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Abstract

Background: Adaptive immune responses to newly encountered pathogens depend on the mobilization of
antigen-specific clonotypes from a vastly diverse pool of naive T cells. Using recent advances in immune repertoire
sequencing technologies, models of the immune receptor rearrangement process, and a database of annotated T
cell receptor (TCR) sequences with known specificities, we explored the baseline frequencies of T cells specific for
defined human leukocyte antigen (HLA) class I-restricted epitopes in healthy individuals.

Methods: We used a database of TCR sequences with known antigen specificities and a probabilistic TCR
rearrangement model to estimate the baseline frequencies of TCRs specific to distinct antigens epitopespecificT-
cells. We verified our estimates using a publicly available collection of TCR repertoires from healthy individuals. We
also interrogated a database of immunogenic and non-immunogenic peptides is used to link baseline T-cell
frequencies with epitope immunogenicity.

Results: Our findings revealed a high degree of variability in the prevalence of T cells specific for different antigens that
could be explained by the physicochemical properties of the corresponding HLA class I-bound peptides. The occurrence
of certain rearrangements was influenced by ancestry and HLA class I restriction, and umbilical cord blood samples
contained higher frequencies of common pathogen-specific TCRs. We also identified a quantitative link between specific
T cell frequencies and the immunogenicity of cognate epitopes presented by defined HLA class I molecules.

Conclusions: Our results suggest that the population frequencies of specific T cells are strikingly non-uniform across
epitopes that are known to elicit immune responses. This inference leads to a new definition of epitope immunogenicity
based on specific TCR frequencies, which can be estimated with a high degree of accuracy in silico, thereby providing a
novel framework to integrate computational and experimental genomics with basic and translational research efforts in
the field of T cell immunology.
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Background
The availability of huge volumes of repertoire sequencing
(RepSeq) [1] data and a growing curated list of T cell re-
ceptor (TCR) sequences with known antigen specificities
[2] have enabled quantitative exploration of the adaptive
immune system. Previous large-scale studies of immune
repertoire structure in health and disease have been

limited in the main to analyses of basic parameters, such
as repertoire diversity and somatic rearrangement patterns
incorporating variable (V), diversity (D), and joining (J)
segments of the TCR [3–6]. However, it is now possible to
extract potentially more useful information from these
rich datasets by stratifying for antigen specificity, as exem-
plified recently in the settings of cytomegalovirus (CMV)
infection [7] and ankylosing spondylitis [8].
Theoretical [9] and experimental [10] studies have indi-

cated that the ability of the T cell repertoire to recognize any
novel antigen is essentially determined by the frequency of
antigen-specific clonotypes prior to immune challenge. The
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emergence of sensitive major histocompatibility complex
(MHC) multimer staining protocols has further permitted
the accurate measurement of specific T cell populations in
the naive pool [11]. Using this approach, it has been shown
that the absolute numbers of specific T cells in the
pre-immune repertoire vary greatly across different epitopes,
yet remain largely conserved across individuals [12, 13].
Moreover, the frequency of antigen-specific T cells in the
naive pool determines both the magnitude and the kinetics
of the cognate immune response [10].
Recent estimates suggest that naïve T cell clone can be as

small as ~ 5 cells, which constitutes a negligible fraction of
~ 3 × 1011 T cells in the human body [14]. This leads to the
observation that naive T cells specific for certain antigens are
often present at very low frequencies, in some cases around
one cell per million sampled T cells [10], which makes them
hard to detect reliably, even using modern
high-throughput RepSeq techniques. Accurate quanti-
fication via flow cytometry is a similarly challenging
task [15]. However, recently developed computational
methods based on probabilistic models of the VDJ re-
arrangement process have allowed surprisingly precise
estimates of generation frequency for individual nu-
cleotide [16] and amino acid [17] sequences, which in
turn dictate the antigen specificity of a TCR repertoire.
These approaches can be used in conjunction with
RepSeq data and TCR specificity annotation to
characterize the pre-immune landscape of antigen-specific
T cells.
We hypothesized that a growing knowledge base of

antigen-specific TCR sequences, together with recent ad-
vances in RepSeq techniques and theoretical models of
the TCR repertoire formation might allow in silico enu-
meration of T cells specific for different epitopes. An ana-
lytical framework that integrates these various datasets
could provide quantitative answers to several intriguing
questions regarding the organization of the adaptive im-
mune system. For example, one could ask if major differ-
ences exist among epitope-specific T cell frequencies and
how any such differences relate to the biochemical and
structural properties of the targeted epitopes. One could
also ask if specific T cell frequencies vary depending on
the origin of T cells (for example, between cells derived
from peripheral and umbilical cord blood) and individual
ancestry. In addition, one could define the concept of im-
munogenicity in terms of the ability of the adaptive im-
mune system to field specific T cells as a function of
individual and population-level biases in repertoire struc-
ture determined by stochasticity and variability in the VDJ
rearrangement process.
In this study, we report the first comprehensive ana-

lysis of baseline frequencies and population incidence
rates for TCRs with known specificities that target
human leukocyte antigen (HLA) class I-restricted

epitopes derived from eight different pathogens. We
developed a computational model that accurately pre-
dicts the baseline frequency of individual antigen-spe-
cific TCR amino acid variants curated in a publicly
available database (VDJdb). This model was verified
using 859 unfiltered RepSeq datasets from healthy
donors [3, 7]. Accordingly, our computational frame-
work provided a solid basis to quantify the population
frequencies of antigen-specific TCRs, explore the
phenomenon of shared (“public”) clonotypes [18–20],
and perform in silico analyses of various factors that
shape the pre-immune repertoire. Using this approach,
we further assessed the impact of ancestry and HLA
class I type on antigen-specific T cell frequencies and
characterized the specificity landscape in umbilical
cord blood samples, which allowed unique insights
into a convergent and highly stable “core” repertoire
of naive T cells [3]. Finally, we mined a large dataset of
epitopes with known immunogenicity scores [21] to
derive a probabilistic measure of antigenic potential.
This novel variable was used to refine our understand-
ing of epitope specificity and develop a hierarchical
view of adaptive immune responses.

