
Little et al. GenomeMedicine           (2019) 11:37 
https://doi.org/10.1186/s13073-019-0643-9

METHOD Open Access

Associating somatic mutations to
clinical outcomes: a pan-cancer study of
survival time
Paul Little2, Dan-Yu Lin2* and Wei Sun1,2,3*

Abstract

We developed subclone multiplicity allocation and
somatic heterogeneity (SMASH), a new statistical
method for intra-tumor heterogeneity (ITH) inference.
SMASH is tailored to the purpose of large-scale
association studies with one tumor sample per patient.
In a pan-cancer study of 14 cancer types, we studied
the associations between survival time and ITH
quantified by SMASH, together with other features of
somatic mutations. Our results show that ITH is
associated with survival time in several cancer types
and its effect can be modified by other covariates, such
as mutation burden. SMASH is available at https://
github.com/Sun-lab/SMASH.
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Background
Somatic mutations, including somatic point mutations
(SPMs; e.g., single nucleotide variants or indels) and
somatic copy number alterations (SCNAs), are the under-
lying driving force for tumor growth. In this sense, can-
cer is a genetic disease. Therefore, association studies
between somatic mutations and clinical outcomes may
provide insights into tumor biology or personalized treat-
ment selection. However, few efforts have been reported
toward this end, partly because most somatic muta-
tions or even gene-level mutations are too rare to con-
duct meaningful association studies. An alternative to a
mutation-by-mutation or gene-by-gene association study
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is to summarize mutation information by certain features
and then associate such features with clinical outcomes. In
this paper, we consider three such features: tumor muta-
tion burden (TMB, i.e., the total number of SPMs), SCNA
burden, and the degree of (genetic) intra-tumor hetero-
geneity (ITH), which refers to the fact that tumor cells can
be grouped in subclones such that the cells within one
subclone share similar sets of somatic mutations. ITH is a
fundamental characteristic of somatic mutations and has
been associated with clinical outcomes such as survival
time or immunotherapy treatment response [1, 2].
We estimate TMB by counting the number of non-

synonymous point mutations [3, 4] and estimate the bur-
den of SCNAs using allele-specific copy number estimates
derived from ASCAT [5]. While measuring TMB and
SCNA burden is relatively straightforward, quantifying
ITH is much more challenging. Computational methods
have been developed to characterize ITH, e.g., to iden-
tify the phylogenetic tree of subclones and the mutations
belonging to each subclone [6–11]. However, consensus
on the optimal approach for ITH inference and the appro-
priate approach for quantifying ITH in association studies
does not exist. The estimation uncertainty of ITH is often
unavoidable because the observed data may be compati-
ble withmore than one subclone configuration. Therefore,
such uncertainty should be incorporated in association
studies.
Counting the number of subclones is a straightforward

approach to quantify ITH. Andor et al. [1] assessed the
association between the number of subclones and survival
time in 12 cancer types using data derived from The Can-
cer Genome Atlas (TCGA). These investigators did not
find any significant associations, except for gliomas. Mor-
ris et al. [12] assessed the association between ITH and
survival time in nine cancer types and found significant
associations for several cancer types. They treated ITH
as a binary variable based on whether or not the num-
ber of subclones was larger than a threshold. An apparent
drawback of the aforementioned two approaches is that
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the subclone proportion information is lost. For example,
if a tumor sample has two subclones with cellular pro-
portions being 99% and 1%. Intuitively, this tumor sample
is fairly homogenous and may be better classified as one
subclone instead of two subclones. A second drawback of
the thresholding approach of Morris et al. [12] was that
only a small number of patients (3 to 11 patients across
nine cancer types, median of six patients) were classified
as having both high ITH and non-censored survival time.
As a result, the association results can be highly unstable
with respect to ITH inference.
An alternative metric to quantify ITH is mutant-allele

tumor heterogeneity (MATH) [13], which is defined as
100 × MAD/median, where median is the median of
the variant allele frequencies (VAFs) of all somatic point
mutations within a sample, and MAD is the median abso-
lute deviation of the VAFs. MATH pertains to the ratio
between the center and spread of the VAF distribution.
This approach ignores the fact that VAF can be affected
by SCNAs (see Fig. 1 for an illustration).
Although many methods have been developed for ITH

inference, none of them are ideal for large-scale asso-
ciation studies. In most solid tumors, a significant pro-
portion of the genome is affected by SCNA, and so,
those methods that cannot account for SCNA [8, 14–17]
are not appropriate for our purpose. Several methods

either explicitly or implicitly require multiple samples per
patient [6, 8, 10, 14, 15, 17] and thus cannot be used for
our association analysis of TCGA data, where each patient
only has one sample.
PyClone [11] is arguably the most popular method for

ITH study and has been used in two pan-cancer stud-
ies [1, 12]. However, PyClone is designed for targeted
sequencing studies, where a small number of loci are
sequenced with ultra-high coverage (e.g., >1,000× cover-
age). Its Bayesian Markov Chain Monte Carlo (MCMC)
implementation requires an extended runtime. In addi-
tion, PyClone performs clustering of somatic mutations,
but does not infer phylogeny.
Many other existing methods for ITH study [7, 9–11]

also use Bayesian MCMC implementation and their com-
putational burden makes them undesirable for large-scale
association studies. Another class of methods use com-
binatorial approaches [6, 16, 17]. Several approaches do
not account for SCNA [16, 17]. SPRUCE [6], a more
recent algorithm, jointly models SPMs and SCNAs by
multi-state perfect phylogeny mixtures. It is designed for
multi-sample study with a small number of mutations or
mutation clusters. For example, as shown in their simu-
lations, even with only 5 mutations or mutation clusters,
at 500× coverage, the median number of solutions is
between 1000 and 10,000 when there are two samples,

