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Abstract

Background: One of the major challenges in current psychiatric epigenetic studies is the tissue specificity of epigenetic
changes since access to brain samples is limited. Peripheral tissues have been studied as surrogates but the knowledge
of cross-tissue genetic-epigenetic characteristics remains largely unknown. In this work, we conducted a comprehensive
investigation of genetic influence on DNA methylation across brain and peripheral tissues with the aim to characterize
cross-tissue genetic-epigenetic effects and their roles in the pathophysiology of psychiatric disorders.

Methods: Genome-wide methylation quantitative trait loci (meQTLs) from brain prefrontal cortex, whole blood, and
saliva were identified separately and compared. Focusing on cis-acting effects, we tested the enrichment of cross-tissue
meQTLs among cross-tissue expression QTLs and genetic risk loci of various diseases, including major psychiatric
disorders. CpGs targeted by cross-tissue meQTLs were also tested for genomic distribution and functional enrichment as
well as their contribution to methylation correlation across tissues. Finally, a consensus co-methylation network analysis
on the cross-tissue meQTL targeted CpGs was performed on data of the three tissues collected from schizophrenia
patients and controls.

Results: We found a significant overlap of cis meQTLs (45-73 %) and targeted CpG sites (31-68 %) among tissues. The
majority of cross-tissue meQTLs showed consistent signs of cis-acting effects across tissues. They were significantly
enriched in genetic risk loci of various diseases, especially schizophrenia, and also enriched in cross-tissue expression
QTLs. Compared to CpG sites not targeted by any meQTLs, cross-tissue targeted CpGs were more distributed in CpG
island shores and enhancer regions, and more likely had strong correlation with methylation levels across tissues. The
targeted CpGs were also annotated to genes enriched in multiple psychiatric disorders and neurodevelopment-related
pathways. Finally, we identified one co-methylation network shared between brain and blood showing significant
schizophrenia association (p = 5.5 x 107°).

Conclusions: Our results demonstrate prevalent cross-tissue meQTL effects and their contribution to the correlation of
CpG methylation across tissues, while at the same time a large portion of meQTLs show tissue-specific characteristics,
especially in brain. Significant enrichment of cross-tissue meQTLs in expression QTLs and genetic risk loci of
schizophrenia suggests the potential of these cross-tissue meQTLs for studying the genetic effect on schizophrenia.
The study provides compelling motivation for a well-designed experiment to further validate the use of surrogate
tissues in the study of psychiatric disorders.
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Background

DNA methylation, as one of the most broadly studied
epigenetic modifications, can influence the way genes
are structured and expressed, and ultimately affect cell
function without modifying the underlying sequence.
Increasing evidence has shown that methylation can
modulate genetic risks and environmental effects in
neuron cell differentiation, cell development, and neuro-
genesis and plays a vital role in pathogenesis of mental dis-
orders [1-4]. CpGs that undergo substantial methylation
changes in early developmental stages have been found to
be enriched in psychiatric disorders [5]. A recent study
reviewed 33 studies on peripheral tissue DNA methylation
in schizophrenia (SZ) and/or bipolar disorder (BIP) and
found moderate evidence of consistent differential methy-
lation at some genetic loci across studies [6]. Particularly
for SZ, specific CpG methylation patterns have been
related to SZ-positive symptoms [7], disease onset [8], and
cognitive deficit [9] in adulthood.

DNA methylation can be influenced by underlying
sequence variants. For example, genotype variation or spe-
cific alleles of a locus (i.e., single nucleotide polymorphisms
(SNPs)) can influence CpG methylation state, termed
methylation quantitative trait loci (meQTL) effect [5, 10].
The effects of most meQTLs are cis, targeting proximal
CpG sites, while some are trans, targeting distal CpG sites.
A number of studies have reported meQTL-CpG relation-
ships in human cell lines [11, 12], peripheral tissues [13,
14], and the brain [15]. These findings indicate that
meQTLs are more likely to reside at regulatory elements
than expected by chance and coincide with changes in
transcription factor binding, chromatin conformation, gene
expression, RNA splicing, and, potentially, disease risk [12,
16, 17].

meQTLs have also gained increasing interest in recent
psychiatric epigenetic studies at the early neurodevelop-
ment stages and in adulthood [4, 16]. meQTLs from
postmortem brain and peripheral tissues have shown
significant enrichment for susceptible genetic variants of
autism spectrum disorder (ASD) [18], BIP [19], and SZ
[13, 20]. Two recent landmark studies comprehensively
explored the role of DNA methylation and meQTLs in
brain development as well as their relationship with SZ [1,
5]. They found a large overlap of meQTLs between fetal
and adult brain tissues and their significant enrichment in
SZ risk loci. In addition, these meQTLs were also signifi-
cantly enriched in expression QTLs (eQTLs), suggesting
the potential of meQTLs to exert their effect through
methylation, impacting gene expression and leading to
further changes of cell or organ function and disease.

However, tissue specificity of DNA methylation poses
a challenge for studying methylation in psychiatric disor-
ders due to very limited access to brain samples [21].
Several studies have attempted to compare methylation
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patterns among brain and peripheral tissues (e.g., blood
and saliva) and identified a small proportion (2-7 %) of
CpG sites with highly correlated methylation patterns
among tissues [22—-24], for which Hannon et al. [25] found
an underlying genetic contribution. A recent study com-
pared meQTLs across tissue types and their enrichment
in ASD genomic risk [18], but the effects of meQTLs may
also be susceptible to tissue specificity, similar to tissue-
specific eQTL effects as reported by the GTEx project
[26]. Monozygotic and dizygotic twin studies have shown
variable heritability (12—30 %) of DNA methylation across
different tissues [27-29]. Tissue-specific meQTLs with
varying effects by tissue type or cell line have also been
reported [10, 30]. Current knowledge of meQTLs across
tissues as well as their role in regulating methylation and
gene expression, particularly in the context of psychiatric
disorders, is very limited.

To better understand meQTLs and their targeted CpGs
across tissue types, in this work we attempted to leverage
large-scale genomic and DNA methylation data from
brain and peripheral tissues (blood and saliva) to explore
the following questions: 1) whether meQTLs from differ-
ent tissues are highly consistent in terms of regulating
cis-CpGs; 2) how cross-tissue meQTL-targeted CpGs are
distributed across the genome and among gene functional
annotations; 3) whether cross-tissue meQTLs relate to
susceptibility to psychiatric disorders and are enriched for
eQTLs; 4) whether cross-tissue meQTLs contribute to the
methylation level correlation of targeted CpGs across
tissues; and 5) whether cross-tissue meQTL-targeted
CpGs demonstrate consensus methylation networks
across tissue types. This work is expected to enrich our
understanding of cross-tissue meQTL effects in diseases
and provide more evidence to guide future investigations
of psychiatric disorders by integrating genetic, epigenetic,
and gene expression data in diverse tissue types.

Methods

We compared meQTLs and CpGs from brain, blood, and
saliva. Genotype and methylation data from saliva were col-
lected from the Center for Biomedical Research Excellence
study [31] and the Glutamate and Outcome in Schizophre-
nia study [32]. meQTL data from brain and blood were
obtained from two other published studies [1, 13].