Methods
Datasets and pre-processing
We used two publicly available human TCRβ RepSeq
datasets: (i) data from Emerson et al. [7] (available at
[https://clients.adaptivebiotech.com/immuneaccess]) and
(ii) data from Britanova et al. [3] (available at [https://
zenodo.org/record/826447]). TCR reads from Emerson
et al. were re-mapped using MiXCR software v2.1.5 with
default settings (no clonotype assembly was performed,
only read mapping using the MiXCR Align routine) [22]
to provide V, D, and J segment assignments consistent
with Britanova et al. and IMGT nomenclature [23]. The
resulting clonotype tables were then processed using
VDJtools software v1.1.6 with default settings [6].
Samples were corrected for sequencing errors (VDJtools
Correct routine), split into coding and non-coding
clonotypes (VDJtools FilterNonFunctional routine), and
VJ segment use was computed to model TCR rearrange-
ments (VDJtools CalcSegmentUsage routine). Clonotypes
were pooled by CDR3 amino acid sequence using the
VDJtools PoolSamples routine to determine population
frequency and the total number of TCR nucleotide se-
quence variants. Identical variants were counted if they
were observed in different individuals. The number of nu-
cleotide variants was used as a measure of baseline TCR
frequency. Although expanded memory T cells occupy a
major fraction of the repertoire, they account for only a
minor fraction of unique variants [3]. Analyses based on
counting unique rearrangements are therefore relatively
unbiased by clone size.
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T cell repertoire annotation
Human TCRβ sequences known to bind certain HLA
class I-restricted epitopes were obtained from the VDJdb
database [2]. CDR3 amino acid sequence matching that
allowed at most one amino acid substitution and no
indels was used to assign antigen specificities to RepSeq
data. Of note, exact matching that required CDR3 se-
quence and V/J gene identity resulted in far fewer hits,
rendering this approach unfeasible for currently available
TCR datasets. Application of this procedure to the
VDJdb data increased matches with concordant antigen
by an additional ~ 20%, while allowing more substitu-
tions linearly increased the number of discordant
matches, which became greater than the concordant
match frequency at three substitutions [2]. This proced-
ure is stricter than those proposed in other analyses
[24, 25]. The method used by Dash et al. allowed
both substitutions and indels, while the method used
by Glanville et al. operated with k-mers, allowing sev-
eral substitutions.
It is important to note that our method does not require

V or J segment matches, yet in most cases, it also does not
allow mismatches in germline-encoded regions of the
CDR3. The latter can determine the J segment accurately
and narrow the list of possible V segment variants. The
implicit matching of V and J segments resulting from our
annotation method is reflected in the strong correlation
observed between annotated TCR sequencing data and

the TCR rearrangement model (described below) that uses
both V and J segment information (see Fig. 1b).

Estimating rearrangement probabilities for TCR amino
acid variants
The probabilistic model for TCR sequence generation was
described previously [26]. Briefly, the probability of recom-
bination scenario is represented as the product of probabil-
ities of distinct events in the VDJ recombination process:

Pβ
rearr rð Þ ¼ P Vð ÞP D; Jð ÞP delV jVð ÞP insVDð Þ

�P delDl; delDrjDð ÞP insDJð ÞP del J j Jð Þ:
ð1Þ

Pgen nð Þ ¼
X

r∈rn

Pβ
rearr rð Þ ð2Þ

Pgen að Þ ¼
X

n∈na

Pgen nð Þ ð3Þ

where P(V) and P(D,J) are the probabilities of V and D,J
pair choices, P(delV|V) is the probability of a certain
number of 3′ nucleotide deletions from the V segment
at the VD junction, P(delJ|J) is the probability of a cer-
tain number of 5′ nucleotide deletions from the J seg-
ment at the DJ junction, P(delDl,delDr) accounts for 3′
and 5′ D segment deletions, and P(insVD) and P(insDJ)
are the probabilities of certain insertion sequences at the