Fig. 1 ITH example with and without CNAs. a Visualization of a tree, where each node represents a subclone within a tumor sample. N denotes the
normal cells, and A, B, C, and D denote the descending subclones. To simplify notation, we also use A, B, C, and D to denote the mutations that arise
from the corresponding four subclones. We simulated a tumor purity of 0.762 with 1000 variants under the following scenarios: (1) no somatic copy
number alterations (SCNAs) and (2) SCNAs in which mutations are equally distributed across clonal copy number states (0,1), (1,1), and (1,2). A copy
number state denotes the number of copies of the two alleles. For example, copy number state (0,1) denotes deletion in one allele. b The second
column corresponds to the cellular proportions of each subclone after accounting for tumor purity. The third and fourth columns correspond to the
cellular prevalence and mean VAF (without SCNAs), respectively, of the mutations arising from each subclone. In (c) and (d), the black curve is the
overall VAF density, and the colored curves are the subclone-specific VAF densities. Multiple subclone-specific VAF peaks with SCNA are due to
combinations of multiplicity and subclone allocation
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and around 100 when there are 5 samples. Other ITH
quantification methods either do not provide an easy-
to-use uncertainty measurement [18] or require addi-
tional (hard-to-get) information such as phasing between
sparsely distributed somatic mutations [19].
Given these considerations, we developed a newmethod

for ITH study, called subclone multiplicity allocation and
somatic heterogeneity or SMASH. To overcome the limi-
tations of the aforementioned approaches for quantifying
ITH, we quantify ITH, as previous studies have done
[12, 20], using entropy − ∑S

s=1 ϑs log (ϑs), where ϑs is the
proportion of tumor cells that belong to the sth subclone
and S is the total number of subclones. We assessed the
performance of SMASH and a few othermethods in large-
scale simulated association analysis. Then we used these
methods to study the association between survival time
and TMB, SCNA burden, frequently mutated genes, and
ITH using data on 5898 TCGA tumor samples from 14
cancer types [21].
Themajor contributions of our work are threefold. First,

we propose a new computational method that is designed
for large-scale studies of ITH with higher computational
efficiency. Second, we evaluated the benefit to incorporate
uncertainty of ITH estimates in association studies and
conclude that there is positive but relatively minor benefit.
Third, in the large-scale real data analysis, we found sev-
eral interesting patterns such as the interaction between
mutation burden and ITH.

Methods
Assumptions
SMASH is a frequentist approach to identify tumor sub-
clones through clustering somatic mutation read counts,
while accounting for copy number alterations. We enu-
merate all possible phylogenetic trees that are compatible
with the observed data and quantify the probability of
each phylogenetic tree. We make the following assump-
tions when enumerating phylogenic trees.

(1) Primary tumors arise from a founder clone or have
unicellular origin.

(2) Loci harboring SPMs associated with ITH have
homozygous reference alleles in normal cells and a
mixture of reference and alternate alleles in tumor.

(3) Each SPM event occurs only once on a single allele
and a locus will not undergo more than one point
mutation or revert back to its original base.

(4) At most two descendant subclones can evolve from
an ancestral subclone.

(5) SCNAs are clonal events.

Assumption (1) follows from the clonal evolution theory
of tumor growth [22]. Assumption (2) is automatically sat-
isfied because genetic loci with germline mutations are

filtered out during somatic mutation calling. Assumption
(3) is referred to as the infinite site assumption [23, 24],
which is reasonable because the number of mutated loci is
very small relative to the size of the genome. This assump-
tion implies that tumor evolution is consistent with a
“perfect and persistent phylogeny” [9, 11] such that each
subclone has only one parental subclone and all mutations
of the parental subclone. Assumption (4) is reasonable
when we consider tumor evolution in a refined time scale,
and it is helpful to reduce the number of enumerated phy-
logenies. Assumption (5) is the only restrictive one, and
it is a crucial assumption made by ASCAT [5], which is
the method we use to infer copy numbers. Assumption (5)
is also adopted by PyClone [11] and EXPANDS [18], the
two methods that have been used in previous pan-cancer
studies [1, 12]. To the best of our knowledge, Canopy [10]
is the only method that can infer both subclonal SCNA
and subclonal point mutations. However, Canopy carries
a high computational cost and emphasizes multiple sam-
ple design, which makes it unsuitable for our study. By
assuming clonal SCNA, all subclonal SPMs occur after the
SCNA event and thus have a multiplicity of one. On the
other hand, clonal SPMs can occur before or after SCNA
and thus can have varying multiplicities, depending on
the copy number state. We obtain SCNA-related infor-
mation, including tumor purity, ploidy, and allele-specific
copy numbers per SPM through ASCAT [5].

Notation and framework
LetT and T̃ denote the failure time and the correspond-

ing censoring time, respectively. Define X = min(T , T̃)

and � = I(T ≤ T̃). Let Z = (
Z1, . . . ,Zp

)T represent
a p-vector of baseline covariates. Let l = 1, . . . , L index
each locus harboring a SPM after mutation calling and
filtering. The lth SPM is characterized by a pair of alter-
nate and reference read counts derived from the tumor
sample denoted by Al and Rl, respectively. The summa-
tion Tl = Al + Rl is referred to as the total read depth.
The corresponding clonal copy number state is denoted
by (Cl1,Cl2), where Cl1 ≤ Cl2. For a given subject, the
observed clinical data consist of (X,�,Z), and genomic
data are represented by (Al,Rl,Cl1,Cl2) for l = 1, . . . , L.
Assume that the tumor sample of interest has S sub-

clones. These S subclones relate to each other through a
phylogenic tree describing the order in which subclones
emerged. In Fig. 2, we enumerated all phylogenic trees
for one to five subclones that capture the possible linear
and branching evolutions between subclones. A possible
allocation of somatic mutations across the S sub-
clones can be described by a vector of length S: qTu =
(qu1, . . . , quS) such that qus is an indicator of whether this
mutation occurs in the sth subclone. Each phylogenic tree
that we enumerate in this paper is compatible with a set of
allocations. Let k index each enumerated phylogenic tree,
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Fig. 2 Subclone configurations. Examples of subclone configurations with subclone numbers ranging from 1 to 5. Nodes represent subclones, and
vertices link the parental and descendant subclones

and letQk denote a set of allocations of the kth phylogenic
tree. For both simulation and real data analysis, we enu-
merated all phylogenic trees with one to five subclones.
In simulation, given a phylogenic tree, each SPM was
randomly assigned an allocation with equal probability.
To illustrate, a clonal sample (S = 1) would have Q1 =

(q11), where q11 = 1 for all SPMs because each SPM is
present in all cancer cells. For a sample with two sub-
clones (S = 2), only one possible tree A → B exists with
a founding subclone A and a new subclone B. Then, the
set of allocations are Q2 = (

q21, q22
)
, where qT21 = (1, 1)

and qT22 = (0, 1). The SPMs with allocation q21 arise
in the founding subclone A, and the SPMs with alloca-
tion q22 arise in the new subclone B. For S = 3, we
need to distinguish between linear and branching trees.
Let qT31 = (1, 1, 1), qT32 = (0, 1, 1), qT33 = (0, 0, 1), and
qT34 = (0, 1, 0). The linear tree is characterized by Q3 =(
q31, q32, q33