Saliva samples

Patients with a diagnosis of SZ or schizoaffective dis-
order between 18 and 65 years of age were recruited.
Age-matched controls were recruited from the same
geographic location. Detailed inclusion and exclusion
criteria have been described elsewhere [14]. Saliva sam-
ples from 99 SZ patients and 98 controls were collected
for genotyping and methylation detection.
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Saliva DNA genotyping

Genotyping for DNA from saliva was performed using
two assays: Illumina Infinium Human Omnil-Quad
assay and Infinium Omni5 assay. Both datasets were
quality controlled separately (due to different arrays)
using PLINK software (http://zzz.bwh.harvard.edu/plink/
) as introduced in [14], mainly including removal of sub-
jects (missing rate > 10 %) and SNPs (genotyping rate <
90 %, Hardy-Weinberg equilibrium <107 or minor al-
lele frequency (MAF) <0.01). Missing value imputation
was performed using the 1000 Genomes reference panel
phase 1, version 3 and the software IMPUTE2 [33]. Loci
with a high imputation quality score (>0.9) from the
two datasets were merged, resulting in 10,513,590 loci.
After further quality control (missing rate >1 %, MAF <
0.05), 3,622,550 loci were left for analysis. We adjusted
for the population structure by using the first three prin-
cipal components (PCs) of the genotype matrix.

Saliva DNA methylation

DNA methylation was measured using the Infinium
MethylationEPIC assay, covering 866,836 CpG sites. A
series of quality control steps were performed using the
R package ‘minfi’ [34] as applied in [14]. Both methyl-
ated and unmethylated signals were normalized using
the quantile-based normalization method on each site.
Beta values were used in subsequent preprocessing,
including removing 1) CpGs coinciding with SNPs or at
single nucleotide extensions [35]; 2) CpGs with non-spe-
cific probes [36]; 3) CpGs with more than 1 % missing
values (methylation values with detection p > 0.05 were
treated as missing values); and 4) CpGs on sex chromo-
somes. The remaining missing beta values were further
imputed using the average of each CpG as applied in
[37] and some other microarray studies [38]. After pre-
processing, 363,366 CpGs were kept. Batch effects were
then corrected for each CpG using a parametric Bayes
framework implemented in the ‘combat’ function [39] in
the R package ‘SVA’ [40] prior to meQTL analysis. Cell
type proportions in saliva samples were estimated by the
algorithm described by Houseman et al. [41] using
methylation data from buccal epithelial cells (GSE46573)
and other leukocyte cell types from the minfi package as
the reference.

meQTL detection

Saliva meQTLs

The association analysis between 3,622,550 SNPs and
363,366 CpGs was performed by a linear additive regres-
sion model using Matrix eQTL software [42]. The asso-
ciation tests for SNP-CpG pairs were restricted to
distances within 20 kbp to focus on cis-acting genetic ef-
fects. The covariates age, sex, cell type proportion, diag-
nosis, and top three ancestry-related PCs from merged
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genotypes were adjusted in an association analysis. We
identified 825,405 autosomal SNP-CpG pairs with sig-
nificance p < 1 x 107>,

Brain meQTLs

Brain meQTLs were derived from prefrontal cortex (dorso-
lateral prefrontal cortex, BA46/9) of 258 healthy subjects
(aged > 13 years) in a published study [1]. As described by
Jaffe et al. [1], 7,426,085 SNP genotypes and 477,636 CpG
beta values after quantile-based normalization were used
for meQTL analysis using a linear additive regression
model in Matrix eQTL, resulting in 4,107,214 significant,
false discovery rate (FDR)-corrected SNP-CpG association
pairs (within 20 kbp, p < 8.6 x 107%) after controlling for
covariates related to ancestry (first five multidimensional
scaling components) and global epigenetic variation (first
11 PCs).

Blood meQTLs

Blood meQTLs were obtained from a longitudinal study
[13]. The authors rank-normalized methylation levels of
395,625 CpGs and combined them with 8,074,398 SNP loci
for meQTL analysis by controlling for the covariates age,
sex, batch, cell count, and top ten ancestry-related PCs,
resulting in 5,317,173 SNP—CpG pairs (p < 1 x 1077 in at
least one age group). Although their meQTL analysis
shows highly stable genetic effects on methylation level
across lifespan, to best match the age distribution of brain
and saliva studies, we chose the meQTL results derived
from the peripheral blood of 837 adolescents (age 17.14 +
1.01 years) for comparative analysis.

To make the meQTL results comparable across tissues,
we restricted our analyses by: 1) focusing on the SNPs and
CpGs shared among the involved datasets (annotated by
1000 Genomes Project phase 1, version 3 reference panel)
and from autosomal chromosomes; 2) filtering out CpGs
either coinciding with SNPs or at single base extensions
[35] or probed with non-specificity [36]; 3) considering
significant cis meQTL effects only when SNP-CpG dis-
tance < 20 kbp and association p < 1 x 107>, comparable
to the thresholds applied in other meQTL studies using
Methylation 450K chips (FDR < 0.01) [1, 43].

meQTLs and targeted CpGs overlap across tissue types

SNPs and CpGs were matched by their chromosome posi-
tions across tissue types. For the common SNPs and CpGs
in each pair of tissues, we evaluated the percentages of
SNPs and CpGs showing cis-meQTL effects in each tissue
and their overlap between tissues. meQTL alleles were
also matched across tissues (flip strand and switch coding
allele if necessary). For the meQTL—-CpG pairs, their effect
sizes were measured by normalized regression coefficient

B=p/std(B) , where B is the estimated regression
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coefficient and szd(f) indicates the standard deviation of

coefficient from meQTL analyses. The /;’ value represents
the standardized methylation change related to an in-
crease of one coding allele. Due to the rank normalization

applied to the methylation values of blood, values of ﬁ are

not comparable across tissues, but the signs of Z? reflect
up- or down-regulation of SNPs on methylation, and the

overall pattern of /3’ across the genome shows the relative
strength of individual meQTLs. Thus, we computed the
percentages of meQTL—-CpG pairs showing the same or
opposite signs of effects among tissues, and the
Spearman’s rank correlations of the effects to evaluate the
similarity of meQTL effect patterns among tissues.

Enrichment test for meQTLs and targeted CpGs

To test the enrichment of meQTLs in previously
published GWAS risk loci of various diseases (e.g, the
NHGRI-EBI GWAS Catalog and psychiatric disorders)
compared to non-meQTLs, we firstly pruned the whole
SNP set with linkage disequilibrium (LD) r* > 0.7 using
the PLINK software. The LD pruning was supervised by
GWAS risk loci so that risk SNPs were kept with high
priorities. After the pruning process, the proportion of
pruned meQTLs showing GWAS risk was calculated.
We then generated a null distribution by randomly
sampling 10° sets of SNPs from the whole pruned SNP
set. Each randomly picked SNP set had the same num-
ber of SNPs and similar MAF distribution as the pruned
meQTLs. To ensure similar MAF distribution, we
binned pruned meQTLs by MAF with intervals of 0.05,
and then sampled the same number of SNPs with similar
MAF distribution for each bin. For each random SNP
set, the proportion of SNPs as GWAS risk loci was
calculated. The percentage of sampled SNP sets having a
higher proportion than the observed proportion was
taken as the empirical p value, denoted by P_perm. The
method was also used to test disease risk loci enrich-
ment between cross-tissue meQTLs and combined
meQTLs, and between combined meQTLs and
non-meQTLs.