Fig. 1 Estimating baseline T cell frequencies using a VDJ rearrangement model. a Schematic description of the TCRβ baseline frequency
estimator. CDR3 sequences were sampled from the pre-trained probabilistic model of Murugan et al. for each VJ segment combination,
translated, and matched to a given CDR3 sequence (allowing at most one amino acid substitution, see the “Methods” section) to estimate its
theoretical rearrangement probability. Resulting probabilities were corrected for the sample-specific VJ segment frequency profile. b The observed
(Y-axis) versus estimated (X-axis) rearrangement frequencies for 6853 human TCR sequences with known antigen specificities selected from
VDJdb in 786 immune repertoire samples from Emerson et al. containing 151,020,646 unique rearrangements (identical TCRβ nucleotide
sequences observed in different donors were counted as distinct). Observed frequencies were computed as the total number of unique
rearrangements encoding a given CDR3 amino acid sequence in the pooled dataset (with at most one substitution) divided by the total number
of unique rearrangements. The red line displays the linear model fit for log-transformed frequencies. c Density plot showing the probability of
rearranging the same nucleotide sequence in different individuals versus the theoretical rearrangement probability for VDJdb TCR variants (amino
acid sequences). The red curve displays the smoothing fit
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VD and DJ junctions, respectively. Probability tables used
in this study were identical to those provided in [26], with
the exception of P(V) and P(D,J), which were obtained by
computing the V/J frequencies of non-functional clono-
types in the Emerson et al. and Britanova et al. datasets.
The latter were calculated to account for potential V/J
biases arising from methodological differences in the pro-
cedure used to generate TCR amplicon libraries (Emerson
et al. used multiplexed polymerase chain reactions, and
Britanova et al. used 5′ rapid amplification of cDNA ends).
To calculate the generative probability for a given nu-

cleotide sequence, we summed the probabilities of all
possible scenarios that can generate that nucleotide se-
quence (see Eq. 2). Amino acid sequence generation
probability was then computed as the sum of probabil-
ities of all possible underlying nucleotide sequences (see
Eq. 3). Exact calculation of the probability of generating
a particular amino acid sequence is computationally ex-
pensive, mostly due to the presence of a short D seg-
ment, so we used the previously described Monte Carlo
approach [17]. Briefly, we generated a large set of pos-
sible rearrangements from the model, translated the
resulting nucleotide sequences, and counted the number
of matches to the CDR3 amino acid sequence of interest,
allowing a fixed number of mismatches.
It has been shown previously that the profiles of ran-

domly added and deleted nucleotides are very stable
across repertoires sequenced using different technolo-
gies, in contrast to identification of the V and J segments
[16], which are subject to amplification bias during li-
brary preparation. This leads to differences in the P(V)
and P(D,J) distributions, which can be accounted for by
computing P(CDR3aa) in two steps: (i) compute
P(CDR3aa|V,J) by simulating recombination scenarios
for a fixed VJ combination (J unambiguously determines
possible D); and (ii) calculate P(CDR3aa) as a sum of
P(CDR3aa|V,J) times P(V,J), where P(V,J) is estimated
from non-functional sequences in the dataset of interest.
In this study, we simulated 108 recombination scenarios
for each VJ combination, generating more than 1010-
sequences in total. We then scaled the estimated fre-
quencies by VJ usage in the corresponding RepSeq
dataset. Of note, the final probabilities can fall below
10−10, because some VJ combinations have a frequency
of less than 10−2.

Analysis of amino acid features
The physicochemical properties of CDR3 loops and pep-
tide epitopes were estimated using sums of ten Kidera
factors (see [27] for more details and corresponding
values) across all residues. Kidera factors were originally
derived as principal components of various physico-
chemical properties of individual amino acids and en-
code features such as volume and hydropathy (as

determined by the origin of the largest term in a factor).
In our analysis, we computed the Pearson correlation
between raw factor values and the variable of interest
(e.g., rearrangement probability) and used an ANOVA
test for the values of a given Kidera factor partitioned
into four quantiles. The partitioning was done based on
the whole spectrum of Kidera factor sums observed for
all VDJdb epitopes with the first (Q1) and last (Q4)
quantiles corresponding to the highest and lowest factor
values, respectively.

Statistical analysis
All statistical testing was performed in R using standard
packages for T test, ANOVA, Mann–Whitney U test,
and Kolmogorov–Smirnov test. R markdown templates
for all analysis steps are available at [https://github.com/
antigenomics/public-epitope].

Results
Modelling baseline frequencies of specific TCR amino acid
sequences
It has been shown previously that the chance of a certain
TCR nucleotide sequence being produced by the VDJ re-
arrangement process can be efficiently recaptured with a
probabilistic model that considers V, D, and J gene
choices, the number of bases trimmed from the rear-
ranged germline sequences, and the number and com-
position of random insertions [26]. This model can be
applied reliably to a given TCR repertoire using an
expectation maximization algorithm, and the results are
extremely stable across individuals [16, 26]. However,
estimating the probability of TCR variants and their
amino acid translations requires traversing a large tree
of possible rearrangement scenarios, which can be
computationally inefficient. We therefore chose to com-
pute approximate probabilities using the Monte Carlo
method, which operates in a two-step manner: (i) it
counts the expected number of matches to a given
CDR3 amino acid sequence within a given V(D)J com-
bination by sampling rearrangements using correspond-
ing V/D/J trimming and random insert probabilities [26]
and (ii) it scales match frequencies to account for a spe-
cific V(D)J combination frequency profile in a given
dataset and computes the final probability value by sum-
marizing frequencies across different V(D)J combina-
tions (see the “Methods” section and Fig. 1a). This
method was used to estimate the probability of observ-
ing a certain TCR beta chain (TCRβ) CDR3 amino acid
sequence with a maximum discrepancy of one amino
acid substitution, which in turn was used as a proxy to
estimate specific T cell frequency throughout this study.
Baseline frequencies of TCR variants estimated using

this method were in good agreement with those ob-
served in a dataset of 786 repertoires (Fig. 1b). The
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intercept of the model was close to zero (− 0.04 ± 0.03)
after correcting for the percentage of non-coding se-
quences (either out-of-frame or containing a stop codon)
generated by the probabilistic model (24.3 ± 0.1%). A
slope of 0.920 ± 0.005 could be attributed to sampling ef-
fects, because the frequencies observed in the real data-
set exhibited a lower bound of 10−7 to 10−8, which was
much higher than the corresponding range in the theor-
etical model.
The case where multiple TCR nucleotide sequences

encode the same TCR amino acid sequence (also known
as convergent recombination) has previously been linked
to the phenomenon of “public” TCRs, which are shared
across multiple individuals [18]. As can be seen from
Fig. 1c, this process was also observed for TCR variants
with high rearrangement frequencies, in some instances
exceeding previous estimates. Moreover, for the most

frequent TCR amino acid variants, as many as three in
four separate rearrangement events generated the same
TCR nucleotide sequence.