)
, whereas a branching tree is characterized

by Q4 = (
q31, q33, q34

)
. (See Additional file 1: Section C.2

for all enumerated configurations based on the list of
subclonal assumptions.)
For a clonal SPM located in a region of SCNA, we need

to infer its multiplicity, or the number of mutant
alleles. If the SPM occurs before the SCNA, its multiplic-
ity is one of the two allele-specific copy numbers of the

SCNA; otherwise, its multiplicity is 1. In contrast, based
on our assumption that SCNAs are clonal, the multiplicity
of a subclonal SPM is always 1. Let Ml be the set of pos-
sible multiplicities given the copy number states. Then,
Ml = {m|m > 0 andm ∈ unique (1,Cl1,Cl2)}, where
unique(Z) denotes the unique elements of Z.
With S subclones, let ηs denote the proportion of cells

in a tumor sample that belong to subclone s, and let
ηT = (η1, . . . , ηS). Tumor samples derived from bulk
tissues are practically never 100% pure, and hence, a
proportion of normal cells will contaminate the sam-
ple. Let φ = ∑S

s=1 ηs denote a tumor sample’s purity.
In addition, write ϑs = ηs/φ and ϑT = (ϑ1, . . . ,ϑS).
The vector ϑ can be interpreted as the set of subclone
proportions in the cancer cell population. To character-
ize ITH within a tumor sample, we utilize the notion
of “entropy” or Shannon Index characterized by the
expression

E = −
S∑

s=1
ϑs log(ϑs),

which corrects for the normal contamination (φ) because
normal cells in the tumor do not contribute to sub-
clonal heterogeneity. This characterization states that
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more subclones generally lead to a greater degree of ITH
and allows for two samples composed of an equal number
of subclones to have different degrees of ITH. In addition,
the largest possible entropy given S subclones is bounded
above by log(S), corresponding to equal proportions of
each subclone (ϑs = 1/S).

Example: allocation, multiplicity, and cellular prevalence
Here, we give a concrete example to explain the notation:
allocation, multiplicity, and cellular prevalence. Suppose
that a tumor sample is composed of three subclones form-
ing a branching tree: B ← A → C. The respective
subclone proportions are denoted by ηA, ηB, and ηC . Thus,
the sample purity is φ ≡ ηA + ηB + ηC , and possible
cellular prevalences are (ηA + ηB + ηC)/φ = 1, ηB/φ,
and ηC/φ. Q4 = (q31, q33, q34) characterizes three allo-
cations to consider: q31 for clonal mutations; and q33 and
q34 for subclonal mutations that only occur in subclones
B and C, respectively. Suppose that each SPM has one of
three copy number states with allele-specific copy num-
bers being (0, 2), (1, 1), or (1, 3). For SPMs with copy
number state (0, 2), clonal mutations have multiplicity of
2 if they occur before SCNA and multiplicity of 1 if they
occur after SCNA. For SPMs with state (1, 1), all muta-
tions (clonal or subclonal) have multiplicity of 1. For SPMs
with state (1, 3), clonal mutations have multiplicity of 1 or
3 if they occur before the SCNA and multiplicity of 1 if
they occur after the SCNA. All combinations of allocation
and multiplicity are listed in Table 1.

Modeling SPM read counts
Recall thatAl and Tl denote the alternative read depth and
total read depth of the lth SPM. For a pre-specified tree
structure and copy number estimates, we model Al given
Tl by a mixture of binomial distributions across possible

Table 1 Enumerating combinations of allocation and multiplicity
for each copy number state

SPM’s CN state Allocation Multiplicity Cellular prevalence

(0,2) q31 1 1

q31 2 1

q32 1 ηB/φ

q33 1 ηC/φ

(1,1) q31 1 1

q32 1 ηB/φ

q33 1 ηC/φ

(1,3) q31 1 1

q31 3 1

q32 1 ηB/φ

q33 1 ηC/φ

allocations and multiplicities. Next, we provide details to
specify such mixture distributions.
We assume that copy number states and tumor purity

were estimated by another algorithm, e.g., ASCAT. For the
lth SPM, denote its copy number state (i.e., allele-specific
copy numbers) by Cl = (Cl1,Cl2). Suppose that there are
altogetherW unique copy number states: c1, ..., cW . Given
the wth copy number state, assume that there are Dw
possible combinations of allocation and multiplicity, and
denote the dth combination by ewd = (qd,mwd), where qd
denotes the allocation that depends on the tree structure
but not copy number states, and mwd denote the multi-
plicity that depends on copy number states. We also allow
the estimation of proportion of variants unexplained by
combinations of U l and Ml following a discrete uniform
distribution with proportion parameter denoted ε. The
mixture proportions of the Dw combinations is denoted
by πw = (πw1, . . . ,πwDw)T. Let � = (ε,ϑ , {πw}).
Let U l and Ml be the random variables for the latent

allocation and multiplicity for the lth SPM, respectively,
and let El = (U l,Ml). Write Gl = (Tl,Cl,φ,�). For a
single SPM,

P (Al|Gl,Cl = cw)

= ε
1
Tl

+ (1 − ε)

Dw∑

d=1
P (El = ewd,Al|Gl,Cl = cw)

= ε
1
Tl

+ (1 − ε)

Dw∑

d=1
P (El = ewd|Gl,Cl = cw)

P(Al|El = ewd,Gl,Cl = cw)

= ε
1
Tl

+ (1 − ε)

Dw∑

d=1
πwdP(Al|El = ewd,Gl,Cl = cw),

where

Al|El = ewd,Gl ∼ Binomial(Tl, pwd),

and pwd = mwdφϑTqd
(Cl1+Cl2)φ+2(1−φ)

. In the notation above,
ϑTqd = ∑S

s=1 ϑsqds is the cellular prevalence of a SPM
among the tumor’s cancer cells.
Given tumor purity and copy number states, in addition

to a particular phylogenetic tree, the likelihood for L SPMs
is proportional to

W∏

w=1

∏

l:Cl=cw

P(Al|Gl,Cl = cw).