The same strategy was applied to the enrichment test
for cross-tissue meQTLs in cis-eQTLs for brain and
blood. The eQTLs in brain (frontal cortex Broadmann
area 6) and blood (whole blood) were downloaded from
GTEx (https://gtexportal.org/home/; version v6p). Only
significant cis-eQTLs (within 1 Mbp, FDR < 0.05) were
used for the enrichment test.

We evaluated the distribution of cross-tissue targeted
CpGs in regions of gene body, TSS200, TSS1500, 3°
UTR, 5" UTR, first exon, and enhancer, as well as re-
gions (in terms of CpG density) of CpG islands (CGIs),
CGI shores, and CGI shelfs. Information on CpG distri-
bution in these regions was from the published manifest
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file (https://support.illumina.com/downloads.html/). En-
richment tests in various regions were performed by
two-sided Fisher’s 2 x 2 table exact tests which, for
example, compared the odds of the CpGs being in the
gene body when they were targeted by meQTLs in at
least one tissue to the odds of the CpGs being in the
gene body when they were not targeted by any meQTLs.
Three types of comparisons were done: cross-tissue
targeted CpGs vs tissue-specific meQTL-targeted CpGs;
combined meQTL-targeted CpGs (CpGs targeted by
meQTLs in at least one tissue) vs non-targeted CpGs
(CpGs not targeted by meQTLs in any tissues); and cross-
tissue meQTL-targeted CpGs vs non-targeted CpGs.

Overlap of cross-tissue targeted CpGs with brain-blood
correlated CpGs

To further characterize the extent of cis-meQTL effects on
methylation variation across tissue types, we assessed the
overlap between the CpGs targeted by cross-tissue
meQTLs and the CpGs showing high correlations of
methylation levels between brain (frontal cortex) and blood.
From a published study [25], two levels of brain—blood
correlation (r* > 25 and > 50 %) were used to select 28,561
and 16,699 CpGs, respectively, which were filtered by afore-
mentioned criteria and then used for Fisher’s exact
enrichment test.

Consensus co-methylation network analysis of cross-
tissue targeted CpGs

A co-methylation network analysis was applied to cross-
tissue meQTL-targeted CpGs to identify consensus
networks across tissues using an R package for weighted
correlation network analysis (WGCNA) [44]. Methylation
data from brain (GSE74193; prefrontal cortex, 108 SZ pa-
tients and 136 controls), blood (GSE80417; 353 SZ patients
and 322 controls), and saliva (described before) were
obtained from three projects with both SZ patients and
controls. The details of WGCNA can be seen in [44]. In
brief, for each dataset the CpG adjacency matrix was calcu-
lated by a power of 6 of the correlation matrix among
nodes (ie., CpG), from which a topology overlap matrix
(TOM) was derived to measure connection similarity
among nodes (i.e., the overlap between any two nodes in
terms of the extent they were connected to the same other
nodes in the network). A consensus TOM across datasets
was derived by defining the similarity of two nodes as the
minimum similarity value among the datasets. Through
the consensus TOM, an unsigned co-methylation network
was constructed and densely interconnected CpGs were
clustered into modules. Module eigengenes (ME), the first
PC of methylation values of CpGs in a module, were com-
puted for each tissue and tested for association with SZ
diagnosis, controlling for the same covariates as used in
the meQTL analysis. Association p values of ME in
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different tissues were then combined by Fisher’s combined
method. Within a module, each CpG’s correlation with ME
was computed for each tissue and the corresponding Z-
scores across tissues were combined as the measure of
each CpG’s module membership (MM) [45], indicating
how close a CpG relates to the module. Each CpG’s associ-
ation with SZ diagnosis was also computed and combined
(Z-scores) across tissues, indicating its methylation signifi-
cance (MS), from which the correlation between MM and
MS for each Cp@G in the module was tested.

Results

meQTLs and targeted CpGs among tissues

The total numbers of SNPs, CpGs, cis-meQTL-CpG
pairs, meQTLs, and targeted CpGs in each tissue and
their overlap across tissues are provided in Additional
file 1: Table S1. Figure 1la, e, i show the numbers of cis
meQTL-CpG pairs, involved meQTLs, and targeted
CpGs from each tissue. We conducted pair-wise tissue
comparison as shown in Fig. 1b, ¢, f and 1d, g, h for
brain vs blood, brain vs saliva, and blood vs saliva, re-
spectively. Specific to each tested pair, common SNPs
and CpGs were selected. In Fig. 1b—f, the percentages of
common SNPs and CpGs having cis-meQTL effects are
shown for each “single tissue”, while “cross-tissue” indi-
cates the ratios of cross-tissue meQTLs or targeted CpGs
over the total meQTLs or targeted CpGs in each tissue.
When comparing brain with blood, 12.61 % of SNPs had
cis-meQTL effects on 1547 % of CpGs in brain, while
10.88 % of SNPs and 9.26 % of CpGs were detected with
cis effects in blood. In both tissue types 528,286 meQTL—-
CpG pairs were shared, involving 45.04 % of brain
meQTLs and 52.21 % of blood meQTLs, and 34.31 % of
brain targeted CpGs and 57.28 % of blood targeted CpGs.
These results are shown in Fig. 1b. When comparing brain
with saliva as shown in Fig. 1c, 11.63 % of SNPs and 12.69
% of CpGs had cis effects in brain while 8.12 % of SNPs
and 7.1 % of CpGs in saliva did. The 212,435 shared
meQTL-CpG pairs involved 37.59 % meQTLs in brain
and 53.83 % in saliva, and 30.8 % of targeted CpGs in brain
and 55.12 % in saliva. When comparing blood with saliva
as shown in Fig. 1f, 9.65 % of SNPs and 8.07 % of CpGs in
blood, and 7.95 % of SNPs and 7.19 % of CpGs in saliva
had cis effects. The 319,598 shared meQTL-CpG pairs in-
volved 60.27 and 73.13 % of meQTLs and 60.96 and 68.36
% of targeted CpGs in blood and saliva, respectively.

Figure 1d-h show the cis-effect sizes ( Z? value) of the
matched meQTL-CpG pairs between each pair of tissues:
84.8 % of the meQTL-CpG pairs have the same effect
signs between brain and blood, 87.1 % between brain and
saliva, and 92.9 % between blood and saliva, showing that
majority of meQTLs have consistent effect signs across
tissues. The rank correlations of effect sizes for the
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matched meQTL-CpG pairs were 0.78, 0.79, and 0.87 for
brain vs blood, brain vs saliva, and blood vs saliva, respect-
ively. By focusing on the meQTL-CpG pairs across all
three tissues, we found similar correlations of 0.79, 0.79,
and 0.88. Power analysis was performed to evaluate the
meQTL detection power regarding sample size, effect size,
and MAF, showing more power for meQTL detection in
the blood study than the brain and saliva studies, espe-
cially when an meQTL has a smaller MAF or effect size,
as shown in Additional file 1: Figure S1. When we re-
stricted the analyses only to the meQTLs with consistent
MATF across tissues (MAF difference < 0.1) and the effect
sizes to have power over 0.8 for 200 samples (the smallest
one of the three datasets), we observed similar ranges of
meQTL overlap ratios (Additional file 2: Figure S2),
indicating a relatively stable cross-tissue overlap.

Across all three tissues, we found 3,258,095 SNPs and
363,352 CpGs in common, resulting in 694,709, 564,150,
and 430,956 cis-meQTL—-CpG pairs in brain, blood, and
saliva, respectively; 167,013 pairs were shared by all the
tissues with 116,005 meQTLs and 10,879 targeted CpGs.
The following analyses were conducted on these three--
way cross-tissue meQTLs and targeted CpGs.