Rearrangement probabilities and population frequencies
vary greatly across T cells specific for different antigens
Next, we applied this model to explore frequency differ-
ences across distinct antigen-specific T cell populations.
As can be seen from Fig. 2a, the median frequencies of
TCR variants associated with different epitopes varied
significantly, and the difference between the highest and
lowest associated frequencies was almost two orders of
magnitude. Nonetheless, the intra-epitope frequency vari-
ance reached six orders of magnitude, suggesting that each
epitope featured both public and rare antigen-specific
TCRs. These differences were also present when TCR vari-
ants were grouped by epitope origin (Fig. 2b). Interestingly,

Fig. 2 Rearrangement probabilities and population frequencies of TCRs specific for different antigens. a Estimated rearrangement probabilities for
TCRs specific for 33 different HLA class I-restricted epitopes. Only epitopes associated with at least 30 different TCR amino acid sequences were
selected from VDJdb (n = 5623 TCRs). The distribution of theoretical rearrangement probabilities is shown using violin plots; red dots indicate the
median rearrangement probabilities. The variance of specific TCR frequencies across different epitopes is highly significant (P < 10−27, ANOVA for
log probabilities). b As in a, but the TCR sequences are grouped by epitope origin. The difference in rearrangement probabilities among epitopes
grouped by origin is also highly significant (P < 10−11, ANOVA for log probabilities). c Fractions of clonotypes specific for different epitopes
showing population frequencies of 5–9%, 10–14%, 15–19%, or 20%+ in 786 immune repertoire samples from Emerson et al. d As in c, but
grouped by epitope origin
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TCR variants specific for CMV or Epstein–Barr virus
(EBV) were the least frequent, ruling out the hypothesis
that the VDJ rearrangement machinery is biased towards
targeting common pathogens [28].
Of note, these results translated into population fre-

quencies of specific TCR variants. The fraction of indi-
viduals with a specific TCR variant shown in Fig. 2c, d
closely mirrored the theoretical frequencies shown in
Fig. 2a, b, and the Spearman rank correlation coefficient
between median rearrangement probability and the frac-
tion of epitope-specific TCRs found in at least 5% sam-
ples was ρ = 0.71 (P = 4 × 10−6). This finding suggests
that differences in baseline frequencies resulting from
intrinsic features of the VDJ recombination machinery
may have a profound effect on immunity at the popula-
tion level.

Epitope sequence features can predict the population
frequency of specific T cells
To explore the source of large differences in the baseline
frequencies of specific TCRs across epitopes, we analyzed
the underlying amino acid sequence features of epitopes
present in VDJdb, focusing on epitope lengths and their
physicochemical properties modelled by sums of ten
Kidera factors [27]. We performed correlation analysis
and ANOVA. For the latter, values of each Kidera factor
were categorized into four quantiles. Epitope length, net
partial specific volume, and net surrounding hydrophobi-
city were significantly associated with specific TCR fre-
quency (P < 0.01 after Benjamini–Hochberg correction for
both correlation and ANOVA; Fig. 3a). Of note, the latter
two Kidera factors were independent of epitope length
(P > 0.2 for net partial specific volume, and P > 0.49 for
net surrounding hydrophobicity, one-way ANOVA).
Moreover, significant associations were observed between
these Kidera factors and baseline frequencies of specific
TCRs (adjusted P < 0.01, one-way ANOVA) when the ana-
lysis was restricted to an epitope length of 9 amino acids
(the most frequent epitope length in VDJdb). Although
epitope length and partial specific volume were not de-
scribed previously in this context, multiple studies have
suggested that hydrophobicity is an important feature re-
lated to epitope immunogenicity and TCR–peptide–MHC
interactions [21, 29].
The correlation between epitope length and baseline

frequencies of specific TCRs is especially interesting in
the context of a recent study, which demonstrated that
TCR specificity is restricted by epitope length [30]. This
observation can be explained by structural constraints
on the corresponding TCR–peptide–MHC interactions.
Specifically, we observed that longer epitopes were rec-
ognized by TCRs with shorter CDR3 loops and vice
versa (Fig. 3b) and that shorter CDR3 sequences were
easier to assemble during VDJ rearrangement (Fig. 3c).

Structural constraints then follow from the fact that lon-
ger CDR3 loops and epitopes are more bulged (as can
be seen from the structural data analysis shown in
Fig. 3d, e), such that a certain balance of CDR3 versus
epitope lengths is required to allow tight docking of spe-
cific TCRs onto cognate peptide–MHC complexes. Tight
docking in the context of longer epitopes may also limit
the amino acid positions available for cognate TCR inter-
actions. Following the logic shown in Fig. 3f, we can fur-
ther hypothesize that longer epitopes are generally
recognized by more public and less specific repertoires
of TCRs.

