
Auffray et al. Genome Medicine            (2019) 11:7 
https://doi.org/10.1186/s13073-019-0618-x
EDITORIAL Open Access
Ten years of Genome Medicine

Charles Auffray1*, Julian L. Griffin2,3, Muin J. Khoury4, James R. Lupski5 and Matthias Schwab6,7
This year marks the 10th anniversary of Genome
Medicine. The journal was launched to meet the need in
the community for a platform to publish impactful and
open science that advances basic and clinical research—
using genetic, genomic, omic, and systems approaches—
that has the potential to revolutionize the practice of
medicine. We have seen the journal evolve along with
the changing landscape of health and disease, including
the increasing use of genome-scale approaches in med-
ical research and clinical practice, the generation and
analysis of patient- and population-level data, and the
clinical implementation of these approaches in precision
medicine and public health. Genome Medicine, guided
by our renowned Section Editors, continues to serve an
ever-growing community of interdisciplinary researchers.
Here, our Section Editors discuss the major advances in
the field and their applications in genomic medicine dur-
ing the past decade.
A decade of medical genomics
Major breakthroughs in medical genomics have been
enabled by the implementation of clinical exome sequen-
cing (ES) for molecular diagnosis, by genomics approaches
for understanding the genetic basis of complex traits and
diseases, and by progress in understanding genotype–
phenotype relationships. Initially, two papers reported
clinical ES at scale, describing ES results from 814 and
3386 consecutive patients with undiagnosed suspected
genetic conditions; in both studies, the molecular diagnos-
tic yield was around 25% [1, 2]. In the study by Yang et al.
[2], an in-depth analysis of the first 2000 cases revealed
that approximately 30% of patients with suspected genetic
disease harbored presumptive causative mutations in dis-
ease genes that were discovered in the previous 3 years.
These data portended that the rapid pace of disease gene
discovery using genomics approaches would enable in-
creasing molecular diagnostic rates with systematic re-
analysis of clinical ES data [3–5].
* Correspondence: cauffray@eisbm.org
1European Institute for Systems Biology and Medicine (EISBM), Vourles,
France
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This artic
International License (http://creativecommons
reproduction in any medium, provided you g
the Creative Commons license, and indicate if
(http://creativecommons.org/publicdomain/ze
Genomics approaches to congenital anomalies, such as
the complex trait of congenital scoliosis (CS), have
revealed a new genetic model for developmental birth
defects whereby a rare variant null allele is combined
with a non-coding hypomorphic variant allele to cause
the disease phenotype [6]. The compound inheritance
gene dosage model shows that haploinsufficiency does
not cause the phenotype whereas a homozygous null
allele is lethal. Developmental expression of less than
50% affects somitogenesis and results in the formation
of hemivertebrae, causing CS. These findings show that
both allelic heterogeneity and different combinations of
alleles at a locus can be important for the manifestations
of disease traits, that the combination of rare variant
coding alleles with common variant non-coding alleles
can be important for trait manifestation or for the pene-
trance of disease, and that gene dosage and expression
perturbations can result in developmental birth defects.
Cognitive phenotypes such as developmental delay/in-

tellectual disability (DD/ID), autism, and schizophrenia
are complex traits. Nevertheless, the genetic underpin-
nings of these phenotypes have begun to be elucidated
through genome-wide studies of copy number variants
(CNV) and de novo mutations. The association of CNVs
with cognitive phenotypes has been almost exclusively
evaluated using clinically ascertained cohorts. By studying
an unselected sample of approximately 8000 individuals in
the Estonian BioBank, however, investigators identified
known pathogenic CNVs in adult individuals in the gen-
eral population that may be associated with unrecognized
clinical sequelae [7]. Moreover, individually rare but
collectively common intermediate-sized CNVs were
shown to be associated negatively with educational at-
tainment, implicating genetic variants in cognitive traits
[7]. This study points to the need for better recognition
and clinical phenotyping of perturbations of biological
homeostasis in cognition to enable the diagnosis of
DD/ID phenotypes and the further sub-categorization
of cognitive disease traits.
Clinical ES can provide insight into the relationship

