitting or
machine learning and obviates the need to integrate the
large amounts of external covariate data that many other

methods rely on [7]. Our method runs in minutes and
outperforms considerably more sophisticated and time-
consuming approaches for uncovering cancer genes. We
therefore posit that germline variation information can
serve as a robust background for characterizing somatic
mutations revealed by cancer genome sequencing stud-
ies and that differential mutation analysis is an intuitive
yet highly efficacious framework for discovering cancer
driver genes.

Methods
Method overview
We have developed a method, DiffMut, that evaluates
each gene for differential mutation when comparing can-
cer and healthy cohorts. Our approach is entirely based
on somatic mutations and germline variation, without
any additional parameters (Fig. 1). Briefly, for a cancer
type of interest, we first count, for each individual, the
number of non-silent single nucleotide mutations found
in the exons of each gene. Similarly, we use the 1000 Ge-
nomes sequencing data to count, for each individual,
how many variants appear in each gene. We define a
variant as any nucleotide that differs from the most
common one across the healthy cohort. For each
individual, we then rank normalize the mutation or vari-
ant counts across genes so that each gene is assigned a
score between 0 and 1 that reflects the relative number
of mutations or variants that fall within it. Next, for each
gene, we aggregate its mutation and variation scores
across healthy and cancer cohorts separately, resulting in
a set of normalized variation scores as well as a set of
normalized mutation scores. We use these sets to build
a pair of histograms estimating the density of mutation
and variant normalized scores. The first represents the
gene’s ranks among all genes with respect to somatic
mutation across a cancer genome cohort; the other rep-
resents its ranks with respect to germline variation
across a healthy cohort. In order to uncover whether a
gene has a mutational profile that is more extreme for
cancer than healthy cohorts, we compute the difference
between the two distributions using a modification of
the classic Earth Mover’s Distance [22], which we refer
to as a unidirectional Earth Mover’s Difference (uEMD).
A key advantage of an EMD-based score is that it mea-
sures the cost of transforming one distribution into an-
other by considering the shapes of the two distributions
in addition to the differences between the constituent
values. Genes with higher uEMD scores have normalized
cancer mutation scores that tend to be larger than their
normalized variation scores. Thus, we rank all genes by
their uEMD scores, considering higher ranking genes to
be more likely to be functionally related to a given can-
cer type, and compute a supporting empirical q-value at
each uEMD score [23].

Przytycki and Singh Genome Medicine  (2017) 9:79 Page 2 of 11



Processing cancer exome mutations
We downloaded all level 3 cancer somatic mutation data
from The Cancer Genome Atlas (TCGA) [1] that was
available as of October 1, 2014. This consisted of 75
Mutation Annotation Format (MAF) files across 24 can-
cer types. We then mapped point mutations based on
their provided location in the human reference genome
to all known human proteins in NCBI’s annotation re-
lease 104 whose amino acid sequences matched nucleo-
tide sequences from the human reference genome build
37 patch 10 (GRCh37.p10) [24]. Mutations were classi-
fied as missense if they changed the encoded amino acid,
nonsense if they changed an amino acid into a stop
codon, and silent if they had no effect on the protein se-
quence. For each gene, we selected only the longest
known isoform, which left us with 19,460 protein iso-
forms that uniquely mapped to genes. In cases where
the MAF file was annotated to an earlier release of the
human reference genome, we used the liftOver tool [25]

to convert genomic locations to build 37. For each of
the 24 cancer types, we selected the MAF file with the
most mapped non-silent mutations (with the exception
of those files processed by Canada’s Michael Smith
Genome Sciences Centre which excluded nonsense
mutations) in order to have the largest number of muta-
tions without mixing mutations from different process-
ing pipelines (see Additional file 1: Section A for
mutation counts for each cancer type).