Exploring HLA-mediated effects on specific T cell
frequencies
Thymic selection allows the passage of T cells that recognize
peptides bound by donor HLA molecules (positive selection),
yet do not interact strongly with self-peptides (negative selec-
tion) [31]. The complex interplay between positive and nega-
tive selection is therefore shaped by the ability of a TCR to
bind certain HLA molecules and the pool of self-peptides
presented by the donor-specific array of HLA molecules. De-
fining an HLA-specific TCR sequence as a TCR sequence
known to recognize at least one epitope in a given HLA con-
text according to VDJdb, we computed the extent of positive
selection as the degree of association between donor HLAs
and specific HLA-restricted TCRs (Fig. 4a). We detected a
significant (P= 0.004) association between donor HLAs and
the frequencies of TCRs that recognize specific epitopes in a
matched HLA context, yet the effect size of this association
was very small (1.02-fold increase on average). This observa-
tion suggests that HLA restriction plays a minimal role in
thymic selection of the functional TCR repertoire, as de-
scribed previously at the protein level [32]. As a conse-
quence, T cells are free to recognize both HLA-matched and
HLA-mismatched epitopes, which is highly pertinent in the
setting of allogeneic stem cell transplantation.
To confirm this finding, we used a hypergeometric test

to compare the frequencies of specific TCRs in samples
with and without the corresponding HLA allele, as listed
in VDJdb (Fig. 4b). We found no association between
the probability of enrichment in any given HLA context
and the probability of TCR rearrangement (Fig. 4b, left
panel), suggesting minimal bias as a function of
under-sampling certain TCRs. However, we also found
that the vast majority of significantly enriched TCRs
were present in samples carrying an HLA allele match-
ing the restriction element reported in VDJdb (Fig. 4b,
left panel). Of note, TCR enrichment was most promin-
ent for epitopes derived from EBV and influenza virus
(Fig. 4b, right panel).
The effect of HLA restriction on T cell selection should

not be confused with HLA-restricted clonal expansions,
which can be quantified by comparing sequence read
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Fig. 3 Epitope features that affect the rearrangement probabilities of specific TCRs. a Population frequencies of TCRs specific for epitopes
of different length, net partial specific volume (sixth Kidera factor), and net surrounding hydrophobicity (tenth Kidera factor). Fractions of
public clonotypes (found in 5%+ of samples) are shown with population frequencies as in Fig. 2b. The association and correlation
between these features and the theoretical rearrangement probabilities is highly significant: PANOVA = 10−8, Pcorr = 4 × 10−6 for length;
PANOVA = 8 × 10−9, Pcorr = 10−6 for partial specific volume; PANOVA = 4 × 10−10, Pcorr = 4 × 10−8 for surrounding hydrophobicity (P values were
corrected for multiple testing using the Benjamini–Hochberg method). Only epitope lengths of 8 to 11 amino acids were considered in
the first subplot, as other lengths were represented by fewer than 30 TCRs. Partial specific volume and surrounding hydrophobicity were
categorized into four quantiles (Q1 to Q4, from smallest to largest standardized value) according to their levels among VDJdb epitopes.
See main text for details of feature selection. b CDR3 length distributions for epitope lengths of 8 to 11 amino acids. c Density plot of
rearrangement probabilities for VDJdb TCRs with different CDR3 lengths. d, e Projection of epitope and CDR3 structures on a plane
passing through the line connecting their C- and N-terminal residues and the center of mass of all Cα atoms. Longer epitope and CDR3
sequences result in more bulged structures. Data were obtained from a manually curated list of 125 PDB structures [https://github.com/
antigenomics/tcr-pmhc-study]. f Schematic representation of the association between CDR3 and epitope lengths and the potential
consequences for TCR cross-reactivity and specificity
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frequencies (Fig. 4c, d). This phenomenon was clearly dem-
onstrated in CMV-seropositive versus CMV-seronegative do-
nors (Fig. 4c). As the vast majority (almost 90%) of
individuals are infected with EBV by adulthood [33], one can
also expect to observe HLA-restricted expansions of
EBV-specific clonotypes (Fig. 4d). In line with this expect-
ation, EBV-derived epitope-specific clonal expansions were
highly discriminatory for certainHLA alleles (Additional file 1:
Figure S1), explaining the accuracy of an HLA classification

technique that relies on the detection of certain “predictor”
TCR sequences [7].

Umbilical cord blood is enriched for known antigen-specific
TCR variants
Umbilical cord blood (UCB) contains predominantly
naive but fully functional T cells that shape the TCR rep-
ertoire early in life [3, 34]. Previous studies have shown
that antigen-specific TCR repertoires in UCB samples are

Fig. 4 HLA-mediated selection of TCRs and epitope-specific clonal expansions. a Box and swarm plots show the distributions of ratios of the
observed and expected numbers of rearrangements for different combinations of donor HLAs (according to genotypes from Emerson et al.) and
HLAs associated with specific TCRs (according to epitope restrictions from VDJdb). Each dot represents the ratio of the total number of TCR
rearrangements specific for epitopes restricted by a given HLA and the expected number of TCR rearrangements, computed with the assumption
of independence between TCR restriction and donor HLA (see insert with formula). Red dots indicate matches between donor HLAs and
rearranged TCRs. The inset box plot shows observed to expected ratios for matched and mismatched HLAs (**, P = 0.004, Mann–Whitney U test).
Only HLA alleles present in at least 30 immune repertoire samples with at least 100 associated TCR sequences in VDJdb were selected. b Log10-
transformed P values for VDJdb TCR enrichments in groups of samples with different HLAs (computed using a hypergeometric test comparing
the number of times a given TCR was found in samples with and without a certain HLA). Left panel: enrichment P values plotted against
rearrangement probabilities for sample groups that either do (red dots) or do not (black dots) have an HLA matching a given TCR (P > 10−4