Genomic distribution and functional annotation of
cross-tissue targeted CpGs

Focusing on the cross-tissue meQTL-targeted CpGs
(10,879), we explored their genomic distribution and
compared them to those CpGs targeted by meQTLs in
at least one tissue (combined CpGs; consisting of cross--
tissue and tissue-specific meQTL-targeted CpGs) and
total available CpGs (consisting of combined CpGs and
non-meQTL-targeted CpGs). The percentage of CpGs
located in the first exon, 3° UTR, 5" UTR, gene body,
enhancer, TSS1500, and TSS200 regions are shown in
Fig. 2a. Compared to non-targeted CpG sites, the com-
bined CpGs were located more in enhancer regions
(odds ratio (OR) = 1.64, p < 1 x 1072%) and gene body
regions (OR = 1.07, p = 8.03 x 107°) and depleted in the
first exon (OR = 048, p < 1 x 1072®), 5 UTR (OR =
0.69, p = 2 x 107'7%), and TSS200 (OR = 0.54, p < 1 x
1072%) regions. Similarly, cross-tissue targeted CpGs
were less distributed in the first exon (OR = 049, p =
2.87 x 107°%), 5" UTR (OR = 0.49, p = 2.87 x 10°%°), and
TSS200 regions (OR = 0.49, p = 2.87 x 107%%) and more
in enhancer regions (OR = 1.41, p = 1.32 x 10*%) and
TSS1500 regions (OR = 1.16, p = 133 x 107).
Compared to tissue-specific targeted CpGs (CpGs
affected by meQTLs but not in all three tissue types),
there were significantly higher proportions of cross-
tissue targeted CpGs in TSS200 (OR = 1.16, p = 3.15 x
107°) and TSS1500 regions (OR = 1.23, p = 6.13 x 10
~1%) but lower proportions in gene body regions (OR =
0.84, p = 1.08 x 10714,
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Fig. 1 meQTLs and targeted CpGs among brain, blood, and saliva. a, e, i The numbers of meQTL-CpG pairs, involved meQTLs, and targeted
CpGs from each tissue. b, ¢, f The percentages of meQTLs/targeted CpGs in each tissue (denoted by Single tissue) and percentages of cross-tissue
meQTLs/targeted CpGs (denoted by Cross-tissue) in pair-wise tissue comparisons. Red bars indicate percentages of meQTLs and blue bars indicate

percentages of targeted CpGs. d, g, h The B values of matched meQTL-CpG pairs between tissues

We also evaluated the location of the three sets of CpGs
relative to CGIs. As shown in Fig. 2a, a significantly larger
fraction of combined CpGs were located in CGI north
shore (OR = 1.3, p = 2.8 x 107%°) and south shore (OR =
139, p = 9.73 x 107*’) regions compared to non-targeted
CpGs. Interestingly, cross-tissue targeted CpGs had even
higher enrichment in these two regions than tissue-
specific targeted CpGs (OR = 1.15 and 1.21, p = 4.33 x 10
7 and 579 x 107!, respectively). Combined CpGs and

cross-tissue targeted CpGs were both less distributed in
CGIs (OR = 05, p < 1 x 1072%; OR = 0,57, p = 3.19 x 10
~1%9) compared to non-targeted CpGs.

We further tested enrichment of cross-tissue targeted
CpGs in complex diseases (http://www.disgenet.org/
web/DisGeNET/menu/home) and KEGG pathways by
using the web tool Webgestalt. As shown in Fig. 2b, an-
notated genes from cross-tissue targeted CpGs were
enriched in some psychiatric and neurological disorders
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such as substance-related disorders, autistic disorder,
peripheral neuropathy, and Alzheimer’s disease (FDR <
0.01). In addition, Additional file 1: Table S2 lists the top
ten involved pathways, of which some are related to
neurodevelopment, even though their enrichment sig-
nificance is marginal.

Enrichment of cross-tissue meQTLs in complex diseases

Some studies have shown a mediation effect of DNA
methylation on the genetic risk for complex diseases [46],
especially psychiatric disorders [14]. We evaluated the en-
richment in various diseases of SNPs showing cis-meQTL
effects across all three tissues (cross-tissue meQTLs) and
SNPs showing meQTL effects in at least one tissue
(combined meQTLs; consisting of cross-tissue and tissue-
specific meQTLs), as shown in Fig. 3. First we tested the
enrichment in reported GWAS risk loci of diverse diseases
from the NHGRI-EBI GWAS Catalog (database download
2017-3-6). There were 26,625 genome-wide significant
risk loci from 1764 disease traits, and 12,451 SNPs in-
volved in 966 diseases/traits were included in our study by
matching rs numbers. Of the GWAS risk SNPs, 2956 were
meQTLs in at least one of three tissues (23.74 % of GWAS
risk SNPs, 0.56 % of combined meQTLs), showing signifi-
cant enrichment (OR = 1.62, permutation P_perm < 1 x
107>, Fisher’s exact test P_Fisher = 1.3 x 1077%) compared
to non-meQTL SNPs. And 706 GWAS risk SNPs were
cross-tissue meQTLs (23.89 % of GWAS risk meQTLs,

0.61 % of cross-tissue meQTLs). Cross-tissue meQTLs
were even enriched in GWAS risk SNPs compared to
tissue-specific meQTLs (OR = 1.49, P_perm < 1 x 1077,
P_Fisher = 5 x 107"%).

Focusing on psychiatric disorders, we tested the enrich-
ment of different sets of meQTLs in the GWAS risk loci of
the five disorders: SZ, major depression disorder (MDD),
BIP, attention deficit hyperactivity disorder (ADHD), and
ASD. The GWAS risk loci were obtained from the mega
analyses reported by the Psychiatric Genomics Consor-
tium. We used p < 1 x 107 for SZ and p < 1 x 107> for
other psychiatric disorders to select risk loci from these
reports. When compared to non-meQTLs, combined
meQTLs showed significant enrichment for genetic risk
loci of BIP and SZ. When comparing cross-tissue meQTLs
with tissue-specific meQTLs, cross-tissue meQTLs were
again significantly enriched for SZ risk loci, but not for
BIP. Noticeably, both combined meQTLs and cross-tissue
meQTLs had higher proportions of SZ risk loci than non-
meQTLs (OR = 1.79 and 249, respectively). In detail,
among 18,761 SZ risk loci in our data, 4452 SNPs (23.73
%) were meQTLs in at least one tissue and 1496 (7.97 %)
were cross-tissue meQTLs. After applying a more strict
threshold (p < 1 x 1077) for SZ risk, which resulted in 7936
SZ risk loci, we found 2299 (28.97 %) were combined
meQTLs with OR = 1.86 (P_perm < 1 x 10~° and P_Fisher
=9 x 107'9). Of these SZ risk combined meQTLs, 33.5 %
were cross-tissue meQTLs (OR = 1.72, P_perm < 9 x 107
and P_Fisher = 1.3 x 107), including five genome-wide
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significant index SNPs [47]. The CpGs targeted by cross-
tissue meQTLs with SZ risk were mainly mapped to genes
BTN3A2, HLA-DQAI, MADILI, ZNF389, PPPI1RI13B,
TSNAREI, HLA-C, SMG6, SRR, AS3MT, LOC285830,
ITIH4, and MUSTNI (listed in Additional file 2).