Processing natural human variants
We downloaded all phase 3 whole-genome variant calls
from the 1000 Genomes Project (released May 2, 2013)
[17] and mapped them uniquely to the longest isoform
for each gene as described above. This resulted in
960,408 variant sites over 2504 healthy individuals, of
which 578,002 contained missense variants, 11,543 con-
tained nonsense variants, and 370,974 contained silent
variants (note that a single variant site can yield

Fig. 1 Overview of the differential mutation framework. Our method evaluates each gene for differential mutation when comparing cancer and
healthy cohorts. For a cancer type of interest, we first count, for each individual, the number of somatic mutations found in each gene. Similarly,
we use the 1000 Genomes sequencing data to count, for each individual, how many variants appear in each gene (top left). For each individual,
we rank normalize the genes so that each gene has a score between 0 and 1 that reflects the relative number of mutations or variations that fall
within it, compared to other genes within that individual (top middle). Next, for each gene, we aggregate its mutation and variation scores across
healthy and cancer cohorts separately, resulting in a set of normalized variation scores as well as a set of normalized mutation scores (top right).
We use each of these sets to build a histogram estimating the density of mutation or variant normalized scores. Shown here are the smoothed
densities for the three most mutated genes in breast cancer (bottom right). Finally, in order to uncover whether a gene has a mutational profile
that is very different between natural and cancer cohorts, we compute the difference between the two distributions using a modification of the
classical Earth Mover’s Distance, which we refer to as a unidirectional Earth Mover’s Difference (uEMD). Genes with large differences between the
two distributions are predicted as cancer genes (bottom left). See “Methods” for details
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missense, silent, or nonsense variations in different indi-
viduals). For each variant site, each individual is given a
score of 0, 1, or 2 depending upon whether the variant is
absent, heterozygous, or homozygous relative to the most
commonly observed allele in the population. Variants in
the Y chromosome were excluded and variants in male X
chromosomes were always marked as homozygous.

Rank normalizing mutations and variation counts per
individual
For each individual with cancer, we counted the number
of mutations that were found in each gene in their can-
cer genome. Similarly, for each individual included in
the 1000 Genomes Project, we counted the sum of vari-
ant scores for each gene, as described above. Next, for
each individual, we rank normalized their mutation or
variation counts across all genes. To do so, each gene
was first assigned a rank equal to the number of genes it
had a greater count than. All ranks were then divided by
the total number of genes. This generated a score be-
tween 0 (no observed mutation or variation in the gene
for the given individual) and 1 (the gene has the most
observed mutation or variation for the given individual)
for each gene, per individual.

Computing uEMD per gene
After rank normalization as described above, each gene
has two sets of scores: one for all cancer samples and
one for all healthy samples. We compare the histograms
corresponding to these sets of scores using a unidirec-
tional version of the EMD. In general, EMD is a measure
of the distance between two probability distributions
based on how much probability density or “dirt” must be
“moved” for the two distributions to match. EMD has
been used, for example, in pattern recognition contexts
such as measuring the difference between two images
[22]. In order to compute how often and by how much
mutation scores exceed variation scores for each gene,
we created a uEMD that only measures the amount of
“dirt” that must be moved downward from the first dis-
tribution (mutation data) to the second (variation data)
but ignores “dirt” that would be moved the other way. In
practice, we compute uEMD for a gene g by construct-
ing histograms for both sets of scores for that gene in
100 evenly spaced bins between 0 and 1. Then, starting
from the highest bin, we count the fraction of cancer
mutation scores that fall in that bin and subtract the
fraction of natural variant scores that fall in that bin.
Next, we move the surplus or deficit fraction of muta-
tions to the next bin but only add any surplus to a run-
ning total for uEMD. We repeat this process for all bins
or until all mutations have been accounted for. This
process can equivalently be expressed by the formula

uEMDg ¼
X1

B¼100

max
XB

b¼100

Mb;g−Nb;g
� �

; 0

( )

where Mb,g is the fraction of mutations in bin b for gene
g and Nb,g is the same for variants. For a fixed number
of bins, computing uEMD scores for all genes is done in
linear time in the number of genes.