between the observed clinical phenotypes and under-
lying genotypes. Two or more disease loci were involved
in approximately 1 in every 20 patients among the 7374
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patients for whom a putative molecular diagnosis was
achieved in the study by Posey et al. [8]. Intriguingly,
both variant alleles were de novo in 44.7% of patients
who had two mono-allelic pathogenic variants. Interest-
ingly, phenotypic similarity scores were significantly
lower among patients in whom the observed clinical
phenotype resulted from two distinct Mendelian disor-
ders that affected different organ systems than in pa-
tients with disorders that had overlapping phenotypic
features. Importantly, structured clinical ontologies, de-
scribed using the Human Phenotype Ontology (HPO)
terms, could be used to quantify the degree of overlap
between two Mendelian diseases in the same patient [8].
Future clinical ES studies may capitalize further on the
rich source of rare variant genomic data and on human
phenotyping of the perturbations of biological homeo-
stasis that present as disease.
James R. Lupski
Section Editor, Genomics and epigenomics of disease

Public health genomics: where to next?
This year marks the 10-year anniversary of Genome
Medicine, whereas 2018 marked the 20-year anniversary
of the launch of public health genomics globally [9]. A
lot has happened in the past two decades. Three issues
have emerged at the forefront of applications of genom-
ics in public health and these issues will continue to pro-
pel the field in the next few years.
First, we see an acceleration of the implementation of

evidence-based genomic applications in medicine and
public health. Most applications are still not ready for
routine clinical practice, but a growing number are sup-
ported by evidence of clinical validity and utility suffi-
cient to merit integration into practice. The Centers for
Disease Control and Prevention (CDC) classifies and up-
dates genomic applications at three levels of evidence
[10], which can be found in the Public Health Genomics
Knowledge Base of the CDC [11]. In addition to new-
born screening, most applications are in the fields of
cancer, pharmacogenomics, congenital disorders, and
cardiovascular disease. Our collective challenge today is
to use principles of implementation science to maximize
population health benefits [11].
Second, model processes are emerging that allow

whole genome or exome sequencing data to be evalu-
ated and integrated within health systems as part of rou-
tine care, including the integration of sequencing data
with electronic health records. Several health systems in
the US and elsewhere are integrating whole exome or
genome sequencing into routine primary care [12]. In
our recent multi-stakeholder paper, we proposed a
research-based approach to the return of genome-
sequencing results. A genome-first approach can accel-
erate evaluation of the clinical utility of many genomic
applications, including several pharmacogenomic tests
and promising genetic risk scores, using randomized
trials and implementation science [12].
Third, in the past few years, precision medicine has

emerged as a field that allows integration of genomic
data with environmental and social information to
evaluate personalized prevention and intervention
strategies [13]. Similarly, precision public health has
emerged as an approach that uses big data to target in-
terventions to the right populations at the right time, to
help solve population health concerns and to address
health disparities [13]. Applications of pathogen gen-
omics to public health surveillance and outbreak inves-
tigations are one example of precision public health.
Others include spatial analysis and improved public
health surveillance [13].
These topics are only the tip of the iceberg. Clearly,

there are now tangible genomic applications that can
benefit a larger segment of populations and contribute
to the overall mission of public health.
Muin J. Khoury
Section Editor, Genomic epidemiology and public

health genomics

Pharmacogenomics becomes reality:
implementation efforts and personalized
approaches
Recently, tremendous progress has been achieved in
the implementation of pharmacogenomics (PGx) in
clinics. Therapeutic recommendations for more than
40 specific gene–drug pairs have been provided by two
consortia, the Clinical Pharmacogenetics Implementa-
tion Consortium (CPIC; https://cpicpgx.org/) and the
Dutch Pharmacogenetics Working Group (DPWG;
https://www.pharmgkb.org/).
The Absorption, Distribution, Metabolism, and Excre-

