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Abstract

Background: Neoepitopes derived from tumor-specific somatic mutations are promising targets for immunotherapy
in childhood cancers. However, the potential for such therapies in targeting these epitopes remains uncertain due to a
lack of knowledge of the neoepitope landscape in childhood cancer. Studies to date have focused primarily on
missense mutations without exploring gene fusions, which are a major class of oncogenic drivers in pediatric cancer.

Methods: We developed an analytical workflow for identification of putative neoepitopes based on somatic missense
mutations and gene fusions using whole-genome sequencing data. Transcriptome sequencing data were incorporated

to interrogate the expression status of the neoepitopes.

Results: We present the neoepitope landscape of somatic alterations including missense mutations and
oncogenic gene fusions identified in 540 childhood cancer genomes and transcriptomes representing 23
cancer subtypes. We found that 88% of leukemias, 78% of central nervous system tumors, and 90% of solid
tumors had at least one predicted neoepitope. Mutation hotspots in KRAS and histone H3 genes encode
potential epitopes in multiple patients. Additionally, the ETV6-RUNX1 fusion was found to encode putative
neoepitopes in a high proportion (69.6%) of the pediatric leukemia harboring this fusion.

Conclusions: Our study presents a comprehensive repertoire of potential neoepitopes in childhood cancers,
and will facilitate the development of immunotherapeutic approaches designed to exploit them. The source
code of the workflow is available at GitHub (https://github.com/zhanglabstjude/neoepitope).
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Background

Cancers are caused by somatically acquired alterations, in-
cluding single nucleotide variations (SNVs), small insertion/
deletions (indels), translocations, and other types of rear-
rangements. The genes affected by these mutations may
produce altered proteins, some of which may lead to the
emergence of tumor-specific immunogenic epitopes. While
the neoepitopes generated from missense mutations have
been investigated extensively [1-4], the immunogenicity of
epitopes generated from other types of somatic alterations
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has remained largely unexplored until recently; now
new methods, such as INTEGRATE-Neo [5], are being
developed to support gene fusion-derived neoepitope
discovery. Neoepitopes presented on the cell surface by
major histocompatibility complex (MHC) molecules
can be recognized by T cells and elicit immune re-
sponses. These may serve as important determinants in
the natural immune response to cancer, and are poten-
tially important targets for immunotherapy.

A key factor for antigen presentation and T-cell activa-
tion is the binding stability of the peptide-MHC com-
plex at the cell surface. The affinity of an epitope for its
cognate MHC molecule is typically measured by its ICsq
value, where a lower value corresponds to a higher
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affinity. Previous analyses [1, 6—8] have suggested that
an ICsy value <500 nM generally indicates moderate to
high affinity of a peptide for MHC, while an ICs, value >
500 nM indicates low affinity. Based on machine learn-
ing approaches [9], computational algorithms have been
developed for prediction of MHC class I peptide binding
affinity, enabling a more comprehensive and systematic
analysis of immunogenic mutations [10-14]. The accur-
acy of these approaches varied by the training data used
to characterize the binding specificity of the MHC mole-
cules. Consensus approaches combining two or more
methods can increase the prediction accuracy when
compared with empirical data [13, 15].

Preclinical studies in mice and humans have demon-
strated that mutated tumor neoantigens can be recognized
by cytotoxic T cells and anti-tumor responses can be in-
duced by immunization with synthetic tumor-specific
peptides [16—22]. Mounting clinical evidence has also
shown that the neoepitope-specific T cells are important
and effective in tumor rejection mediated by adoptive
transfer of autologous tumor-infiltrating lymphocytes
(TILs) or by immune checkpoint inhibitors [23-28].

As part of the St. Jude/Washington Pediatric Cancer
Genome Project (PCGP) we have characterized > 1000
pediatric cancer genomes by whole-genome or whole-
exome sequencing [29]. The results have revealed a high
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variability of somatic mutation rate in different tumor
types, ranging from 7.30 x 10™® per base in infant acute
lymphoblastic leukemia (ALL) to 1.32x 10~ per base in
pediatric melanoma [30]. Furthermore, we found that
somatic alterations resulting in gene fusion represents a
major class of oncogenic drivers in pediatric cancer. The
genomic heterogeneity of pediatric cancer would require a
comprehensive analysis of the neoepitope landscape of
pediatric cancer to gain knowledge and insight into the
feasibility of employing immunotherapy targeting cancer-
specific neoepitopes in this patient population.