Overlap between meQTLs and eQTLs across tissue types

DNA methylation has been considered as a regulator of
gene expression, especially when located close to the tran-
scription start site of genes. To evaluate the genetic influ-
ence on both DNA methylation and gene expression, we
tested the overlap of cis-meQTLs with cis-eQTLs in brain
and blood. cis-eQTLs (SNP gene distance < 1 Mbps) from
brain (frontal cortex Broadmann area 9) and whole blood
were downloaded from GTEx project (V6p release). We
included 139,747 brain eQTLs (FDR <5 %) in our brain
SNP data, and 588,981 blood eQTLs in our blood SNP
data, where 45.5 % of brain eQTLs (63,579) and 28.68 %
of blood eQTLs (168,941) were also meQTLs in each
tissue, respectively. We further tested the enrichment of

cross-tissue meQTLs in cross-tissue eQTLs. There were
39,653 eQTLs targeting the same gene in both tissues and
7372 eQTLs (18.59 %) were also meQTLs (6.35 %) across
tissues, showing significant enrichment of cross-tissue
meQTLs in cross-tissue eQTLs (OR = 8.75, P_perm < 1 x
107°, P_Fisher < 1 x 1072%) compared to non-meQTLs.
Interestingly, among the overlapping cross-tissue eQTLs
and meQTLs, 351 QTLs were mainly located in chromo-
some 6p21.1-6p24.3 regions (Additional file 3) and
showed significant SZ risk with P < 1 x 107, strongly
suggesting a biological pathway from these SZ genetic risk
factors to the disease through regulating methylation and
gene expression.

Correlation of cross-tissue targeted CpG methylation in
brain and blood

The meQTL effect has been suggested to contribute to
the correlation of DNA methylation across tissues [25].
We compared cross-tissue targeted CpGs and CpGs
whose methylation values were highly correlated
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between brain and blood. From the study by Hannon et
al. [25], two levels of correlation between brain (frontal
cortex) and blood were used in our analyses with r* > 25
and > 50 %, resulting in 15,207 and 7479 CpGs, respect-
ively. Of the CpGs, 21 and 15.62 % in each set were tar-
geted by cross-tissue meQTLs. Enrichment tests showed
that CpGs targeted by cross-tissue meQTLs more likely
had high cross-tissue correlations (OR(t? > 25 %) =
11.78, P_Fisher < 1 x 1072 OR(G?* > 50 %) = 6.6,
P_Fisher < 1 x 1072°°) compared to the others. Along
with the increase of the meQTL effect, there was an in-
crease of probability of targeted CpGs showing high
cross-tissue correlation of methylation levels, as shown
in Additional file 1: Figure S3.

Consensus co-methylation networks across tissues and
their relationship to SZ

Since cross-tissue meQTLs have shown significant enrich-
ment in SZ risk loci, it is valuable to test directly if their
targeted CpGs demonstrate a relationship with SZ across
tissues. By focusing on cross-tissue targeted CpGs, we
conducted a consensus WGCNA across tissues. Instead of
single CpG sites, we attempted to identify the cross-tissue
CpG modules related to SZ. One consensus module was
identified across the three tissue types but only showed
marginal association with SZ in blood (P = 0.08) after
controlling for covariates (age, sex, batch, cell type, and
smoking). By constructing the network in a pair-wise fash-
ion, we found two brain—blood consensus modules, with
one showing significant negative SZ associations in both
tissues (P_brain = 5.33 x 107, T = -2.81; P_blood = 2.87
x 107% T = -3.65; combined p = 5.5 x 10°°), while no SZ-
related modules were identified in brain and saliva or
blood and saliva pairs. There were 962 CpGs included in
the consensus SZ-related module between brain and
blood, with module membership of each CpG closely
correlated with the combined SZ-relevance Z-score (r =
-0.53).

Discussion

We present a comprehensive analysis of cis-meQTLs
across brain, blood, and saliva. Large proportions of
meQTLs (38-73 %) and targeted CpGs (31-68 %) were
shared among tissues, which are higher than in previous
reports based on the HumanMethylation27 (HM27k)
array (6.6—35 %) [10]. This may be due to a larger sam-
ple size and higher resolution of SNP and methylation
arrays (HM450k) in this study. While the HM27k array
mainly profiled CpGs in promoter regions, we found the
targeted CpGs were enriched in gene bodies, enhancer
regions, and further away at transcription start sites
(TSSs) such as TSS1500. This finding was in line with
previous studies in multiple cell lines showing that
meQTLs more likely reside at distant regulatory
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elements than at promoters [12, 30]. In addition, we
found enrichment of meQTL-targeted CpGs in CGI
shore regions, consistent with other meQTL analyses
[16, 30]. Cross-tissue targeted CpGs showed even higher
proportions in CGI shore regions than tissue-specific
targeted CpGs. This observation complements previous
reports on CpGs in CGI shores showing more variation
and more involvement in various diseases [48].

For the shared meQTLs among tissues, we found overall
high similarities of meQTL effects in terms of effect sign
(85-93 % consistent) and pattern (correlation = 0.78-0.87),
with a slightly higher similarity between blood and saliva.
No marked differences between similarities of blood and
saliva to the brain were seen. On the other hand, there were
also a large number of tissue-specific meQTLs—around
27-69 % of meQTLs were tissue-specific, which was also
reported in previous studies [10, 18]. The large percentage
of tissue-specific meQTLs may be due, in part, to differ-
ences between the three studies, including different meQTL
detection power because of varying sample sizes in tissues,
minor allele frequency differences among cohorts, as shown
in our power analysis and another report [10], slightly
different analytic approaches (e.g., rank normalization in
blood methylation), and other unmeasured confounding
factors. Although we have also found consistent meQTL
overlap ratios among tissues when applying more conserva-
tive criteria, as shown in Additional file 1: Fig. S2, the effect
of cohort-related differences cannot be totally ruled out.
Nevertheless, our study focuses on the identified cross-tis-
sue meQTLs given each study performed reasonable false
positive control.

We found a large overlap between cis-meQTLs and
cis-eQTLs in both brain (46 %) and blood (29 %), which
is much higher than the previously reported 5 % of
QTLs associated with both proximal DNA methylation
and gene expression [15, 16]. The previous studies were
based on the HM27k methylation array, which results in
promoter-biased profiling as mentioned above. For the
shared meQTL-eQTLs in our findings, the median
distance between target gene and targeted CpG was 27.4
kbp with an interquartile range of 4-75.8 kbp, showing
that a majority of CpGs (80.3 % with distance to TSS >
1500 bp) were located outside promoters. This signifi-
cant overlap was also in line with a recent study of fetal
meQTLs which reported significant enrichment of fetal
cis-meQTLs in cis-eQTLs, suggesting a high probability
of both QTLs being located farther away from the gene
TSS [5]. We further found significant enrichment of
cross-tissue cis-meQTLs in cross-tissue cis-eQTLs. Des-
pite the lack of gene expression and DNA methylation
data to validate a pathological mechanism, some cross-
tissue cis-meQTLs have been previously reported to
regulate gene expression through nearby methylation
[15, 16], suggesting a potential role of methylation in
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mediating the effects of these QTLs (both meQTLs and
eQTLs) on gene expression.