tion (ADME) of drugs is controlled by approximately
300 genes that have essential consequences for both
drug therapy and for the development of new chemical
drug entities. Genetic variation in ADME genes contrib-
utes significantly to the inter-individual variability of
pharmacokinetic and pharmacodynamic processes by
producing alternate gene expression patterns and gene
functions. Actionable PGx variants are ubiquitous, and
four out of five patients are likely to carry a variant with a
possible functional effect on ADME targets for commonly
prescribed medications [14]. Consequently, a European
Consortium, the Ubiquitous Pharmacogenomics (U-PGx)
Consortium, is currently implementing pre-emptive PGx
testing into routine care for PGx-guided drug therapy
within an ongoing multicenter, randomized controlled
study [15].
Independent from this activity, there has been a major

evolution of PGx research over the past 5 years that is
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driven by rapidly developing genomic tools. Innovative
genotyping arrays and next-generation DNA sequencing
(NGS) approaches are used to identify systematically rare
variants and gene alterations (e.g. copy number variations)
in the human genome that have putative functional conse-
quences for ADME genes [16] and drug response [17].
Although multiple computational methods have been de-
scribed for and applied in the pharmacogenomic inter-
pretation of NGS data, the elucidation of the functional
consequences of PGx data is still challenging [18]. In this
context a novel technique, variant abundance by massively
parallel sequencing (VAMP-seq), appears to be promising
[19]. VAMP-seq, which measures the steady-state abun-
dance of protein variants in cultured human cells, was
successfully applied in PGx research recently. As proof of
concept, this new technique was used to identify hundreds
of unknown missense variants in a highly clinically relevant
drug metabolising enzyme, thiopurine S-methyltransferase
(TPMT). This approach promises to provide a better un-
derstanding of the functional consequences of even
cell-type specific single-amino-acid variants in pharmaco-
genes at scale.
NUDT15 (NUDIX HYDROLASE 15), a genetic vari-

ation resulting in no or severely decreased function, is a
recent striking PGx discovery [20, 21]. NUDT15 alters
thiopurine metabolism, and thiopurines are the main-
stay in the treatment of childhood acute lymphoblastic
leukaemia and of patients with inflammatory bowel dis-
ease. Thiopurine-related hematopoietic toxicity is, how-
ever, therapy-limiting and even life-threatening. TPMT
is involved in the catabolism of thiopurines, and inherited
TPMT deficiency largely explains thiopurine-related mye-
losuppression in Europeans and Americans [22], whereas
the majority of thiopurine intolerance in Asians can be ex-
plained by NUDT15 genetic variants. This justifies the use
of pre-emptive NUDT15-guided thiopurine, in addition to
TPMT, to treat malignant and non-malignant disease [23].
Single-analyte biomarkers such as genetic variation are

only partially able to explain the heterogeneity in the
expression and function of ADME genes. Our under-
standing of their interaction with non-genetic factors,
epigenetic modifications (such as DNA methylation),
and metabolic factors is evolving [24]. Multi-analyte
signatures derived from complex high-throughput data,
which allow patient characterization and prediction of
drug response in a more holistic manner, appear to be
promising. The strong dependency of personalized drug
treatment on computational solutions remains a challenge
and modern approaches from data science, specifically
multivariate stratification algorithms using techniques
such as machine learning or artificial intelligence, are pro-
posed for the prediction of drug response [25]. Prospects
at the intersection of machine learning and network biol-
ogy may have added value in providing a more precise
prediction of drug response in the era of personalized
medicine [26].
Matthias Schwab
Section Editor, Pharmacogenomics and personalized

medicine

Metabolomics and proteomics: from the bench to
the bedside … almost
The first 10 years of Genome Medicine have witnessed
huge changes in the availability and complexity of meta-
bolomic and proteomic experiments, which are increas-
ingly used in terms of hypothesis generation or in more
targeted approaches in studies of human disease. This
progress has been driven by improvements in hardware
and software, which have extended the limits of detec-
tion and allowed the acquisition of ever larger datasets.
Proteomics and metabolomics are now being applied at
the epidemiology level. For example, Soranzo and col-
leagues [27] demonstrated how such data can be used
with Mendelian randomization to understand mechanis-
tically how SNPs relate to clinical lipid parameters in
cardiovascular disease. The improvements of software
have gone hand in hand with the increased availability of
data. Although the field has encountered challenges re-
lating to data standardization [28], data sharing is now
becoming more commonplace thanks to the combined
efforts of funding bodies, researchers, big data initiatives,
and publishers. Genome Medicine has been at the fore-
front in ensuring that metabolomic and proteomic data-
sets are made available for others to data mine. As these
datasets become more widely available, we will see them
used increasingly to investigate supplementary questions
that were not anticipated by those who designed the ori-
ginal experiment.
One of the biggest surprises over the past 10 years has