In this study, we characterized the neoepitope landscape
of 23 subtypes of pediatric cancer analyzed by whole-
genome sequencing (WGS) as part of the PCGP. We
developed an analytical process (Fig. 1) for identifying pu-
tative neoepitopes based on somatic alteration in a tumor
genome and patient’s MHC class I alleles (HLA-A, -B, and
-C) using WGS data. These MHC class I alleles encode
proteins presenting antigens to CD8" cytotoxic T cells to
elicit immune responses, which is essential for eliminating
transformed and tumorigenic cells. Importantly, mutant
peptides identified through our analysis included those
arising from gene fusions as well as missense mutations.
Transcriptome sequencing (RNA-seq) data were incorpo-
rated into our assessment to identify expressed peptides
that can serve as potential candidates for immunotherapy.
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Fig. 1 Workflow for HLA typing and neoepitope prediction using WGS and RNA-seq. a Overview of analytical process. Somatic missense SNVs for
each tumor are identified and annotated based on variants in the aligned WGS data. Gene fusions and expression status of the identified somatic
SNVs are analyzed using RNAseq data. All the information is incorporated into a data matrix containing the HLA type, mutation class, amino acid
change, protein gi number, mMRNA accession number, mutant read count in the tumor, total read count in the tumor, mutant read count in the
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flanking the variations are subsequently extracted and used as input for epitope prediction. b Identification of fusion junction peptides at the
fusion breakpoints for epitope prediction. An example of ETV6-RUNXT1 fusion in SJETV002_D is shown to illustrate this process. Expressed junction
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Methods

Patients, samples, and data

Tumor and matched normal samples were both
sequenced in all cases. Matched normal samples were
obtained either from peripheral blood, bone marrow, or
adjacent normal tissue. Cancer samples were labeled
using the following abbreviations: SJACT, adrenocortical
tumor; SJAMLM7, acute myeloid leukemia M7; SJCBE,
core binding factor acute myeloid leukemia; SJEPD,
ependymoma; SJHGG, high grade glioma; SJHYPO,
hypodiploid acute lymphoblastic leukemia (ALL); SJINF,
infant ALL; SJLGG, low-grade glioma; SJMB, medulloblas-
toma; SJMEL, melanoma; SJOS, osteosarcoma; SJRB,
retinoblastoma; SJRHB, rhabdomyosarcoma; and SJTALL
T-lineage ALL. A paired-end WGS strategy was employed
for all samples. The sequencing, alignment against human
reference genome using BWA [31, 32], and the identifica-
tion and validation of somatic alterations including
missense mutations and gene fusions were described pre-
viously [33, 34]. Paired-end reads were aligned against the
HG18 or HG19 genome builds depending on when the
data were generated.

HLA typing and WGS validations

The default settings of Optitype were used for HLA
analysis. HLA haplotypes derived from WGS were com-
pared with those derived by clinical HLA typing using
classic methods (e.g., sequence-specific oligonucleotides,
sequence-specific primers, and Sanger sequencing) for
51 patients. All HLA assignments were high resolution
per American Society of Histocompatibility and Immu-
nogenetics and College of American Pathologists criteria
at the time they were tested. Samples included in this
study were tested between 2003 and 2017. For the earli-
est HLA typing in this set of samples, HLA assignments
were made from high resolution sequence-specific
primers (SSP; Life Technologies). Sequence-based typing
used AlleleSEQR HLA typing kits (Abbott-Molecular)
followed by capillary sequencing on an ABI 3130xL or
3500xL genetic analyzer (Life Technology) and analysis
using Assign (Connexio Genomics) software. Sequences
were compared to sequence-specific oligonucleotide
(SSO) typing using LabType bead array test kits (One
Lambda) analyzed using the LabScan200 bead array
multiplex analyzer (Luminex) and HLA Fusion software
(One Lambda). Ambiguities were resolved by sequence-
specific primer PCR using SSP primer kits (Life
Technologies).

Validation of WGS-based HLA typing was accom-
plished by comparisons with the clinical HLA Typing
validation set. Accuracy was calculated based on the
number of correct alleles at the HLA-A, HLA-B, and
HLA-C loci. Homozygous loci were counted as two cor-
rect alleles if correctly called as homozygous, or one
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correct allele if it was called as heterozygous with one
matching allele.