Maximization of this likelihood is accomplished by intro-
ducing the pair of latent variables (U l,Ml), writing
the complete-data likelihood, and using an expectation-
maximization algorithm, where each iteration of the
M-step for πw has closed form updating equations,
while ϑ is updated with the quasi-Newton Raph-
son method Broyden-Fletcher-Goldfarb-Shanno on the



Little et al. GenomeMedicine           (2019) 11:37 Page 6 of 15

expected complete-data log-likelihood conditional on the
observed data. In the presence of local optima for this
observed mixture likelihood, multiple random initializa-
tions of ϑ are used, while we initialize πw by uniform
distribution and ε = 10−3.
Inferring the optimal configuration is accomplished

using the optimal BIC. Suppose that after running
SMASH on L SPMs with every enumerated phylogenetic
configuration and applying multiple runs of parameter
initialization, we arrive at B models. For model b =
1, . . . ,B, let Lb, mb, BICb, Sb, and Eb denote the log like-
lihood, model size, BIC, number of subclones, and esti-
mated entropy, respectively, evaluated at the maximum
likelihood estimate ̂�b = (̂εb,̂ϑb, π̂b). Define BICb =
2Lb − mb log(L); models with larger BIC are preferable
to models with smaller BIC. We define the posterior
probability of model b by

pb = exp (0.5BICb)
∑B

b′=1 exp
(
0.5BICb′

)

because BIC provides a large-sample approximation to the
log posterior probability associated with the approximat-
ing model [25, 26]. Let p∗ = maxb=1,...,B(pb).
It is possible for two or more configurations to have the

same BIC. Therefore, we explore two possible definitions
of entropy. The first one is a simple average of entropies
across all “optimal BIC-decided” models, referred to as
“optimally inferred” entropy. The second one is a weighted
average of entropies across all models, referred to as
“weighted” entropy. These two entropy estimates are

Eo =
B∑

b=1

I (pb = p∗)pb
∑B

b′=1 I (pb′ = p∗)pb′
Eb

and

Ew =
B∑

b=1

pb
∑B

b′=1 pb′
Eb.

The summation incorporated into Eo accounts for the
situationwhen various configurations or subclone propor-
tions equally fit the observed data.
SMASH is available as an R package integrating Rcpp

[27] and RcppArmadillo [28]. The software and source
code can be downloaded at
https://github.com/Sun-lab/SMASH.

Results
Brief overview of SMASH, PyClone, and PhyloWGS
We compared the performance of SMASH versus two
popular and representative methods: PyClone [11] and
PhyloWGS [9]. PyClone clusters somatic mutations based

on their VAFs. From PyClone output (see Additional file 1:
Table S1 for an example), one can estimate the number
of subclones by the number of mutation clusters. How-
ever, to estimate subclone proportions from VAF clusters,
we need to know the phylogenetic tree structure (see
Additional file 1: Section C.1 for more details). Since
PyClone does not estimate a phylogenetic tree, we cannot
use PyClone to estimate subclone proportions and thus
cannot estimate entropy that is a function of subclone
proportions. Unlike PyClone, PhyloWGS was designed to
estimate the underlying phylogenetic tree.
SMASH is a frequentist method to infer ITH using

a likelihood-based framework. SMASH and PyClone
assume each subclone shares the same SCNA profile and
that SCNAs and tumor purity have been estimated from
an existing algorithm, e.g., ASCAT [5] or ABSOLUTE
[29]. Unlike PyClone and PhyloWGS, SMASH explic-
itly enumerates all possible phylogenetic trees (up to k
subclones, with default value of k = 5) and quanti-
fies the likelihood of each tree configuration (refer to
the Additional file 1: Section C.2). For each tree config-
uration, the model parameters are estimated by an EM
algorithm that accounts for unobserved somatic muta-
tion allocation across subclones and multiplicity (i.e.,
copy number of the mutated allele). We can select the
optimal phylogenic tree configurations based on the
Bayesian information criterion (BIC) and then calculate
entropy based on the optimal configuration. Alterna-
tively, to account for the uncertainty of ITH estimation,
we can take a weighted summation of ITH entropies,
where the weights are the probabilities of different
configurations.

Simulation
To directly compare PyClone and SMASH, we con-
structed an indicator of high ITH, as done in Morris et al.
[12], denoted by H, such that H = 1 when the number of
subclones is greater than κ , a predefined integer threshold,
and H = 0 otherwise. For SMASH, the number of sub-
clones is estimated using the tree configuration with the
best BIC. Because PhyloWGS provides estimates of sub-
clone proportions, we can compare the performance of
SMASH and PhyloWGS using both entropy and H.

Setup
To simulate ITH variables, first enumerate the list of tree
configurations from one to five subclones, sample the
number of subclones denoted S. Then, sample among
trees with S subclones with equal probability.

1 Generate subclone proportions for S subclones,
denoted as η = (η1, . . . , ηS)T. Simulate
U = (U1, . . . ,US)T, where Us is simulated from a
uniform distribution defined on interval (−3, 1).

https://github.com/Sun-lab/SMASH


Little et al. GenomeMedicine           (2019) 11:37 Page 7 of 15

Then calculate ηs = exp(Us)/[ 1 + ∑S
s′=1 exp(Us′)].

Tumor purity is φ = ∑S
s=1 ηs, and the subclone

proportion for the sth subclone is ϑs = ηs/φ.
2 Calculate entropy E = − ∑S

s=1 ϑs log(ϑs), as well as
H = I(S > κ), where I is an indicator function and
κ = 3.

These steps are repeated until the minimum under-
lying subclone proportion is greater than 0.05, and the
minimum difference between the cellular prevalences of
two subclones is greater than 0.05 to ensure clusters are
separable.
To simulate sequence read counts for the lth SPM given

a phylogenic tree configuration, we simulated read depth
Tl from a negative binomial distribution, sampled copy
number state, and then sampled SPM multiplicity and
allocation with equal probability. Finally, we generated the
number of alternative reads from a binomial distribution.
We randomly simulated 5 covariates Z = (Z1, . . . ,Z5)T

to resemble sex, age, and tumor stage indicators. see
Additional file 1: Section A.1 for details.
We simulated the first set of survival times conditional

on linear terms Z and E (entropy) and the second set of
survival times conditional on linear terms Z and H, both
from the Cox proportional hazards model with a constant
baseline hazard:

λ(t|E,Z) = λ0(t) exp
(
βEE + γ T

ZZ
)
, or

λ(t|H ,Z) = λ0(t) exp
(
βHH + γ T

ZZ
)

where λ0(t) = λ0 = exp(−7.0), βH = βE = 0.5, and γ T
Z =

(0.55, 0.15, 0.8, 1.7, 2.7). Censoring times were simulated
from the continuous uniform distribution T̃ ∼ U(0, τ),
and the value of τ was tuned to generate the desired
proportion of censored subjects.
We considered 18 simulation setups, with three censor-

ing rates (20%, 50%, and 70%), three sequencing depths
from the negative binomial (parameter values μ = 100,
500, and 1000 and δ = 2), and two samples sizes (N= 400
and 800).