meQTLs were broadly enriched in risk loci of com-
mon diseases and traits and some psychiatric disorders
(i.e., BIP and SZ, though cross-tissue meQTLs were not
enriched for BIP, maybe indicating tissue specificity of
BIP pathology). Especially for SZ, in line with previous
studies in brain and blood [5, 49], we found significantly
higher proportions of meQTLs and cross-tissue
meQTLs as SZ risk loci, indicating the complex genetic
mechanism of SZ and the possible role of surrogate
peripheral tissues in studying the pathology of SZ via
these meQTLs. Furthermore, by matching meQTLs,
eQTLs, and SZ risk loci, we identified a set of SNPs.
Some influence both nearby CpG methylation and
expression of genes, including BTN3A2, ITIH4, HCG27,
and HLA-C. Their targeted CpGs were located within
820 bps of the target gene TSS. Other SNPs nearby
genes ZKSCANS, HMOX2, C2orf69, CYP2D6, NT5DC2,
C100rf32-ASMT, HLA-C,HLA-G, HLA-DRBS5, and HLA-
DQBI1 regulate both methylation and gene expression
from further distances (median distance = 73.5 kbp, inter-
quartile range = 37-98.2 kbp, data not shown), suggesting
possible regulation of methylation from distal gene regula-
tory regions, which is consistent with our finding on
genomic distribution of cross-tissue targeted CpGs.

We found that CpGs targeted by meQTLs across tissues
were more likely to show methylation correlation among
tissues compared to the other CpGs. CpGs with higher
meQTL effects were more likely correlated across tissues.
A further -test showed significant differences of meQTL
effects between cross-tissue targeted CpGs and tissue-
specific targeted CpGs (t = 64.181, p value < 1 x 1072%),
suggesting a potential contribution of the genetic compo-
nent to the cross-tissue targeted CpG correlation.

Consensus co-methylation network analysis identified
one module common to the three tissues, although not
significantly related to SZ, but provided evidence of cross-
tissue CpG correlation. One consensus co-methylation
module in brain and blood was identified to be associated
with SZ but not replicated in saliva, suggesting a closer
relationship of the co-methylation network between brain
and blood with SZ. Note that none of the cross-tissue
targeted CpGs showed differences between SZ patients
and controls, passing multiple comparison correction as
reported in a previous work on brain methylation [1]. We
found that some CpGs with moderate group differences
were highly correlated to form a network that showed a
significant association with SZ in our analyses. Our find-
ing suggests that more powerful multivariate statistical
models are needed for differential methylation analyses in
order to account for co-methylation structures.

The findings of this study should be interpreted with
regard to several limitations. Only cis-acting SNP-CpG
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effects were investigated. Previous studies have reported
trans-meQTLs at very small percentages (2-7 %
meQTLs are trans) but that are highly polygenic [5, 13].
Such trans-meQTL effects as well as a potential regula-
tory mechanism due to the 3D chromatin structure [50]
will be interesting to study in future analyses. Secondly,
data sets were collected from different projects with
different population backgrounds, sample sizes, and
potentially many other covariates. Although top
ancestry-related PCs and covariates (e.g., cell type, age,
sex) were used to adjust the meQTL analysis, we cannot
rule out the influence of other confounding factors. In
addition, we focused our analysis only on overlapping
SNPs across studies, which may limit our meQTL detec-
tion. Thirdly, saliva data were assayed by Illumina Methyla-
tion EPIC array. Although the EPIC array can cover almost
93 % of HM450k array probes used for brain and blood,
some probes were still not captured in the cross-tissue ana-
lysis. Two different Illumina arrays were used for saliva
sample genotyping. Although imputation was applied to
genotyped data separately using the same protocol, and
only loci with high imputation quality were kept and
merged, we cannot ensure the removal of batch effects
from the results. In addition, the saliva data included both
cases and controls. Although group information has been
added as a covariate in the saliva meQTL analysis, it may
reduce the meQTL effects when SNPs or CpGs are highly
associated with the group variable. Finally, due to limited
access to the original data from brain and blood tissues, we
set a unified conservative threshold of p < 1 x 107 to the
meQTL significance instead of a FDR-corrected threshold.
And for blood meQTLs, we only had access to partial
meQTLs whose p values are between 1 x 107 and 1 x 10
=5 but all meQTLs less than 1 x 107",

Conclusions

We leveraged genotype and DNA methylation data from
brain, blood, and saliva to systematically characterize
cis-meQTLs and their targeted CpGs among tissues. We
identified significant overlap of meQTLs and targeted CpGs
across tissues, where cross-tissue targeted CpGs are
proportionally located more in enhancer regions and tend
to show high methylation correlation among tissues. A
large portion of meQTLs also had a tissue-specific effect
especially in brain, showing the potential function of these
meQTLs in influencing brain methylation or gene expres-
sion. Compared to tissue-specific meQTLs and non-
meQTLs, cross-tissue meQTLs were more enriched for
eQTLs than previously observed, and more likely to be risk
loci for SZ. With similar co-methylation networks identified
across tissues, our findings suggest the potential of cross-
tissue meQTLs for studying the genetic effect on SZ. The
study provides compelling motivation for a well-designed
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experiment to further validate the use of surrogate tissues
in the study of psychiatric disorders.

Additional files

Additional file 1: Supplementary file including power analysis plot for
meQTL detection (Figure S1), meQTL overlap among tissues by restricting
SNPs and effect sizes (Figure S2), plot of the relationship between meQTL
effect and the proportion of highly correlated CpGs in brain and blood
(Figure S3), numbers of SNPs, CpGs, cis-SNP-CpG pairs, meQTLs, and
targeted CpGs in each tissue and their overlap across tissues (Additional
file 1: Table S1), and the top ten pathways involved according to genes
annotated from cross-tissue targeted CpGs (Additional file 1: Table S2).
(DOCX 606 kb)

Additional file 2: Supplementary data file listing the SNPs which are
cross-tissue meQTLs and SZ risks (p < 107°) reported by the PGC SZ
study. (CSV 163 kb)

Additional file 3: Supplementary data file listing the SNPs which are
cross-tissue meQTLs, cross-tissue eQTLs, and SZ risks (p < 107°). (CSV 153 kb)

Abbreviations

ADHD: Attention deficit hyperactivity disorder; ASD: Autism spectrum
disorder; BIP: Bipolar disorder; CGl: CpG island; eQTL: Expression quantitative
trait loci; HM27k: HumanMethylation27k; LD: Linkage disequilibrium;

MAF: Minor allele frequency; MDD: Major depressive disorder; ME: Module
eigengenes; meQTL: Methylation quantitative trait loci; MM: Module
membership; MS: Methylation significance; PC: Principle component;

SNP: Single nucleotide polymorphism; SZ: Schizophrenia; TOM: Topology
overlap matrix; TSS: Transcription start site; WGCNA: Weighted correlation
network analysis

Acknowledgements

We would like to thank Dr. Andrew Jaffe from the Lieber Institute for Brain
Development for sharing the meQTL results from brain tissue, and Dr. Tom
Gaunt from University of Bristol for sharing the meQTL results from blood.
We also want to thank Dr. Ellis Hannon from the University of Exeter for
providing the CpG correlation results across brain and blood tissues.

Funding

This study was funded by the National Institutes of Health, grant numbers
P20GM103472 and ROTEB005846, and the National Science Foundation,
grant number 1539067.