shown with density plot). Right panel: the same data with epitopes grouped by source. P values were adjusted for multiple testing using the
Benjamini–Hochberg method (TCRs with Padjusted > 0.05 were filtered out). c Distribution of the log2 read frequency ratios of CMV-specific
clonotypes in HLA-matched and HLA-mismatched samples from CMV-seronegative (CMV−, red), CMV-seropositive (CMV+, blue), and CMV-
indeterminate donors (Unknown, green). As in previous panels, HLA matching indicates the presence of at least one HLA corresponding to the
restriction element for a given TCR. All three distributions are significantly different: P = 6 × 10−11 for CMV-seropositive versus CMV-seronegative
donors; P = 4 × 10−4 for CMV-seropositive versus CMV-indeterminate donors; P = 8 × 10−13 for CMV-seronegative versus CMV-indeterminate donors;
Kolmogorov–Smirnov test. d Numbers of EBV-specific clonotypes constituting higher or lower fractions of reads in HLA-matched versus HLA-
mismatched samples. Only HLA alleles associated with EBV-specific clonotypes according to VDJdb are shown (HLA-B*44 was discarded, as it was
represented by just three sequences). Error bars show 95% confidence intervals (binomial distribution)
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distinct from those in peripheral blood mononuclear cell
(PBMC) samples [15], featuring lower numbers of N-bases
and higher numbers of public TCRs [3]. Moreover, T cells of
fetal origin persist in an individual for long periods of time,
with a half-life of approximately 42 years [35]. These sub-
stantial differences in repertoire structure between Tcells de-
rived from UCB and PBMC samples prompted a suggestion
that these populations may also differ with respect to the rec-
ognition of certain epitopes, potentially affecting immune
competence. We have therefore used our framework to
quantify the epitope specificity profile of T cells in UCB ver-
sus PBMC samples.
Comparison of the fraction of unique TCR rearrange-

ments matched with VDJdb records in samples from
Britanova et al. showed that UCB samples contained ~
1.3 times more specific TCR matches than PBMC
samples (P = 0.0015, two-tailed T test, Additional file 1:
Figure S2). This difference could not be attributed to the
CD4/CD8 ratio bias in UCB samples, because the same
effect was observed for HLA class II-restricted epitopes
(P = 0.0008, two-tailed T test; Additional file 1: Figure S2).
The probable explanation here is that UCB clonotypes are
more likely to be observed in antigen-specific responses as
a function of simpler rearrangements and prolonged
persistence. Moreover, there were notable differences be-
tween the specificity profiles observed in UCB versus
PBMC samples. In particular, the relative abundance of spe-
cific TCR rearrangements was significantly different for 7 of
33 epitopes (Additional file 1: Figure S3 and Table S1).

Evidence of ancestry-associated differences in baseline
frequencies of specific T cells
Ancestry is a major determinant of population-specific
differences in susceptibility to immune-related diseases and
various pathogens [36, 37]. In line with these observations,
previous studies have documented ancestry-related differ-
ences in T cell immunity [38, 39]. However, to the best of
our knowledge, there have been no previous attempts to link
these findings to the composition of the Tcell repertoire. We
took advantage of the racially diverse cohort used in the
Emerson et al. study to explore this possibility. For 9 of 33
epitopes, there was a significant variance in TCR frequencies
across individuals of Caucasian, African, and Asian descent
(Additional file 1: Figure S4 and Table S2). These results sug-
gest that substantial differences may exist among populations
with respect to Tcell antigen specificity.

Linking specific T cell frequencies and epitope
immunogenicity
A recently published study [21] provided a large set of im-
munogenic and non-immunogenic epitopes, allowing us
to test for an association between epitope-specific TCR
frequency and immunogenicity. Epitope immunogenicity
is not defined in VDJdb. However, it is still possible to

score immunogenicity on a continuous scale, either by
comparing the distance between each epitope and those
categorized as immunogenic or non-immunogenic in the
Chowell et al. dataset with respect to discriminatory fea-
tures in amino acid sequence space or by training an im-
munogenic epitope classifier and using it to compute
“immunogenicity” scores.
Immunogenic and non-immunogenic epitopes were

efficiently separated in Kidera factor feature space by
transforming every epitope sequence into a vector of
sums for each of the ten Kidera factors that encode the
physicochemical properties of amino acids (Fig. 5a). As
can be seen from Fig. 5b, c, theoretical epitope-specific
T cell frequencies estimated using our models correlated
positively with VDJdb epitope similarity to those defined
as immunogenic by Chowell et al. and with the probabil-
ities of VDJdb epitopes being classified as immunogenic,
which in turn correlated positively with the median re-
arrangement probabilities determined for the corre-
sponding epitope-specific TCRs (Fig. 5d). Conversely,
when using the link between epitope features and TCR
frequencies introduced previously (Fig. 3) and predicting
TCR frequencies using a simple linear model (log TCR
frequency fit using values of ten Kidera factor sums) for
the Chowell et al. data, we found that significantly
higher TCR frequencies were predicted for immuno-
genic epitopes (Fig. 5e). It is also important to note that
higher TCR frequencies were associated with epitopes
located closer to the “core” set of immunogenic epitope
sequences (i.e., inside a denser region of immunogenic
epitope feature space) (Additional file 1: Figure S5).
Thus, a degree of variance can be expected in the T cell
“view” of epitopes defined as immunogenic on the basis
of physicochemical determinants.