Benchmarking
For each ITH method, we applied an extra filtering cri-
terion that each subclone includes at least two muta-
tions that are not part of its parental subclone. PyClone
output contains the cellular prevalence for all SPMs,
and the SPMs assigned to the same cluster have the
same cellular prevalence. Following Morris et al. [12], we
removed clusters with only one SPM. Additional file 1:
Table S1 provides an example of pre-filtered PyClone
output with multiple clusters composed of one SPM.
Output of SMASH includes the ITH estimates for each
tree configuration (i.e., number of subclones, subclone
proportions, and mutations belonging to each subclone)
(refer to Additional file 1: Table S2 for a pre-filtered

example). We removed configurations where at least one
subclone has only one SPM. Similarly, in PhyloWGS, sam-
pled trees with at least one subclone with only one SPM
were excluded.
We used the simulated data to compare the results from

five methods: PyClone, PhyloWGS using the optimal tree
configuration, SMASH using the configuration with best
BIC or weighted summation of entropy/number of sub-
clones, and the ideal situation where true values of entropy
or number of subclones are given. Each of the methods
was run in two model setups, with the ITH variable being
entropy E or indicator of high number of subclones H. In
other words, when the true model contains E, we com-
pared the models using E or H, as shown in Fig. 3. Results
for when the true model contains H as well as the results
for the standard errors of the parameter estimates and
coverage probabilities under both models are presented in
Additional file 1: Section A.3.
Regardless of the ITH variable used, the bias of param-

eter estimates remains similar for sample sizes of 400 or
800, and as expected, power increases with sample size
(Fig. 3). Given the sample size, bias decreases and power
increases as sequence depth increases or censoring rate
decreases. Comparing the two ITH metrics, E or H, the
entropy metric has lower bias and higher power. The dif-
ference in performance between these two ITH metrics
decreases as sequencing depth increases.
As mentioned, PyClone’s result does not allow us to cal-

culate entropy. Therefore, we compared the performance
of PyClone, PhyloWGS, and SMASH using the indica-
tor metric H. At an average sequencing depth of 100×,
SMASH has similar or slightly better performance than
PyClone or PhyloWGS, in terms of bias and power. At
average depths of 500× or 1000×, SMASH shows much
better performance than both PyClone and PhyloWGS
(Fig. 3). SMASH demonstrates better performance than
PyClone or PhyloWGS when inferring the number of
subclones (Fig. 4 and Additional file 1: Figure S3). We
calculated the Spearman correlation between the esti-
mated number of subclones and the true number of sub-
clones across 800 samples for each of 250 replicates. The
median Spearman correlations from SMASH are consis-
tently higher than those from PyClone and PhyloWGS,
except for the comparison with PhyloWGS at read depth
100, in which case PhyloWGS performs slightly better. As
read depth increases, the advantage of SMASH against
other methods becomes more apparent, which is consis-
tent with their relative performance in association studies
(Fig. 3). Comparing PhyloWGS and PyClone, PhyloWGS
performs better in terms of capturing the relative order of
subclone number, reflected by the Spearman correlation
comparison (Fig. 4), but PyClone performs better in terms
of estimating the number of subclones (Additional file 1:
Figure S3).
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Fig. 3 ITH simulation results when the true model contains E. The x-axis denotes the mean sequencing depth. The y-axis denotes the bias of
parameter estimates of regression coefficients (βE or βH) and power at α = 0.05. Dotted lines denote the bias/power when ITH is known and serve
as a benchmark against the estimated ITH metric. H is estimated by PhyloWGS (PhyloWGS(H)), PyClone (PyClone(H)), and SMASH (SMASH(H)). E is
estimated by PhyloWGS’s optimal tree (PhyloWGS(oE)), SMASH’s optimal entropy (SMASH(oE)), and SMASH’s weighted entropy (SMASH(wE))

Fig. 4 ITH simulation, inferring the optimal number of subclones and entropy. The left plot pertains to Spearman correlations between the true and
inferred number of subclones across simulated replicates as a function of sequencing depth and ITH method. The number of subclones are
estimated by PyClone (PyClone), PhyloWGS (PhyloWGS), and SMASH using optimal BIC (SMASH(oS)). The right plot pertains to Spearman
correlations between the true and estimated entropy using the optimal tree from PhyloWGS (PhyloWGS), optimally inferred entropy from SMASH
(SMASH(oE)), and weighted entropy from SMASH (SMASH(wE))
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When we simulated data using entropy as the ITH
metric, as expected, models fit using entropy had higher
power and lower bias (Fig. 3). However, even when we
simulated the data usingH, the results using entropy were
still better when read depth is low. When read depth is
high (e.g., 500× or 1000×), using the estimate of H as
the ITH variable gives better results, although the dif-
ference between using entropy and H is often not large
(Additional file 1: Figure S2).
Another important comparison is whether weighted

entropy, which incorporates uncertainty across all fit-
ted configurations, has better performance than entropy
from optimal configurations. Weighted entropy does pro-
vide more accurate estimation of true entropy than the
optimal entropy (Fig. 4). However, in terms of associa-
tion estimation, the two approaches have similar perfor-
mance (Fig. 3). Optimal entropy tends to underestimate
the association, while weighted entropy tends to overes-
timate the association, although the biases are small. In
terms of power, both entropies appear to perform equally
well. Both weighted and optimal entropies from SMASH
are more accurate estimates of the true entropy than the
estimate from PhyloWGS’s optimal tree.
In our simulation studies, the vast majority of computa-

tional time was spent on ITH inference. On average with
100 mutations, SMASH ran in less than 5 min for ITH
inference. In contrast, PyClone and PhyloWGS had run-
times ranging from just under 10 min to over 90 min.
Additional file 1: Figure S4 presents a summary of compu-
tational run-time. Among the three methods with default
settings, the order of computational time is SMASH <

PyClone < PhyloWGS.