Haplotype correlation between HLA and population
ethnicity

The HLA alleles called by Optitype were used to infer
the HLA haplotypes in each patient using haplo.stats
[35]. The haplotype with the highest posterior probabil-
ity was assigned to each patient. The HLA haplotype fre-
quency in European, African, and east Asian populations
was collected from Maiers et al. [36] to compare with
the population structure inferred based on the SNP-
based genotyping of the 540 patients and SNP data from
the public 1000 Genomes (1KG) Project [37]. For the
1KG cohort, we included the SNP data (phase 3) of 299
unrelated individuals with European ancestry (91),
African ancestry (105), and East Asian ancestry (103).
SNPs on the autosomes were included, and those with
the following criteria were excluded: (1) missing geno-
type rate > 5%, (2) minor allele frequency < 0.01, and/or
(3) Hardy—Weinberg p value < 0.005. A single SNP was
selected per 700 kb on each chromosome. The final
dataset contained 3418 SNPs for the 839 individuals.
The Admixture model of STRUCTURE v2.3 [38] was
run 20 times (20,000 Monte Carlo Markov chain itera-
tions after a burn-in of 10,000 iterations) using default
settings and was supervised by the reference population
information. The analyses with K =3 maximized the
model probability and generated the highest consistency
of clustering by assigning membership coefficients to all
samples. CLUMPP [39] was used to collate replicate
runs and calculate means of fractions of ancestry for
each individual. The correlation between the HLA
haplotype frequency and SNP-based population struc-
ture was evaluated by canonical correlation analysis.

Neoepitope prediction, RNA expression analysis, mutation
signature analyses, and proteomics

Putative neoepitopes were identified by extracting a
peptide covering nine tiling nonamers overlapping each
missense mutation. Fusion proteins were identified in
RNAseq using CICERO [34] (Li et al., unpublished data).
Neoepitopes were predicted by obtaining the peptide
sequence covering tiling nonamers overlapping each
junction (Fig. 1b). NetMHCcons v1.1 [15] was used to
predict the affinity of each nonamer for each HLA
receptor predicted in each sample. Nonamers were se-
lected if the predicted IC5q < 500 nM.

A subset of the patients (n=270) had corresponding
RNAseq data [33], which was used to identify the subset
of predicted neoepitopes that are expressed. Expression
was measured by counting the number of RNA-seq
reads supporting the mutant variant, further requiring
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that at least one of the reads spans the full 27 bases en-
coding the nonameric peptide.

Mutation signature analyses were performed based on
the mutation profiles for eight samples with mutations
in the DNA mismatch repair genes or with a high muta-
tion burden. WTSI Mutational Signature Framework
was used for the mutation signature analyses [40].

Xenograft mouse models for three rhabdomyosarcoma
(SJRHBO11_E, SJRHBO012_D, and SJRHB026_S) were
used to assess whether the expression of neoantigenic
transcripts would be a reliable metric for the presence of
the mutant peptide. Briefly, proteomics data were gener-
ated by two-dimensional LC/LC-MS/MS (Stewart et al.,
unpublished data) and analyzed by the proteogenomics
software JUMPg. [41] Specifically, a customized protein
database was generated by translating flanking regions
(30 amino acids) of non-synonymous mutations, which
was then concatenated with UniProt human and mouse
proteins. MS/MS data were searched against the com-
bined customized amino acid database using the hybrid
search engine JUMP [42] and filtered to achieve 1%
protein FDR. Spectra exclusively matching to mutation
peptides were then manually examined and annotated.

Results

Patient cohort

Our cohort consisted of 540 pediatric cancer patients
representing 23 subtypes including leukemia (n =284),
central nervous system tumors (CNS; n =123), and non-
CNS solid tumors (rz=133) (Table 1). Relapsed tumors
from 18 patients including nine leukemias, five CNS tu-
mors, and four solid tumors were also analyzed. Both
the primary tumors and their matching germline
samples were analyzed by WGS at 30x coverage. In
addition, RNA-seq for 282 tumor samples (270 primary
and 12 relapse tumors) were used to interrogate poten-
tial neoepitope expression status (Additional file 1). Four
high grade glioma (SJHGGO003_D, SJTHGGO030_D, SJHG
G034_D, and SJHGG111_D) previously identified as
hypermutators [43] were analyzed as a separate group
for comparison. We also analyzed cutaneous melan-
oma (SKCM; n=133), lung adenocarcinoma (LUAD;
n=129), and lung squamous cell carcinoma (LUSC;
n =33) data acquired from The Cancer Genome Atlas
(TCGA) (Table 1; http://cancergenome.nih.gov/) using
the same analytical process (Table 1). These three
TCGA tumor types known to be susceptible to
checkpoint blockade therapies due to high mutation
burden [44] were used for comparisons with the re-
sults obtained from the pediatric cohort.