Test for correlation with known covariates
We tested for correlation between our per-gene uEMD
scores and gene length, DNA replication time, global ex-
pression level, and chromatin state, as these covariates
have been previously shown to correlate with non-silent
mutation rate [8]. We computed length as the total
number of bases in the longest isoform of a gene. The
other three covariates were downloaded from the Cancer
Genome Analysis (CGA) group [8] and were computed
as described there. In each case, for each cancer type, we
computed the Spearman correlation between the uEMD
scores and the given measure for mutated genes.

Evaluation
To evaluate our gene rankings, we downloaded three cu-
rated lists of known cancer genes: the list of known cancer
genes in the Cancer Gene Census (CGC) from COSMIC
[26], the list of “driver genes affected by subtle [point] mu-
tations” from Vogelstein et al. [3], and the pan-cancer list
of significantly mutated genes from Kandoth et al. [27].
We filtered the CGC list to only those related to somatic
point mutations. We split the CGC and Vogelstein list
into oncogenes and tumor suppressor genes (TSGs) as
classified by each, respectively. This resulted in 202 genes
in the CGC list, 47 of which are oncogenes and 52 of
which are TSGs; 125 in the Vogelstein list, 54 of which are
oncogenes and 71 of which are TSGs; and 137 in the Kan-
doth list. With respect to any list of known cancer genes,
we used two methods to assess overall performance. First,
since any list of known cancer genes is incomplete, we ex-
amined what fraction of top-ranking genes by our method
was in the given list of genes across varying ranking cut-
offs. This gave us a general idea of how enriched cancer
genes were in that list. Second, to evaluate the enrichment
for cancer genes across the full spectrum of predictions,
we measured the area under the precision–recall curve
(AUPRC) using the perfMeas package for R [28]. Note
that in either case, high-scoring genes found by any
method that are not in the list of known cancer genes
may, in fact, correspond to newly discovered genes with
functional roles in cancers. For each test, we used the list
of known cancer genes as positive examples and removed
known cancer genes that are implicated for other reasons
from the set of negatives. Specifically, we removed all the
genes we filtered out from the CGC list from the list of
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negatives as well as any genes that are labeled as cancer
genes in any of the lists we consider. Furthermore, we re-
moved oncogenes from the list of negatives when testing
TSGs and vice versa. We applied both measures to the list
of per-gene uEMD scores for each of the 24 cancer types.
In evaluations against MutSigCV [8], the method devel-
oped by Youn and Simon [11], OncodriveCLUST [29],
OncodriveFML [30], and MADGiC [10], we always ran
these programs using default parameters on the same
MAF file we used for our method. We ran FunSeq2 [19]
by submitting identical MAF files to their web server
using default parameters.

Computing supporting q-values
To evaluate whether the uEMD of a gene is significant,
we test whether it has a significantly higher uEMD than
would be expected if each patient’s mutations were ran-
domly distributed across genes. In particular, we gener-
ate randomized data as follows. First, for each individual,
we randomly permute their mutation ranks across genes.
Next, we use this randomized data to compute a full set
of “decoy” uEMDs; that is, for each gene, we compute
the uEMD between the distribution of randomized mu-
tation ranks for that gene and its distribution of normal-
ized variation counts across the healthy population. For
each score threshold, we then compute a false discovery
rate (FDR) by computing the ratio between (1) the num-
ber of decoy uEMDs at least as large as the threshold
and (2) the number of genes with uEMD at least as large
as the threshold when using the actual somatic mutation
data. For each gene, we use its uEMD score to obtain an
FDR, and a q-value is obtained by taking the minimum
FDR for a score at least as small. This is a conservative
method for controlling the FDR [23]. In practice, we
repeat the randomization process five times and estimate
the FDR for each gene by taking an average over these
randomizations.