Subclonal SCNA simulation
The previous simulation setup assumed SCNAs are

clonal. In Additional file 1: Section A.6, we describe
the simulation details to allow for subclonal SCNAs. In
this analysis, we treated SCNAs as clonal and calculated
the copy number by rounding the weighted average of
copy numbers across subclones to the nearest integer. As
described in Additional file 1: Section A.5, we simulated
copy number scenarios 1 and 2 to mimic two patterns of
SCNA abundance in real data.
When the true model contains E, we compared the

results of 6 methods, dichotomized indicatorH estimated
from Pyclone, PhyloWGS, and SMASH, and entropy
estimated from PhyloWGS, SMASH with optimal config-
uration or weighted average (Additional file 1: Figure S8).
All three methods using entropy E have similar perfor-
mances and perform much better than the three methods
using the dichotomized indicator H. Coverage probability
was maintained at 95% for E estimates but not for H esti-
mates. There were no clear differences in performance
between both copy number scenarios. When the true

model contains H, magnitudes of association bias using
E estimates are generally less than those of H estimates
(Additional file 1: Figure S9). Therefore, the overall results
were consistent with the earlier simulation setup without
subclonal SCNAs: using entropy is preferred even if the
true model is based on H, and entropy from SMASH and
PhyloWGS have similar performance at 100× read depth.

Application
Preprocessing pipeline
We downloaded SPM calls by MuTect2 from NCI’s
Genomic Database Commons (GDC) [21, 30]. To derive
SCNA data, we processed controlled-access SNP Array
6.0 CEL files corresponding to primary tumors, along with
their paired blood-derived normal or solid tissue normal.
Specifically, we applied a pipeline involving Birdseed, Pen-
nCNV [31], and ASCAT v2.4 [5] to obtain estimates of
tumor purity, ploidy, and inferred copy number states.
The complete data workflow is shown in Additional file 1:
Figure S10. We downloaded SPM and SCNA data on 5898
tumor samples from 14 TCGA cancer types (Additional
file 1: Table S3).
Before running PyClone, PhyloWGS, and SMASH, we

applied a set of filters to the SPMdata by retaining the base
substitution SPMs that are located along autosomes and
have at least seven reads supporting the alternative allele.
Also, those SPMS with inferred total copy number of
zero were excluded. Then, we passed the formatted SPM
and SCNA data to PyClone, PhyloWGS, and SMASH for
ITH inference. After running all three ITH methods, we
applied the “at least two mutations per subclone/cluster”
criterion that was used in the simulation.

Somatic mutation landscape varies across cancer types
We first summarized tumor purity, ploidy, and somatic
mutation rate for each tumor type (Fig. 5). The relative
ordering of tumor types by mutation rate is consistent
with the results reported in an earlier study [32]. Those
cancer types with lower mutation rate (e.g., PRAD, LGG,
BRCA, KIRC, GBM, andOV) tend to havemore subclonal
mutations (top panel of Fig. 5). In all cancer types except
OV, more than 50% of somatic mutations are clonal (with
cellular prevalence larger than 99%) (Additional file 1:
Figure S19). Ovarian cancer appeared to be an outlier with
the larger number of subclones. This may be partly due
to batch effects. The ovarian cancer samples used whole
genome amplification (WGA) before DNA sequencing
that may have reduced the quality of DNA samples
[33, 34]. On the other hand, some previous work did show
a high level of ITH in ovarian cancers [35–37]. Blagden
[36] mentioned that the phylogenetic tree of ovarian can-
cer “has a short trunk and many branches, representing
early clonal expansion and high genomic instability.” This
was consistent with our finding that ovarian cancer has
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Fig. 5Mutation rate, purity, ploidy, and proportion of clonal mutation summary: mutation load per megabase within the whole exome and
ASCAT-derived purity and ploidy across 14 cancer types ordered by a median mutation rate. Violin plots in magenta contain nested boxplots with
the median represented by the black box. The top panel shows the distribution of the proportion of inferred clonal mutations across all samples for
each cancer type. The cancer types are bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD),
glioblastoma multiforme (GBM), head/neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), lower-grade glioma (LGG),
liver hepatocellular carcinoma(LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV),
prostate adenocarcinoma (PRAD), skin cutaneous melanoma (SKCM), and stomach adenocarcinoma (STAD)

higher levels of ITH. The ploidy values of most cancer
types tended to cluster around 2 and 4 (genome-wide
duplication). This clustering pattern was less clear for
BRCA, suggesting a greater degree of SCNA in BRCA.
We examined the cellular prevalence of 49 genes that

are among the top 10 mutated genes for at least one of the
14 cancer types (Additional file 1: Figure S21). Similar to
our approach to calculate weighted entropy (refer to the
“Methods” section), each mutation’s cellular prevalence
was calculated as the weighted average across the sam-
ple’s ITH configurations. A gene’s cellular prevalence was
calculated as the average cellular prevalence of all muta-
tions on that gene across all samples. TP53 mutations
have average cellular prevalences near 1.0 for all cancer
types except KIRC, which was the same observation made
by Morris et al. [12]. IDH1 mutations were subclonal in
GBM and clonal in LGG and SKCM. VHL was uniquely
called in KIRC, with a cellular prevalence of 1.0. Except for
TP53, the remaining 48 genes have relatively low cellular
frequency in OV. This was consistent with the results of
an earlier study of 31 ovarian tumor samples from six
patients, and they found TP53 was the only gene mutated

in all samples, and other known tumor driver genes may
be mutated in some but not all samples of a patient [38].
Hierarchical clustering was performed on the 49 genes
and 14 cancer types. At least two clusters of cancer types
and at least two clusters of genes were apparent. LGG,
KIRC, and PRAD form one cluster of cancer types without
many mutations on these 49 genes.
The number of subclones by tumor type and ITH

method are summarized in Additional file 1: Figure S14.
Across all cancers, SMASH consistently identified more
subclones than PyClone. Between SMASH and Phy-
loWGS, the resulting number of subclones was very sim-
ilar for all tumor types except for OV. PyClone was run
on two independent Markov chains on each tumor sam-
ple using its default setup with 20,000 MCMC samples
drawn, 1000 burnin and retaining every tenth sample
with all default prior hyperparameters. PhyloWGS also
was run twice but with default arguments. There were
slight inconsistencies from the results of the two runs
(Additional file 1: Tables S4 and S5). In the next section on
association analysis, we used the first run of results from
PyClone and PhyloWGS.
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Baseline covariates and variable selection
The common set of baseline covariates included age at
diagnosis, gender, pathological tumor stage, tumor muta-
tion burden (total number of point mutations, TMB),
and genome-wide SCNA burden. Specifically, we define
genome-wide SCNA burden as