HLA type prediction and validation
Accurate identification of HLA alleles in the patients is
essential for patient-specific neoepitope prediction. To
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select an appropriate algorithm for HLA typing, we com-
pared the performance of OptiType [45] with HLAminer
[46] on 51 patients whose HLA alleles were typed in the
current study using classic methods including sequence-
specific oligonucleotides (SSO), sequence-specific primer
(SSP), and Sanger sequence based testing (SBT) tech-
nologies (Additional file 2). Consistent with a prior re-
port [47], OptiType achieved higher accuracy (94.1%)
than HLAminer (75.5%); we therefore employed Opti-
Type to characterize HLA class I alleles for the entire
cohort.

We found that HLA-A*02:01 and HLA-B*07:02 were
the most common alleles at HLA-A and HLA-B loci as
they were present in 212 (39.3%) and 105 (19.6%)
patients, respectively. For HLA-C, the most prevalent al-
leles were HLA-C*04:01 and HLA-C*07:01 present in
146 (27.0%) and 144 (26.7%) patients, respectively. Com-
parison of ethnicity projected from HLA-A-B-C alleles
with those from genome-wide SNP analysis showed a
significant association (p < 0.001), indicating the high ac-
curacy of the HLA haplotype prediction.

Identification of potential neoepitopes based on missense
mutations

Of the 5619 somatically acquired missense mutations
identified in the 540 primary tumors, 2336 were pre-
dicted to encode potential neoepitopes that can be
bound by at least one of the patients’ HLA alleles with
an affinity of <500 nM (Fig. 2 and Additional file 1).
Since neoepitopes must ultimately be validated for their
presentation and recognition by T lymphocytes, the use
of the term “neoepitope” throughout the text should be
read as “potential neoepitope”. The predicted neoepi-
topes were found in 88.4, 78.1, and 89.8% of leukemia,
CNS tumors, and solid tumors, respectively. Leukemias
had a median of six missense mutations (range 1-64)
with a mean of 3.3 neoepitopes. Sixteen B-lineage acute
lymphoblastic leukemia (B-ALL) had ten or more neoepi-
topes, including five with an ETV6-RUNX1 translocation
(ETV), five hyperdiploid B-ALLs, three with intrachro-
mosomal amplification of chromosome 21(iAMP21),
one Ph-like, one with IGH-DUX4 translocation and
one hypodiploid B-ALL. CNS tumors had a median of
five missense mutations per tumor (range 1-98) with a
mean of 3.9 neoepitopes, and nine high grade gliomas,
three medulloblastoma, and one ependymoma had ten
or more neoepitopes. Non-CNS solid tumors had a
higher mutation burden (median=11, range 1-185)
with a mean of 7.0 neoepitopes. A total of 27 (20.3%)
had ten or more neoepitopes primarily in neuroblast-
oma (13 cases) and osteosarcomas (seven cases). It is
important to note that a single mutation can generate
multiple putative neoepitopes by binding to diverse
MHC alleles or in distinct registers.
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Table 1 Summary of neoepitope landscape in the PCGP cohort
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Project  Class Disease Patient number ~ Sample number®  Average number  Average number of Average number of
of mutations® neoepitope (500 NM)®  expressed neoepitopes®

PCGP LEUKEMIA  ETV 49 56 (7) 11.22 (20.73) 4.29 (9.25) 1.68 (4.09)
HYPER 53 53 949 411 -
BALL 31 31 11.58 5.03 2.00
HYPO 22 22 9.64 3.23 1.50
TALL 10 10 8.10 3.60 -
ERG 25 25 840 3.16 1.28
CBF 16 16 6.38 2.13 0.89
INF 19 21(2) 247 (3.57) 1.11 (1.52) 044 (0.44)
PHALL 35 35 449 1.83 0.52
E2A 21 21 548 2.10 -
AMLM7 3 3 267 067 033
Subtotal 284 293