Results
Identifying cancer driver genes by differential mutation
analysis
We applied our method to all 24 cancer types sequenced
in TCGA using all non-silent mutations (Additional file 1:
Section A). Unlike many other methods, we do not re-
move hypermutated samples and do no additional pruning
of genes. We evaluated our method by examining whether
the CGC list of known cancer driver genes, as curated by
COSMIC [26], is enriched among genes with high uEMD
scores. First, since no list of known cancer genes is
complete, we examined what fraction of top ranking genes
by our method was in the list of known cancer genes.
Across all 24 cancer types, we find that a high fraction of
the top-scoring genes are, in fact, known cancer genes
(Fig. 2a). Indeed, genes that are significantly differentially

mutated (q-value < 0.1) are enriched for cancer genes
(Additional file 1: Section B). As a control, we repeated
this analysis using silent somatic mutations. Since silent
mutations do not change protein products, we do not
expect that differential mutation analysis will be predict-
ive of cancer genes in this scenario [3]. As anticipated,
we do not see an enrichment for cancer genes among
genes that are the highest scoring using only silent mu-
tation data (Fig. 2a), with only one cancer gene found
with q-value < 0.1 across all 24 cancer types (Additional
file 1: Section B).
To evaluate the enrichment for cancer genes across

the full spectrum of predictions of our method, we also
measured the AUPRC. To quantify the improvement in
enrichment, we computed the log2 fold change in
AUPRC between uEMD scores produced by non-silent
mutations vs silent mutations (Fig. 2b, left). Next, we
tested the rankings generated by our method against
ranking genes by how frequently they are mutated per
base of exon, a baseline method for finding cancer-
related genes [12]. We found that in terms of AUPRC
our method consistently outperformed mutation rate
across all cancer types (Fig. 2b, right).

Differential mutation analysis outperforms prior
frequency-based methods in identifying cancer genes
We evaluated DiffMut’s uEMD scores against gene rank-
ings generated by MutSigCV [8], which is the de-facto
standard method for detecting cancer driver genes based
on somatic mutations, as well as the method developed
by Youn and Simon [11], OncodriveCLUST [29], Onco-
driveFML [30], and MADGiC [10]. We chose these
methods for evaluation because, like differential muta-
tion analysis, they only require the user to specify a
MAF file as input, in contrast to methods such as
MuSiC [9], which require raw sequencing reads. Despite
the relative simplicity of our method, it outperformed
MutSigCV for 23 of the 24 cancer types in ranking can-
cer genes, as judged by AUPRC as described above
(Fig. 3, left). Of particular note, DiffMut showed a four-
fold improvement in AUPRC over MutSigCV in predict-
ing cancer genes based on somatic mutations in breast
cancer (BRCA). Further, DiffMut outperformed Youn
and Simon’s method and OncodriveCLUST in all 24
cancer types, MADGiC on all 12 types we could run that
program on, and OncdodriveFML on 19. Overall, we
dominate most competing methods over the full length
of the precision recall curve, both on the 24 individual
cancers and in pan-cancer analysis (Additional file 1:
Section C).
We also performed several other evaluations of our

method. First, we tested the log2 fold change in AUPRC of
DiffMut vs the other methods up to only 10% recall; we
obtained similar results, suggesting good performance in
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the top range of predictions (Additional file 1: Section D).
Second, we considered the cancer-specific driver genes
identified in the CGC; while these sets of genes are too
small for meaningful AUPRC computations, we found
that for each cancer type, the cancer-specific genes were
generally ranked higher than other known cancer genes
(Additional file 1: Section E). This implies that DiffMut
preferentially selects cancer-specific genes rather than re-
peatedly identifying the same set of genes across cancer
types. Third, we evaluated our method on the curated lists
of cancer genes described by Vogelstein et al. [3] and
Kandoth et al. [27] and obtained similar results
(Additional file 1: Section F). Fourth, we performed run-
time analysis of our method and found that it is typically
significantly faster than previous approaches; for example,
when run on the BRCA dataset, DiffMut is 30 times faster
than MutSigCV, even when run on a less powerful ma-
chine (Additional file 1: Section G). Finally, we confirmed
that uEMD scores do not correlate with known covariates
(Additional file 1: Section H). We conclude our general
evaluation of how well DiffMut identifies known cancer
genes by noting that the performance of all these

methods, including our own, can likely be improved by
additional curation and processing [31]; however, our goal
was to perform an automated, large-scale comparative
analysis on identical mutation files without any further op-
timizations or gene or patient pruning.