∑

k

Lk∑
k′ Lk′

[∣
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∣CA

k − 1
∣
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∣ + ∣

∣CB
k − 1

∣
∣
]
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where k indexes genome segments, Lk is the length of the
kth segment, and (CA

k ,C
B
k ) are the segmental clonal copy

numbers of the minor and major alleles, respectively. The
SCNA burden can be interpreted as the distance between
the normal and cancer genomes, in terms of copy num-
ber. Both TMB and SCNA burden were binned into three
equal groups using the 33rd and 66th quantiles as cutoffs.
We investigated possible non-linear forms of entropy

(e.g., dichotomized entropy, polynomial transformation,
or log transformation) and the validity of the propor-
tional hazard assumption using R functions fcov() and
prop() from R package goftte [39, 40]. Our analy-
sis suggested that the simple linear form of entropy is
appropriate. Since our simulation studies showed that the
weighted entropy provides better estimates of the true
entropy than the optimal entropy (Fig. 4), we chose to
conduct the following analysis using weighted entropy.
In addition to baseline covariates, additional covariates

to include in each tumor type’s full model were care-
fully selected. The top four frequently mutated genes were
included. Other tumor type-specific covariates were his-
tological subtype for BLCA (papillary vs. non-papillary),
PAM50 subtype for BRCA [41] (Basal, Her2, LumA, or
LumB, and the normal-like subtype was removed due to
its small sample size), tumor grade for KIRC, IDH/CNA
status for LGG (IDH wild-type, IDH mutant without
chr1p and 19q co-deletion, IDH mutant with chr1p and
19q co-deletion), and Gleason score and PSA level for
PRAD.
We also considered the pairwise interactions of all base-

line covariates with weighted entropy. The final model
for each tumor type was selected based on step-wise
model fitting and assessed with Akaike information cri-
terion (AIC). When the final model contained pairwise
interactions involving entropy, then the interactions were
retained if their minimum p value was less than or equal
to 0.02. Otherwise, the interaction was removed, and our
variable selection was re-run without the interaction term.
When the final model excluded entropy, it was added back
in the final step.

TMB and ITH are associated with survival time inmultiple
cancer types
In the PRAD cohort, because very few deaths were
observed, we only analyzed progression-free survival

(PFS). For all other cancer types, we studied both overall
survival (OS) and PFS. We used a p value cutoff of 0.05 to
define statistical significance.
For OS, entropy or its interaction with other variables

were statistically significant in the final model for 6 of 14
cancer types: BRCA, COAD, HNSC, KIRC, LIHC, LUSC
(Fig. 6). Total mutation burden (TMB) was statistically sig-
nificant for 7 cancer types: BLCA, COAD, GBM, LGG,
LUAD, OV, and STAD (Additional file 1: Figure S17).
SCNA burden (SCNAB) was statistically significant for
LGG and SKCM (Additional file 1: Table S6–S19). Signifi-
cant associations between gene-level mutation status and
OS include TP53 for BLCA, GBM, HNSC, LIHC, LUSC
and STAD, TTN for GBM and LUSC, and MUC16 for
SKCM (Additional file 1: Table S6–S19).
In addition to these somatic mutation-based predic-

tors, age at diagnosis was statistically significant for all
tumor types except LIHC and LUAD. Sex was statisti-
cally significant for GBM, HNSC, and LIHC. All GBM
tumors are stage IV. Among all other cancer types, tumor
stage was associated with overall survival except for LGG
and OV. Other tumor type-specific covariates associated
with OS include PAM50 for BRCA, tumor grade for
KIRC, and IDH/CNV status for LGG (Additional file 1:
Table S6–S19).
The model fits for PFS were similar to the ones for

OS for most cancer types. For GBM, KIRC, LUSC, OV,
SKCM, and STAD, the final model for PFS was the same
as the final model for OS survival. Covariates present in
one model but not in the other model were highlighted in
Additional file 1: Table S6–S19.
We also reported the results when replacing SMASH’s

weighted entropy (E(S)) with PhyloWGS’s entropy (E(W)),
the dichotomized number of subclones from SMASH
(H(S)), PyClone (H(P)), and PhyloWGS (H(W)) (Fig. 6 and
Additional file 1: Table S6–S19). H(S), H(P), and H(W)
were constructed as indicators of 3 or more subclones.
This cutoff was chosen so that there were enough samples
with non-censored survival time in the high ITH group.
Overall, the associations we detected by H(S), H(P), or
H(W) were consistent with the results by E(S) and E(W),
and the p values by E(S) tended to be smaller. An exception
was in STAD, where H(S) identified significant associ-
ations for both OS and PFS that were missed by H(P),
H(W), E(W), and E(S).
Our results bring new insights that have not been

reported by previous studies [1, 12]. Andor et al. [1]
studied 1165 samples of 12 cancer types. They found
significant association between ITH (the number of sub-
clones) and survival time in only one cancer type: gliomas
(combining two types of cancer from LGG and GBM).
Morris et al. [12] studied 3300 tumor samples in 9 can-
cer types. They used dichotomized number of subclones
as ITH measurement (# of subclone >4 for most cancer
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Fig. 6 Comparing p values of all the ITH-related variables across tumor types. For each cancer type, we assessed the association between ITH and
survival time by comparing the final model to the reduced model obtained by excluding all ITH-related variables. The horizontal line indicates the p
value cutoff 0.05. H(W), H(P), H(S) denote the indicator for three or more subclones from PhyloWGS, PyClone, and SMASH, respectively. E(W) and E(S)
denote entropy from PhyloWGS and SMASH, respectively

types), which is very unstable because few samples had
more than 4 subclones. They found significant associa-
tions between ITH and survival time in 5 out of 9 cancer
types: BRCA, HNSC, KIRC, LGG, and PRAD. They also
added mutation burden into the Cox model for these five
cancer types and found mutation burden was not sig-
nificant in all five cancer types. We have 5898 TCGA
tumor samples from 14 cancer types. We considered both
dichotomized number of subclones and entropy as mea-
surements of ITH. While Morris et al. did not find muta-
tion burden to be informative for prognosis, we found it is
significantly associated with survival time (or marginally
significant) in 7 of the 14 cancer types. What is truly new
in our findings is that we consider both ITHmeasurement
and its interaction with other covariates, such as mutation
burden, tumor stage, and mutation status of a particular
gene. We found a considerable amount of heterogeneity
for the results across cancer types.