Concerning the effect of missing TCRα chain information
on the overall analysis
One caveat of our study is that it does not account for
the paired TCRα chain. This limitation stems from the
fact that most of the sequence data available in the pub-
lic domain were generated via bulk analyses and largely
restricted to the TCRβ chain, which nonetheless allow
an empirical assessment of clonotypically distributed
TCRs. It is clear from previous studies that TCRα chain
bias dictates immune recognition of several epitopes,
such as HLA-A*02-ELA [15, 40]. We therefore expect
that additional data from single-cell sequencing ap-
proaches and dedicated methods for paired-chain TCR
sequencing will lead to substantial improvements in our
ability to estimate baseline antigen-specific TCR fre-
quencies [41, 42]. To assess the validity of our approach
in this light, we conducted similar analyses using Pair-
SEQ data [42]. As can be seen from Fig. 6a, b, there was
a significant correlation between epitope-specific TCRα
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a c e

b d f

Fig. 6 Epitope-specific TCRα-TCRβ heterodimer frequencies can be estimated using TCRβ clonotype frequencies. a, b Matching paired TCRα-TCRβ
sequencing data (PairSEQ assay, Howie et al.) against VDJdb. a Scatter plot of TCRα and TCRβ chain rearrangement frequencies matching a given
epitope. b Product of marginal frequencies of TCRα and TCRβ chain rearrangements (i.e., TCR heterodimer frequencies assuming independent
pairing) plotted against the frequencies of paired-chain records matching the same epitopes. Mean frequencies were computed as follows:
(number of matching rearrangements)/(number of records in VDJdb for a given epitope)/(total number of rearrangements in the PairSEQ
dataset). c As in a, but using TCRα and TCRβ frequencies estimated using the TCR rearrangement model. d As in b, but using TCRα and TCRβ
frequencies estimated using the TCR rearrangement model. e Conditions required to estimate baseline T cell frequencies using TCRβ
rearrangement frequencies alone. f Scatter plot of the mean theoretical rearrangement probabilities for TCRβ chain and paired TCRα-TCRβ chain
rearrangements matching a given epitope. Epitopes lacking paired TCRα-TCRβ sequences, as well as epitopes represented by less than 30 TCRα
or TCRβ sequences according to VDJdb, were excluded from the analysis. This figure uses 3-letter epitope abbreviations (see Additional file 1:
Table S3 for full epitope names)

(See figure on previous page.)
Fig. 5 Specific T cell frequencies at baseline correlate with epitope immunogenicity profiles. a Principal component analysis of epitope space for
immunogenic and non-immunogenic epitopes from Chowell et al. Dimensionality reduction was performed on 10-dimensional vectors of Kidera
factor sums for each epitope, and the first two principal components were used to plot each epitope into a 2D plane using the Euclidean
distance between Kidera factor vectors. The density map shows the overall epitope repertoire space. Red and blue contour maps show densities
for immunogenic and non-immunogenic epitopes, respectively. b Correlation of median theoretical rearrangement probabilities of TCRs specific
for certain epitopes and T-scores for the Euclidean distance of each VDJdb epitope to the immunogenic and non-immunogenic epitopes
computed in Kidera factor space (R = 0.35, P = 0.039). T-scores were computed by comparing distances from a given epitope to immunogenic
versus non-immunogenic epitopes. Only epitopes with more than 30 associated TCRs were selected from VDJdb. c A schematic representation of
the algorithm used to transform categorical representation of immunogenicity (yes/no for data from Chowell et al., and yes/unknown for VDJdb
epitopes) into a continuous set of probability values using an immunogenicity classifier to enable a correlation analysis between immunogenicity
and TCR repertoire structure. d Correlation of median theoretical rearrangement probabilities of TCRs specific for certain epitopes and the
probability of a given epitope being immunogenic as estimated using an expectation maximization classifier (R = 0.37, P = 0.031). e Cumulative
distribution function plot for median rearrangement probabilities predicted for immunogenic and non-immunogenic epitopes using a simple
linear model based on Kidera factor sums. The difference in predicted values for all data from Chowell et al. is highly significant (P < 2 × 10−16,
Kolmogorov–Smirnov test)
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and TCRβ chain rearrangement frequencies, and paired
TCRα-TCRβ chain rearrangement frequencies approxi-
mated the corresponding independent TCRα and TCRβ
chain rearrangement frequencies. These results were repro-
duced using the TCR rearrangement model (Fig. 6c, d),
suggesting that the estimates reported in this paper can be
extrapolated to TCRα chain and paired TCRα-TCRβ chain
data (Fig. 6e, f).