Differential mutation analysis can separately identify
oncogenes and tumor suppressor genes
The list of known cancer genes from the Cancer Gene
Census is divided into oncogenes and TSGs, due to the
well-established significant biological differences
between the two. While oncogenes drive cancer growth
with specific functional mutations, TSGs inhibit growth
when functioning normally. It is therefore thought that
TSGs can be easily disrupted by nonsense mutations [3].
Because of this fundamental biological difference
between TSGs and oncogenes, we decided to analyze
missense and nonsense mutations separately. As
expected, when using only missense mutations, we are
better able to predict oncogenes; and when using only
nonsense mutations, we are much better able to predict
TSGs. The vast majority of the time, our method is

a b

Fig. 2 Known cancer genes are differentially mutated across 24 cancer types. a The fraction of genes that are in a set of known cancer driver genes
[26] when we rank genes by uEMD scores as computed by DiffMut, our method for differential mutation analysis, and consider an increasing number
of top-ranked genes. When computing uEMD scores using non-silent mutations, we find that a large fraction of the highest scoring genes are cancer
driver genes (black line). When uEMD scores are computed based on silent mutations instead, we do not see an enrichment for cancer driver genes
(gray). b For each cancer type, we ranked all genes by uEMD scores using either non-silent mutations or silent mutations. We then computed the log2
fold change in AUPRC using non-silent mutations as compared to silent mutations. As expected, AUPRCs are significantly higher when using non-silent
mutations (left). When computing the log2 fold change in AUPRC when ranking genes by uEMD scores when using non-silent mutations compared to
ranking them using their non-silent mutation rate, we also see a notable improvement across all cancer types (right).

Przytycki and Singh Genome Medicine  (2017) 9:79 Page 6 of 11



better able to detect oncogenes and TSGs than the five
methods to which we compare (Fig. 3 middle and right).
We see similar results using the set of oncogenes and
TSGs described by Vogelstein et al. (Additional file 1:
Section F). Thus, our approach allows us to enrich for
specific subtypes of cancer driver genes while other
methods have not been shown to readily make this
distinction.

Differential mutation analysis reveals that many long
genes with high mutation rates in cancers are also highly
variable across natural populations
Olfactory receptors and some extraordinarily long genes
(including the muscle protein TTN, the membrane asso-
ciated mucins MUC4 and MUC16, and the nuclear en-
velope spectrin-repeat protein SYNE1) have high
mutation rates, but it has been proposed that mutations
within them are unlikely to play causal roles in cancers

[8]. In support of this, of the 372 olfactory receptor
genes found in the HORDE database [32], none are
found to be significantly differentially mutated (q-value
< 0.1) in 23 of the 24 cancer types we analyzed, and only
one is found to be differentially mutated in the last can-
cer type. In contrast, the five other tested methods often
do not show the same under enrichment for olfactory
receptor genes among their lists of predicted driver
genes (Additional file 1: Section I). Similarly, of the ten
longest genes with above average mutation rates, none
are implicated by differential mutation across any of the
24 cancer types (Additional file 1: Section I). That is,
while these genes have a high mutation rate for their
length, they also vary naturally at a higher rate. Although
the functions of some of these genes are not fully
known, and some may, in fact, be cancer related, their
relationship to the disease is likely complex and so they
are not expected to be implicated by somatic mutation