CNS HGG 32 35(3) 17.97 (17.46) 8.59 (8.20) 3.68 (3.56)
EPD 32 34 (2) 5.06 (5.68) 1.78 (1.91) 0.93 (0.96)
MB 34 34 8.94 3.68 4.25
LGG 23 23 1.74 0.65 033
CPC 2 2 2.00 1.50 -
Subtotal 123 128
SOLID MEL 4 4 112.25 51.25 6.00

NBL 44 47 (3) 15.2 (16.62) 7.09 (7.79) -
ACT 20 20 11.75 3.70 1.75
RHB 14 15 (1) 15.14 (18.00) 6.71 (8.13) 2.08 (3.14)
oS 27 27 18.22 707 292
RB 5 5 520 240 -
EWS 19 19 563 2.00 -
Subtotal 133 137

TCGA LUAD 129 129 22663 95.74 36.99
LUSC 33 33 224.58 95.88 58.06
SKCM 133 133 411.50 167.57 60.64
Subtotal 295 295

*The number in the parentheses denotes the number of relapse samples

PThe number in the parentheses denotes the average number when relapse samples included

Approximately half of the primary tumors (n=270)
were characterized by transcriptome sequencing (RNA-
seq), which allowed us to ascertain the expression status
of potential neoepitopes. A total of 2838 missense muta-
tions were identified from the 270 tumors, of which
1180 mutant alleles were expressed (41.6%). The propor-
tion of expressed mutant alleles encoding neoepitopes
(37.4%, 441/1180) is comparable to the proportion of
total missense mutations encoding neoepitopes (41.6%,
2336/5619). The number of mutations showed a strong
linear correlation with the number of neoepitopes (R? =
0.96, p value < 0.01). Similarly, the number of expressed
mutant alleles was also strongly correlated with the

number of expressed epitopes (R? = 0.96, p value < 0.01)
(Fig. 3). Of the 270 tumors, 163 (60.1%) harbor at least
one expressed neoepitope. Four tumors were found with
ten or more expressed neoepitopes, including one B-
ALL with an ETV6-RUNX1 translocation, one high
grade glioma, one melanoma, and one adrenocortical
tumor.

Across the pediatric cancer cohort, the proportion of
expressed missense mutations encoding neoepitopes is
comparable across tumor class, including leukemias
(0.38), CNS tumors (0.38), and solid tumors (0.36).
Interestingly, melanoma had the highest number of
expressed neoepitopes but the lowest proportion (0.29)
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Fig. 2 The landscape of neoepitopes in 540 pediatric cancer patients of 23 subtypes. The number of predicted epitopes and expressed epitopes
is shown for each sample. The results are shown by the three major cancer types (i.e., leukemia, CNS tumors, and solid tumors) with each of the
23 cancer subtypes shown in a box. Within each cancer subtype, the tumor samples are sorted by ascending order of the number of predicted
epitopes. The numbers of total epitopes and expressed epitopes are depicted at the top and the bottom mirrored panels, respectively. The relapse
samples are shown as cross marks in grey. The samples without RNAseq are shown in blue. The upper bound is set to 30 and the values > 30 are
shown in red. Leukemia: ETV ETV6-RUNX1 acute lymphoblastic leukemia (ALL); BALL B-lineage ALL; HYPER hyperdiploid ALL; HYPO hypodiploid
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among tumor types. For the adult TCGA data, we
identified 36,230 expressed mutant alleles from 91,375
mutations in 295 tumors. The proportion of expressed
mutant alleles encoding neoepitopes was 0.41 (14,753/
36,284). Similar to the PCGP data, the number of
expressed mutant alleles was strongly correlated with
the number of expressed putative neoepitopes (R* = 0.91,
p value < 0.01) (Fig. 3).