been the importance of the various microbiomes, par-
ticularly in the gut microbiome, and their interconnec-
tion with host metabolism. This has been particularly
true for metabolic diseases such as type 2 diabetes and
obesity, but we have also seen the roles of microbiomes
in drug metabolism and various cancers. For example,
Hale and colleagues [29] combined metabolic modelling
and metabolomics to reveal the impact of H2S gener-
ation on the colon microbiome and in turn how this
change interacts with tumour growth. Both metabolo-
mics and proteomics are increasingly being used to map
the interactions of humans and the microbes that
colonize the various niches of the body, and this work is
set to increase as we begin to appreciate how much the
microbes inside us play a part in health and disease. The
complexity of a host–microbiome network was impres-
sively demonstrated by Grassl and colleagues [30] who
pieced together the human and microbiome components
of the saliva proteome, including changes that seem to
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anticipate food consumption. Finally, omics studies are
also beginning to map how bacterial and viral infections
can hijack host metabolism. Johannes and colleagues
[31], using a range of targeted and untargeted metabolo-
mics and lipidomics approaches, demonstrated how hepa-
titis B infection alters lipid and amino acid metabolism in
the liver. This work suggested that a central event in infec-
tion is alteration of the glycerol-3-phosphate-NADH
shuttle, which in turn affects a variety of lipid pathways in-
cluding phospholipid ether and triglyceride production.
New applications of metabolomics, lipidomics, and pro-

teomics are being reported continually, but one thing is
certain: in the past 10 years, we have only just scratched
the surface of what these approaches have to offer.
Julian L. Griffin
Section Editor, Proteomics & metabolomics in medicine

Ten years of systems medicine in Genome
Medicine and beyond
The first issue of Genome Medicine in January 2009 co-
incided with the beginnings of systems medicine, which
aims to leverage the advances made in systems biology
in the previous decades to deliver innovative solutions
for the diagnosis, prognosis, and treatment of human
diseases [32]. The field has grown steadily over the past
10 years, empowering the transition from a reactive
practice to a proactive practice of medicine, healthcare,
and wellbeing, for the benefit of both patients and the
healthy population [33].
This transition has been made possible by the combin-

ation of advanced biomedical knowledge with a wealth of
genomics, transcriptomics, proteomics, metabolomics,
and microbiome data. In addition, the constant participa-
tory monitoring of various exposures and lifestyle parame-
ters (such as heart and respiration rate, blood pressure,
body temperature and motion) and ambient parameters
(through connected wearable devices [34]) has provided
the means to disentangle the causative parameters of
health maintenance and of disease onset, progression, and
response to drug treatments using correlations derived
from population-based studies and clinical trials [35]. In
the process, multiple challenges have been identified that
must be overcome so that we can make sense of big data
in health research; there is a need to facilitate open, unen-
cumbered access to personal and population medical data
while preserving privacy according to recent pieces of per-
sonal data protection legislation [36–38].
In addition, biomedical and computational research in-

frastructures are leveraging four decades of experience in
handling and sharing massive amounts of data in particle
physics, which led the Centre Européen de Recherche
Nucléaire (CERN) to invent the World Wide Web. This
transdisciplinary experience will serve in the development
of a health research innovative cloud environment
(manuscript submitted). The technological barriers to
introducing systems medicine into clinical practice are
thus being overcome, as shown by the growing number of
successful applications being presented at international
conferences [39]. It is likely to take a generation to achieve
the training of a new cohort of data scientists, medical
doctors, health practitioners, and policy makers who are
familiar with ‘advanced intelligence’ and who will work at
the crossroads of human wisdom and machine perform-
ance, its application to healthcare and wellbeing, and its
endorsement by the citizens through a world alliance of
health and wellbeing [40].
Charles Auffray
Section Editor, Systems medicine and informatics
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