Fig. 3 Performance of DiffMut vs other methods. The log2 fold change in AUPRC when ranking genes using our method, DiffMut, vs MutSigCV
[8], the method developed by Youn and Simon (YS) [11], OncodriveCLUST [29], OncodriveFML [30], and MADGiC [10], when evaluating
performance in identifying cancer driver genes from the Cancer Gene Census (CGC) [26] (left), the subset of these genes that are oncogenes
(middle), and the subset that are TSGs (right). For identifying all cancer genes, differential mutation is computed based on all non-silent mutations,
whereas for oncogenes and TSGs, it is computed based on only missense mutations and only nonsense mutations, respectively. Entries with a
dash indicate cases where MADGiC could not be run
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alone [8]. Thus, differential mutational analysis provides
a powerful yet simple approach to eliminate genes that
have high somatic mutation rates but are found to be
highly variable across human populations.

Differential mutation analysis proposes new cancer driver
genes
Although many of the genes found to be differentially
mutated are known cancer genes, high-scoring genes
not in the list of known cancer genes may, in fact, cor-
respond to newly discovered genes with functional roles
in cancers. For example, two genes that we found to be
significantly differentially mutated, TRPS1 and ZNF814,
both contain numerous mutations in and near their
DNA-binding zinc finger domains. Across all the sam-
ples in TCGA, we observed 103 missense mutations of a
single nucleotide in ZNF814, indicating that it may be
an oncogene by the definition presented in Vogelstein et
al. [3]. TRPS1, on the other hand, contains 18 nonsense
and 228 missense mutations across its exons, suggesting
that it may be a TSG. It has previously been reported
that TRPS1 plays a role in cancer development [33], and
that higher levels of TRPS1 improved survival [34]. Simi-
larly, CDH10 contains 20 nonsense and 319 missense
mutations and, in agreement with our results, has previ-
ously been identified as a potential TSG in colorectal

cancer and lung squamous cell carcinoma [35, 36].
Other differentially mutated genes such as EIF1AX have
been reported by previous studies [37, 38] but are absent
from the gold standards we used. A full list of genes that
were not already included in our lists of positives but
show significant differential mutation across the 24 can-
cer types can be found in Fig. 4.

Discussion
We have shown that natural germline variation data
serve as a powerful source of information for discovering
cancer driver genes. This one type of data allowed us to
develop a fast (Additional file 1: Section G) and simple
non-parametric method for detecting cancer driver
genes with higher precision than currently used methods
without the use of any extraneous covariate data. In the
future, alternate approaches to uncover genes
differentially mutated between cancer and healthy
cohorts can be developed based upon the increasing
availability of data and may yield even better perform-
ance. Encouragingly, we observe that the power of our
current differential mutation analysis method increases
as more tumor samples are sequenced (Additional file 1:
Section G), thereby suggesting that further cancer
genome sequencing will increase the predictive power of
our framework.

Fig. 4 Genes that are proposed cancer drivers by differential mutation. Shown are all genes that are among the five most significantly differentially
mutated genes for any given cancer that are not already known cancer driver genes. Genes that show no differential mutation in a given cancer have
a uEMD score of 0 and are in white. All genes with a uEMD score greater than 0 showed some level of differential mutation and are shown in shades
of blue with increasing intensity
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As larger numbers of healthy human genomes are se-
quenced and germline variation data become more abun-
dant, our approach can likely be improved via explicit
modeling of population structure. Indeed, many variant
sites may be stable within subpopulations. For example,
sub-Saharan African populations exhibit a great deal of
natural variation relative to European populations [39].
Ashkenazi Jewish populations, on the other hand, show
less genetic variation [40] and, significantly, show genetic
predisposition to some types of cancer [41]. In order to ac-
count for this, in the future, variants could be counted only
when they differ within the appropriate subpopulation.
Another benefit of further sequencing would be an in-