Discussion
Numerous studies have shown that antigen presentation
by MHC molecules is a critical determinant of immuno-
genicity [24, 25, 43]. More recently, advances in the field
of immune repertoire informatics [4, 5, 44–46] have
allowed us to look at this problem from another angle,
taking the perspective of the host immune system repre-
sented by an array of specific TCRs. In this study, we
used TCR repertoire sequencing data to investigate how
antigen-specific T cells discriminate among epitopes pre-
sented by HLA class I molecules.
The baseline frequencies of antigen-specific T cells

were found to vary substantially from epitope to epitope
in tight linkage with the presence of public TCRs. Across
individual epitopes, these frequencies varied by several
orders of magnitude, in line with previous estimates
based on the use of MHC multimers [12, 15, 34]. For
each epitope, we observed both extremely common and
extremely rare TCRs. Of note, we did not find greater
numbers of public TCRs specific for epitopes derived
from common pathogens, such as CMV and EBV, al-
though we did find that amalgamated clonotype frequen-
cies varied considerably among pathogens, grouping
epitopes by source. However, this latter finding should
be treated with caution, because VDJdb still lists a rela-
tively small fraction of known epitopes for each host
species.
Immune repertoire diversity can be computed in vari-

ous ways [5, 47, 48]. Although used with a degree of suc-
cess in several RepSeq studies, the number of unique T
cell clones (either observed in a sample or estimated to
be present in the entire repertoire) is in no way the same
as the number of antigen specificities encoded in the
overall repertoire. This limitation can be solved by mov-
ing to the concept of “functional” diversity [2, 14], which
accounts for the similarity of TCR sequences and their
antigen binding profiles. Moreover, while the TCRβ rep-
ertoire of an individual can feature more than ~ 109

unique clones [14], the probability of a specific T cell en-
countering an antigen-presenting cell bearing a cognate
epitope is proportional to the fraction of specific cells ra-
ther than the number of specific TCR variants. Thus, al-
though we sampled just a minor fraction of each
individual T cell pool (~ 106 from up to ~ 1012 individual T
cells) and could not accurately estimate the total diversity of

the T cell repertoire, this did not limit our ability to estimate
baseline frequencies and functional diversity. It is also im-
portant to note that VDJdb lists only a sample of specific clo-
notypes for each epitope, but again, this likely did not
introduce significant bias into our median baseline frequency
estimates, because there was no correlation between these
frequency estimates and the number of epitope-specific
TCRs (Additional file 1: Figure S6). In addition, potential
confounders lurked in the origins of the RepSeq data, which
were generated using bulk PBMCs. The resulting sequences
therefore emanated from both naive and antigen-exper
ienced T cells. As a consequence of clonal expansion, the lat-
ter almost invariably contribute the majority of sequence
reads, but these sequences generally represent just a small
fraction of the total number of unique rearrangements [3].
Accordingly, our approach most probably yielded results’
characteristics of the naïve T cell compartment, because we
focused on counting unique TCRs.
Studying the incidence of T cells specific for different

epitopes across the repertoires of individuals with different
HLA genotypes can provide insights into the behavior of
the cellular immune system during transplantation. The
enrichment observed for TCRs known to engage certain
HLA class I molecules in HLA-matched samples high-
lights the effect of positive selection in thymus. However,
the effect size of this phenomenon was dwarfed by the
magnitude of HLA-restricted clonal expansions observed
for specific epitopes derived from CMV or EBV. We can
therefore speculate that positive selection in the thymus is
more focused on general features of TCR–peptide–MHC
interactions rather than the specific features of individual
HLA molecules. As shown previously [3, 20], the naive T
cell repertoire was highly similar across individuals with
respect to the relative abundance of public TCR variants,
including those inherited from the fetal period [35]. We
also detected T cells known to recognize certain HLA
class I molecules at just slightly lower frequencies in
HLA-mismatched versus HLA-matched donors. Collectively,
these findings suggest a high degree of HLA cross-reactivity,
in line with an overall requirement to cover the universe of
potential antigens within a limited individual framework of
germline-encoded antigen-presenting molecules [49, 50].
Three other features of our analysis are particularly

noteworthy. First, we identified differences in the TCR
specificity profiles of repertoires isolated from UCB versus
PBMC samples. Substantial fractions of T cells specific for
all surveyed epitopes were nonetheless present in UCB
samples, highlighting the remarkable pre-immune
reservoir of virus-specific T cells [51]. This result demon-
strates the capability of our analytical framework to iden-
tify different T cell populations and reveals potential
differences in immune coverage among T cells derived
from UCB and PBMCs. Second, we found differences in
the baseline frequencies of specific T cells across
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individuals with different ancestries, potentially indicating
genetic variance in the VDJ rearrangement machinery
and/or thymic selection in the context of different HLA
molecules. Although further studies are required to
characterize this phenomenon in more detail, such differ-
ences may have important consequences for population-
level immunity and rational vaccine design. Of note, we
did not find any significant gender-related differences
using data from the Britanova et al. and Emerson et al.
studies. Finally, we refuted a long-standing concern that
analyses reliant on TCRβ sequence data alone are inher-
ently uninformative or biased, at least for the purposes of
our study. Indeed, both TCRα and TCRβ chain frequen-
cies specific for a given epitope were concordant, allowing
the use of TCRβ sequences in isolation to derive meaning-
ful conclusions regarding the antigen-specific landscape of
heterodimeric TCRs.

Conclusions
In summary, our data indicate that the pre-immune land-
scape of antigen-specific T cells is a major determinant of
epitope immunogenicity. As the numbers of annotated
epitopes and cognate TCR sequences deposited in the
VDJdb database continue to grow, we expect that our abil-
ity to characterize novel antigens in terms of immunogen-
icity will increase rapidly. In addition, we note that our
work provides proof-of-concept for a new type of analysis
that combines high-throughput T cell repertoire sequen-
cing and in silico testing of TCR sequences across a wide
range of antigen specificities to inform our basic and
translational understanding of adaptive immune reactivity.

Additional file
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