Mismatch-repair deficient cancers have been predicted
to have a high number of neoepitopes that might be
recognized by the immune system [48]. In the PCGP co-
hort, four high-grade gliomas (HGG)—SJHGGO003_D,
SJHGGO030_D, SJHGG111_D, and SJHGGO034_D—have a
relatively high mutation burden (median = 6778, range
224-20,073) (Additional file 1). SJHGG003_D, SJHG
G111_D, and SJHGGO034_D harbored mutations in DNA
mismatch repair genes (PMS2 or MSH6). All of the four
hypermutators had ten or more neoepitopes with a
mean of 6640 neoepitopes. The proportion of expressed
mutant alleles encoding neoepitopes and the proportion

of total missense mutations encoding neoepitopes is
38.4% (2797/7290) and 35.3% (11,959/33,853), respect-
ively. We performed mutation signature analyses for the
HGG hypermutators along with the four melanoma
samples with high mutation burden (Additional file 3).
Two major mutation signatures, which correspond to
COSMIC signatures 1 and 14, are present in the hyper-
mutators. The mutation signature 1 is correlated with
the age of cancer diagnosis; the signature 14 has been
observed in samples with high mutation burden [49].
Two out of the three HGG tumors with signature 14
harbor bi-allelic loss-of-function mutations in PMS2,
suggesting a potential link between signature 14 and
PMS2 mutation. The major mutation signature in the
melanoma samples is associated with ultraviolet light ex-
posure [49].

To provide direct evidence that the predicted neoepitopes
were translated and existed at appreciable levels in the cell
for antigen presentation, we assessed proteomics data gen-
erated from mouse xenografts of three rhabdomyosarcoma
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tumors. Using the predicted mutant amino acid variant as a
marker, we were able to identify peptides corresponding to
the mutant antigenic protein in all three samples (Fig. 4),
providing further support that these putative epitopes have
the potential to be presented by HLA.

Neoepitopes encoded by recurrent missense mutations

Across the entire PCGP cohort, we identified 15 recurrent
missense mutations present in at least three patients
(Fig. 5), all of which are known oncogenic driver muta-
tions. Of these, four KRAS mutations, two NRAS muta-
tions, two histone H3 mutations, and one ALK mutation
were predicted to encode epitopes in at least one tumor
(Fig. 5; Additional file 4). Notably, the KRAS G13D muta-
tion generated a VVGAGDVGK epitope (285.24 nM) that
was predicted to bind the HLA-A*11:01 allele in two hy-
perploid B-ALLs and one hypoploid B-ALL. The neoepi-
topes in histone H3 were generated by K27M mutations
in HIST1H3B and H3F3A, which share a high degree of
protein similarity (96%). The K27M mutations of these
two histone H3 genes generated a high affinity neoepitope,
ATKAARMSA (4.02 nM), which was predicted to bind
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the HLA-A*30:01 allele in three high-grade glioma pa-
tients, STHGGO008, STHGGO077, and SJTHGG004 (Additional
file 4). Another two similar neoepitopes from H3 K27M
mutations, MSAPATGGV and MSAPSTGGYV, were pre-
dicted to bind HLA-B*15:17, HLA-A*68:02, HLA-A*02:05,
HLA-C*12:03, or HLA-C*03:04 alleles in nine different
high-grade glioma patients.

Neoepitopes derived from gene fusions

To examine neoepitopes generated by gene fusions, we
identified the precise junctions of expressed fusion tran-
scripts from RNAseq and predicted neoepitopes from all
tiling nonameric peptides overlapping the fusion junction
(Fig. 1b). A total of eight distinct gene fusions were found
to encode neoepitopes in at least one patient (Fig. 6). Of
the 46 B-ALLs with ETV6-RUNX1 fusions, 68% (32/47)
were predicted to have neoepitopes resulting from the
ETV6-RUNX1 fusion protein. The remaining fusions that
generated neoepitopes in multiple cancers included BCR-
ABLI, Cl1orf95-RELA, CBFB-MYH11, EWSRI1-FLI1, and
RUNXI-RUNXI1T1 (Fig. 6).
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Fig. 4 Protein expression of predicted neoepitopes in three rhabdomyosarcoma. For each of the three mutant peptides predicted to be
antigenic, the corresponding tandem mass spectrometry (MS/MS) spectra are shown. During each round of MS/MS analysis, ions for the peptide being
sequenced were fragmented into complementary ion pairs, with b- and y- ions corresponding to the N- and C-terminal fragments, respectively (as
shown for each mutant peptide sequence, with the mutant amino acid highlighted in red). Peaks that match to theoretically calculated fragmented
ions of the mutant peptide are indicated. The ions for the peptide itself (precursor ions) are indicated as (M + 2H). a-¢ MS/MS spectra assigned to
mutant peptides of xenograft samples derived from primary tumors of SJRHBO11_E (@), SJRHBO12_D (b), and relapsed tumor SJRHB026_S (c)
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Discussion