Availability of data and materials

Brain meQTLs and methylation data for SZ can be accessed from NCBI GEO
database (accession GSE74193). Blood meQTLs can be accessed from http://
www.mgqtldb.org/download.htm. Blood methylation data for schizophrenia
are from NCBI GEO database (accession GSE80417).

Authors’ contributions

DL, JC, and JL designed the study and analyzed the data. JRB, VDC, and JL
collected and generated the data. VDC, JL, NPB, and YD advised on data
analysis and manuscript writting. All authors read and approved the
manuscript.

Ethics approval and consent to participate

Subject recruitment and tissue collection were conducted through the
Center for Biomedical Research Excellence (COBRE) study and Glutamate and
Outcome in Schizophrenia study. Both studies were approved by the
institutional review board (IRB) of the University of New Mexico (UNM) and
all subjects provided written informed consent.

Consent for publication
Since individuals’ data are not shown in this manuscript, consent for
publication is not applicable.

Competing interests
The authors declare that they have no competing interests.

Page 11 of 12

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

"The Mind Research Network and Lovelace Biomedical and Environmental
Research Institute, Albuquerque, NM 87106, USA. “Department of
Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA.
Department of Electrical and Computer Engineering, University of New
Mexico, Albuquerque, NM 87131, USA. *Department of Psychiatry, University
of New Mexico, Albuguerque, NM 87131, USA.

Received: 1 August 2017 Accepted: 9 February 2018
Published online: 26 February 2018

References

1. Jaffe AE, Gao Y, Deep-Soboslay A, Tao R, Hyde TM, Weinberger DR,
Kleinman JE. Mapping DNA methylation across development, genotype and
schizophrenia in the human frontal cortex. Nat Neurosci. 2016;19(1):40-7.

2. Vogel Ciernia A, LaSalle J. The landscape of DNA methylation amid a perfect
storm of autism aetiologies. Nat Rev Neurosci. 2016;17(7):411-23.

3. Grayson DR, Guidotti A. The dynamics of DNA methylation in schizophrenia
and related psychiatric disorders. Neuropsychopharmacology. 2013;38(1):
138-66.

4. Pidsley R, Viana J, Hannon E, Spiers H, Troakes C, Al-Saraj S, Mechawar N,
Turecki G, Schalkwyk LC, Bray NJ, et al. Methylomic profiling of human brain
tissue supports a neurodevelopmental origin for schizophrenia. Genome
Biol. 2014;15(10):483.

5. Hannon E, Spiers H, Viana J, Pidsley R, Burrage J, Murphy TM, Troakes C,
Turecki G, O'Donovan MC, Schalkwyk LC. Methylation QTL in the
developing brain and their enrichment in schizophrenia risk loci. Nat
Neurosci. 2016;19(1):48-54.

6. Teroganova N, Girshkin L, Suter CM, Green MJ. DNA methylation in
peripheral tissue of schizophrenia and bipolar disorder: a systematic review.
BMC Genet. 2016;17:27.

7. LiuJ, Chen J, Ehrlich S, Walton E, White T, Perrone-Bizzozero N, Bustillo J,
Turner JA, Calhoun VD. Methylation patterns in whole blood correlate with
symptoms in schizophrenia patients. Schizophr Bull. 2014;40(4):769-76.

8. Melas PA, Rogdaki M, Osby U, Schalling M, Lavebratt C, Ekstrom TJ.
Epigenetic aberrations in leukocytes of patients with schizophrenia:
association of global DNA methylation with antipsychotic drug treatment
and disease onset. FASEB J. 2012,26(6):2712-8.

9. Walton E, Liu J, Hass J, White T, Scholz M, Roessner V, Gollub R, Calhoun VD,
Ehrlich S. MB-COMT promoter DNA methylation is associated with working-
memory processing in schizophrenia patients and healthy controls.
Epigenetics. 2014,9(8):1101-7.

10. Smith AK; Kilaru V, Kocak M, Almli LM, Mercer KB, Ressler KJ, Tylavsky FA,
Conneely KN. Methylation quantitative trait loci (meQTLs) are consistently
detected across ancestry, developmental stage, and tissue type. BMC
Genomics. 2014;15(1):1.

11, Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF, Gilad Y,
Pritchard JK. DNA methylation patterns associate with genetic and gene
expression variation in HapMap cell lines. Genome Biol. 2011;12(1):R10.

12. Banovich NE, Lan X, McVicker G, van de Geijn B, Degner JF, Blischak JD,
Roux J, Pritchard JK, Gilad Y. Methylation QTL are associated with
coordinated changes in transcription factor binding, histone modifications,
and gene expression levels. PLoS Genet. 2014;10(9):e1004663.

13. Gaunt TR, Shihab HA, Hemani G, Min JL, Woodward G, Lyttleton O, Zheng J,
Duggirala A, McArdle WL, Ho K, et al. Systematic identification of genetic
influences on methylation across the human life course. Genome Biol. 2016;17:61.

14. Lin D, Chen J, Ehrlich S, Bustillo JR, Perrone-Bizzozero N, Walton E, Clark VP,
Wang YP, Sui J, Du Y, et al. Cross-Tissue Exploration of Genetic and
Epigenetic Effects on Brain Gray Matter in Schizophrenia. Schizophr Bull.
2018;44(2):443-52.

15. Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls MA, Lai SL,
Arepalli S, Dillman A, Rafferty IP, Troncoso J, et al. Abundant quantitative
trait loci exist for DNA methylation and gene expression in human brain.
PLoS Genet. 2010;6(5):21000952.

16.  Zhang D, Cheng L, Badner JA, Chen C, Chen Q, Luo W, Craig DW, Redman
M, Gershon ES, Liu C. Genetic control of individual differences in gene-
specific methylation in human brain. Am J Hum Genet. 2010,86(3):411-9.


https://doi.org/10.1186/s13073-018-0519-4
https://doi.org/10.1186/s13073-018-0519-4
https://doi.org/10.1186/s13073-018-0519-4
http://www.mqtldb.org/download.htm
http://www.mqtldb.org/download.htm

Lin et al. Genome Medicine (2018) 10:13

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32,

33.

34.

35.

36.

Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H,
Reynolds AP, Sandstrom R, Qu H, Brody J, et al. Systematic localization of
common disease-associated variation in regulatory DNA. Science. 2012;
337(6099):1190-5.

Andrews SV, Ellis SE, Bakulski KM, Sheppard B, Croen LA, Hertz-Picciotto |,
Newschaffer CJ, Feinberg AP, Arking DE, Ladd-Acosta C, et al. Cross-tissue
integration of genetic and epigenetic data offers insight into autism
spectrum disorder. bioRxiv. 2016;

Gamazon E, Badner J, Cheng L, Zhang C, Zhang D, Cox N, Gershon E, Kelsoe
J, Greenwood T, Nievergelt C. Enrichment of cis-regulatory gene expression
SNPs and methylation quantitative trait loci among bipolar disorder
susceptibility variants. Mol Psychiatry. 2013;18(3):340-6.

Numata S, Ye T, Herman M, Lipska BK. DNA methylation changes in the
postmortem dorsolateral prefrontal cortex of patients with schizophrenia.
Front Genet. 2014;5:280.

Bakulski KM, Halladay A, Hu VW, Mill J, Fallin MD. Epigenetic research in
neuropsychiatric disorders: the “tissue issue”. Curr Behav Neurosci Rep. 2016;
3(3):264-74.

Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S, Coarfa C,
Harris RA, Milosavljevic A, Troakes C. Functional annotation of the human
brain methylome identifies tissue-specific epigenetic variation across brain
and blood. Genome Biol. 2012;13(6):1.

Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MP, van Eijk K, van den
Berg LH, Ophoff RA. Aging effects on DNA methylation modules in human
brain and blood tissue. Genome Biol. 2012;13(10):1.

Walton E, Hass J, Liu J, Roffman JL, Bernardoni F, Roessner V, Kirsch M,
Schackert G, Calhoun V, Ehrlich S. Correspondence of DNA Methylation
Between Blood and Brain Tissue and Its Application to Schizophrenia
Research. Schizophr Bull. 2016;42(2):406-14.

Hannon E, Lunnon K, Schalkwyk L, Mill J. Interindividual methylomic
variation across blood, cortex, and cerebellum: implications for epigenetic
studies of neurological and neuropsychiatric phenotypes. Epigenetics. 2015;
10(11):1024-32.

Consortium GT. The Genotype-Tissue Expression (GTEx) pilot analysis:
multitissue gene regulation in humans. Science. 2015;348(6235):648-60.
Quon G, Lippert C, Heckerman D, Listgarten J. Patterns of methylation
heritability in a genome-wide analysis of four brain regions. Nucleic Acids
Res. 2013;41(4):2095-104.

McRae AF, Powell JE, Henders AK, Bowdler L, Hemani G, Shah S, Painter JN,
Martin NG, Visscher PM, Montgomery GW. Contribution of genetic variation to
transgenerational inheritance of DNA methylation. Genome Biol. 2014;15(5):R73.
Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GH, Wong AH, Feldcamp LA,
Virtanen C, Halfvarson J, Tysk C, et al. DNA methylation profiles in
monozygotic and dizygotic twins. Nat Genet. 2009;41(2):240-5.
Gutierrez-Arcelus M, Ongen H, Lappalainen T, Montgomery SB, Buil A,
Yurovsky A, Bryois J, Padioleau |, Romano L, Planchon A, et al. Tissue-specific
effects of genetic and epigenetic variation on gene regulation and splicing.
PLoS Genet. 2015;11(1):21004958.

Aine CJ, Bockholt HJ, Bustillo JR, Canive JM, Caprihan A, Gasparovic C, Hanlon FM,
Houck JM, Jung RE, Lauriello J, et al. Multimodal neuroimaging in schizophrenia:
description and dissemination. Neuroinformatics. 2017;15(4):343-64.

Bustillo JR, Jones T, Chen H, Lemke N, Abbott C, Qualls C, Stromberg S,
Canive J, Gasparovic C. Glutamatergic and neuronal dysfunction in gray and
white matter: a spectroscopic imaging study in a large schizophrenia
sample. Schizophr Bull. 2016;

Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and
accurate genotype imputation in genome-wide association studies through
pre-phasing. Nat Genet. 2012;44(8):955-9.

Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen
KD, Irizarry RA. Minfi: a flexible and comprehensive Bioconductor package
for the analysis of Infinium DNA methylation microarrays. Bioinformatics.
2014;30(10):1363-9.

Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW,
Gallinger S, Hudson TJ, Weksberg R. Discovery of cross-reactive probes and
polymorphic CpGs in the lllumina Infinium HumanMethylation450
microarray. Epigenetics. 2013;8(2):203-9.

Naeem H, Wong NC, Chatterton Z, Hong MK, Pedersen JS, Corcoran NM,
Hovens CM, Macintyre G. Reducing the risk of false discovery enabling
identification of biologically significant genome-wide methylation status
using the HumanMethylation450 array. BMC Genomics. 2014;15:51.

37.

38.

39.

40.

42.

43.

45.

46.

47.

48.

49.

50.

Page 12 of 12

Rahmani E, Yedidim R, Shenhav L, Schweiger R, Weissbrod O, Zaitlen N,
Halperin E. GLINT: a user-friendly toolset for the analysis of high-throughput
DNA-methylation array data. Bioinformatics. 2017;33(12):1870-2.
Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R,
Botstein D, Altman RB. Missing value estimation methods for DNA
microarrays. Bioinformatics. 2001;17(6):520-5.

Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression
data using empirical Bayes methods. Biostatistics. 2007,8(1):118-27.

Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for
removing batch effects and other unwanted variation in high-throughput
experiments. Bioinformatics. 2012;28(6):882-3.

Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ,
Nelson HH, Wiencke JK, Kelsey KT. DNA methylation arrays as surrogate
measures of cell mixture distribution. BMC Bioinformatics. 2012;13(1):1.
Shabalin AA. Matrix eQTL: ultra fast eQTL analysis via large matrix
operations. Bioinformatics. 2012;28(10):1353-8.

Grundberg E, Meduri E, Sandling JK, Hedman AK, Keildson S, Buil A, Busche
S, Yuan W, Nisbet J, Sekowska M. Global analysis of DNA methylation
variation in adipose tissue from twins reveals links to disease-associated
variants in distal regulatory elements. Am J Hum Genet. 2013;93(5):876-90.
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinformatics. 2008,9:559.

Willer CJ, Li'Y, Abecasis GR. METAL: fast and efficient meta-analysis of
genomewide association scans. Bioinformatics. 2010,26(17):2190-1.

Liu' Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, Reinius L,
Acevedo N, Taub M, Ronninger M, et al. Epigenome-wide association data
implicate DNA methylation as an intermediary of genetic risk in rheumatoid
arthritis. Nat Biotechnol. 2013;31(2):142-7.

Schizophrenia Working Group of the Psychiatric Genomics Consortium.
Biological insights from 108 schizophrenia-associated genetic loci. Nature.
2014;511(7510):421-7.

Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H,
Gabo K, Rongione M, Webster M. The human colon cancer methylome
shows similar hypo-and hypermethylation at conserved tissue-specific CpG
island shores. Nat Genet. 2009,41(2):178-86.

McClay JL, Shabalin AA, Dozmorov MG, Adkins DE, Kumar G, Nerella S, Clark
SL, Bergen SE, Hultman CM, Magnusson PK. High density methylation QTL
analysis in human blood via next-generation sequencing of the methylated
genomic DNA fraction. Genome Biol. 2015;16(1):291.

Won H, de la Torre-Ubieta L, Stein JL, Parikshak NN, Huang J, Opland CK,
Gandal MJ, Sutton GJ, Hormozdiari F, Lu D, et al. Chromosome
conformation elucidates regulatory relationships in developing human
brain. Nature. 2016;538(7626):523-7.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Saliva samples
	Saliva DNA genotyping
	Saliva DNA methylation
	meQTL detection
	Saliva meQTLs
	Brain meQTLs
	Blood meQTLs

	meQTLs and targeted CpGs overlap across tissue types
	Enrichment test for meQTLs and targeted CpGs
	Overlap of cross-tissue targeted CpGs with brain–blood correlated CpGs
	Consensus co-methylation network analysis of cross-tissue targeted CpGs

	Results
	meQTLs and targeted CpGs among tissues
	Genomic distribution and functional annotation of cross-tissue targeted CpGs
	Enrichment of cross-tissue meQTLs in complex diseases
	Overlap between meQTLs and eQTLs across tissue types
	Correlation of cross-tissue targeted CpG methylation in brain and blood
	Consensus co-methylation networks across tissues and their relationship to SZ

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