crease in the density of observed mutations and variants.
Currently, there are only enough data to glean differential
mutation on a whole-gene level. However, with denser an-
notation it may be possible to score smaller regions of
genes such as known functional domains. For example,
HLA genes, which are highly variable, all have very low
differential mutation scores. However, much of this is due
to natural variation within specific genic regions. In the
future, it may be possible to evaluate regions such as these
separately to determine whether mutations in other less
variable parts of genes are important in cancers.
While this work introduces the idea of detecting

cancer-relevant genes by identifying those that are differ-
entially mutated between cancer cohorts and healthy
populations, natural variation has previously been used
to measure the impact of specific mutations. Cancer mu-
tations that fall directly onto variant sites are often dis-
carded [12] and some somatic mutations that fall into
regions with a high ratio of rare variants to common
ones can have a large functional impact [18]. Previous
approaches have aimed to find such mutations across
patients with the goal of identifying mutations that drive
each patient’s cancer [19]. Although these previous ap-
proaches are not designed to identify cancer driver genes
and do not perform well at this task (Additional file 1:
Section F), identifying driver mutations is a challenging
parallel task and a potential direction for further work
with differential mutation analysis.
Thus far, we have only shown the power of differential

mutation in identifying individual genes that may play a
role in cancer. However, it is well understood that cancer is
a disease of pathways [3, 4]. Thus, an especially promising
avenue for future work is in performing differential muta-
tion analysis at the pathway level. In particular, gene-set
and pathway analyses can be performed by examining how
germline variation accumulates across entire sets of genes
and assessing whether there is evidence of differential mu-
tation at that level as well. Differential mutation analysis
could also potentially be integrated into network-based ap-
proaches that do not require known pathway annotations
but instead uncover novel cancer pathways [42, 43].

Finally, similar to other methods for detecting cancer
driver genes, differential mutation analysis is likely to
benefit from domain-specific knowledge. For example, in
melanomas there are a large number of C to T mutations
that are the result of ultraviolet radiation [6, 8]. Because
these mutations occur in a much higher abundance than
other mutations, they dominate the mutational signal. We
therefore hypothesize that it may be beneficial to look at
specific types of mutations for some cancers. Further im-
provements on other cancer types are also likely to be
possible by explicitly considering mutational context.
Similarly, in cancer types where non-point mutations
(such as copy number variation, insertions, or deletions)
play a larger role than somatic mutation, incorporating
additional knowledge on these mutation types from both
cancer and natural variation data will broaden our ability
to predict cancer-related genes.

Conclusions
Despite somatic mutations and germline variants being
subject to a different set of evolutionary pressures [7], we
propose that genes observed to have numerous variants
across the population are able to accumulate more som-
atic mutations without experiencing a drastic functional
change. While we presented a method that directly lever-
ages this idea and have shown that it is highly effective in
identifying cancer-related genes, it is likely that even more
powerful predictors of cancer driver genes could be ob-
tained by integrating natural variation data with other in-
formation. In conclusion, we propose that akin to the
prominent role of differential expression analysis in ana-
lyzing cancer expression datasets, differential mutation
analysis is a natural and powerful technique for examining
genomic alteration data in cancer studies.

Additional file

Additional file 1: A file containing all additional figures and tables.
Section A shows the total mutation counts for all the cancer types we
analyzed. Section B shows the enrichment for cancer genes among
differentially mutated genes when using non-silent mutations but not
when using silent mutations. Section C shows the full precision–recall
curves and the areas under them. Section D shows the log-fold change
in AUPRC when only computing the area up to 10% recall. Section E
shows how known cancer-specific genes are ranked relative to all known
cancer genes. Section F shows the performance of our method against
other methods when evaluated using several different lists of known
cancer genes. Section G shows the fast runtime of our method and how
the power of our method increases with more tumor samples. Section H
shows that our method’s ranking of genes does not correlate with known
covariates. Section I shows DiffMut’s lack of enrichment for olfactory
receptors and extraordinarily long genes among its top-ranked genes.
(PDF 1097 kb)
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