In the present study, we examined the neoepitope land-
scape of pediatric cancers based on the somatic missense
mutations and gene fusions in tumors sequenced and ana-
lyzed through the PCGP. Neoepitopes identified from
oncogenic mutations are ideal targets for immunotherapy;,
including tumor vaccines [50] and adoptively transferred
tumor-reactive T cells [51]. Alternatively, checkpoint
blockade therapy might facilitate cytotoxic T lymphocyte
recognition of these neoepitopes in a subset of patients.
Similar approaches may be leveraged to target neoepitopes
derived from fusion proteins that are known biomarkers
for pediatric leukemias and some solid tumors. To facili-
tate neoepitope analysis by other research groups, we have
deployed our workflow into the cloud under the DNA-
Nexus platform to support HLA typing and epitope pre-
diction. These two analyses can be combined into a single
workflow under DNAnexus.

The mutation rate in pediatric cancers is low com-
pared to adult cancers [24]. Consequently, the number
of predicted neoepitopes per tumor in pediatric cancer
(median 2, mean 26.2, range 0-7544) is much lower
than those reported in adult cancers (median 112, range
8-610) [24]. A separate analysis using functional and
tetramer-binding assays to determine the proportion of
these epitopes that elicit responses is in preparation.

Mutations in the DNA mismatch repair genes (MSH2,
MSH6, MLH1, PMS2) can lead to high mutation rate and
microsatellite instability. Importantly, mutations associated
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with neoepitopes in DNA mismatch repair-deficient can-
cers have been shown to be sensitive to immune check-
point blockade, which is independent of the origin of
tissue [48]. The HGG hypermutators in the PCGP cohort
with defects in the DNA mismatch repair machinery
showed a mean of 8463 mutations per tumor as compared
to ten mutations per tumor in the other samples. A mean
of 2990 mutations in the hypermutators were found en-
coding neoepitopes as compared to four in mismatch
repair-proficient cancers. The increase in the number of
mutations and neoepitopes resulting from mismatch repair
deficiency suggests an enhanced immune response in this
subset of cancers [52] and is worth further investigation.

A recent study reported that tumor growth in a xeno-
graft tumor model was significantly reduced by adoptive
transfer of peripheral blood lymphocytes transduced
with T-cell receptors (TCRs) derived from immunized
HLA-A*11:01 transgenic mice. These TCRs were highly
reactive to the KRAS G12V and G12D mutations [53].
For the PCGP cohort, we found that four distinct KRAS
mutations were able to generate putative neoepitopes
predicted to be bound by either the HLA-A*11:01 allele
(KRAS G13DV and G12D) or the HLA-A*03:01 allele
(KRAS G12V and G12C). The HLA-A*11:01 allele was
present in 64 patients (12%) in the PCGP cohort; the
HLA-A*03:01 allele was present in 110 patients (20%).
The high population frequency of the identified HLA al-
leles and the prevalence of epitopes with predicted high
affinity to these HLA alleles suggest that they may be
useful targets for future development of immunotherapy.

We additionally identified high affinity neoepitopes
encoded by recurrent H3 K27M mutations and ETV6-
RUNX1 gene fusions in a high proportion of tumors
harboring these somatic alterations. The neoepitopes of
histone H3 K27M mutations can be presented mainly by
the HLA-A*30:01 allele that is present in 11.9% of
African-Americans [36]. The neoepitopes of ETV6-
RUNXI1 gene fusions can be bound by HLA-A*02:01,
which is prevalent in Europeans and US Caucasians
(47.8%) as well as other populations. These predicted
neoepitopes are potentially important candidates for
further immunogenicity testing.

Conclusions

The repertoire of putative neoepitopes identified in this
study (Additional files 5 and 6) provides new fundamental
knowledge on the formation of potentially targetable
neoepitopes in childhood cancer and will serve as a valu-
able public resource for development of novel therapeutic
strategies against these difficult to treat illnesses. To the
best of our knowledge, this is the first comprehensive ana-
lysis of neoepitopes in pediatric cancers, which we hope
will enable a broader range of research and open up new
avenues for the treatment of pediatric cancer.
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