Discussion
Quantification of ITH
We considered two ITHmetrics: entropy and indicator for
high number of subclones. When we simulated survival
time given entropy, as expected, using entropy instead of
the indicator as the ITH metric led to better performance
in association analysis (Fig. 3). Interestingly, when we sim-
ulated survival time given the indicator, the model with
entropy has either higher power (when read depth is 100)
or comparable power (when read depth is 500 or 1000)
(Additional file 1: Figure S2). In real data analysis, using

entropy as the ITH metric also led to more discoveries.
Therefore, we recommend using entropy as an ITHmetric
in association studies. One reason for entropy delivering
better results is that, as a continuous variable, entropy is
more robust to noise in ITH inference. Specifically, the
addition or deletion of a subclone with small cellular pro-
portion may change entropy slightly but may change the
indicator variable from 0 to 1. In addition, some informa-
tion about the degree of ITH is lost when dichotomizing
the number of subclones. Of course, an intermediate
choice is to use the number of subclones. As shown in
Additional file 1: Figure S13, entropy was highly associ-
ated with the number of subclones and provides a more
refined quantification for samples with the same number
of subclones.
Another question that we sought to answer was whether

it was beneficial to incorporate the uncertainty of ITH
inference in association analysis. Towards this end, we
studied two versions of entropy from SMASH, the optimal
entropy derived from the mean entropy of the tree con-
figurations with optimal BIC versus the weighted entropy
across all estimated tree configurations. The weighted
entropy has slightly higher correlation with the true
entropy than with the optimal entropy, although these two
quantities have similar power to detect associations.

Study design for future ITH studies
Our simulation results suggested that when using entropy
as the ITH metric, more power was gained by increas-
ing the sample size from 400 to 800 than by increasing
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the read depth from 100 to 500 or even 1000 (Fig. 3,
Additional file 1: Figure S2). In contrast, when using the
indicator H as an ITH metric, increasing read depth
can also bring some relatively large power gains (Fig. 3,
Additional file 1: Figure S2). One issue that warrants
future study is the benefit of having multiple tumor sam-
ples per patient.
ITH measurement may be affected by somatic muta-

tion calling accuracy. A previous study [42] showed that
the sensitivity of somatic mutation calling is around
0.8–0.9, and the number of false positive mutation calls is
around 30 mutations for the whole exome using mutation
callers such as Strelka or Mutect. We can further reduce
the number of false positives by taking the intersection of
mutation calls from multiple callers, with the trade off to
reduce sensitivity of mutation calls. Our method is robust
to low sensitivity of mutation calls because we use cel-
lular frequency of subclones to estimate entropy, and if,
for example, 6 of 10 mutations of a subclone are called,
we can still use these 6 mutations to estimate subclone
cellular frequency. Therefore, if one suspects a high pro-
portion of false positive mutation calls, one strategy is to
restrict the analysis to the mutations called by more than
one caller.

Association between survival time and ITH or TMB
In most cancer types, when TMB is included in the final
model, it is negatively associated with hazard, and thus
higher mutation burden leads to longer survival time
(Additional file 1: Figure S18). This may be explained by
the observation that tumors with higher TMB are more
likely recognized and attacked by the immune system [43].
However, higher TMB is associated with worse survival
time in LGG.
TMB is positively associated with entropy measurement

of ITH, although the correlation is not strong enough to
create any concerns with co-linearity when using both
variables in amodel (Additional file 1: Figure S16).We also
observed interactions between TMB and ITH for both
OS and PFS in COAD and LUSC. In both cases, associa-
tion between survival time and entropy is not significant
when TMB is low. However, higher entropy is associated
with worse survival time when TMB is high. In LUSC,
we also observed interaction between entropy and TP53
mutation. When TP53 is mutated, higher entropy is asso-
ciated with longer survival time for both OS and PFS
(Additional file 1: Figure S20). These results suggest that
the effect of ITH on survival time may depend on other
factors.

Limitations
Our analyses have some limitations. One limitation is
the assumption of clonal SCNA. Employing this assump-
tion allows us to use copy number calls from mature and

widely used methods such as ASCAT or ABSOLUTE and
to maintain high computational efficiency. However, this
assumption also risks classifying SPMs in subclonal SCNA
regions as SPMs from a new subclone. This risk may not
bias the entropy estimate because a new subclone with
subclonal SCNA is captured by SPMs. As shown in two
simulation settings with subclonal copy number, SMASH
has similar performance as PhyloWGS’s when there are
high levels of subclonal SCNAs.
Another limitation, shared by all methods for inferring

ITH from SPMs, is that we cannot distinguish two sub-
clones whose somatic mutations have very similar cellular
prevalence. For example, in Fig. 1, themutations from sub-
clones A and B have very similar cellular prevalence and
hence cannot be distinguished. However, this is a limita-
tion of the input data rather than the methodology. This
limitation can be overcome if multiple samples per patient
are available.
The infinite site assumption may be considered too

strong an assumption. One study demonstrated possi-
ble evidence of recurrent mutations in their single-cell
sequencing data [44]. Conceptually, if mutations were
recurrent, somatic mutations from bulk sequencing could
not be utilized for modeling multiplicity and somatic
inheritance among subclones. Therefore, ITH inference
and association analyses could only be conducted with
single-cell sequencing to better infer cellular multiplici-
ties. Though, if only a handful of mutations were recurrent
and at a small fraction of cells, their inferred cellular
prevalence may slightly decrease relative to an identical
non-recurrent mutation, leading to a biased subclone pro-
portion estimate. This entropy estimate could be treated
as being an extra “noisy” estimate. But as long as this
biased estimate correlates with the underlying entropy,
there may still be power to detect the association between
entropy and clinical outcomes.

Conclusions
We have conducted a pan-cancer analysis to study the
associations between somatic mutations and survival time
in 14 cancer types. Several types of somatic mutation
features are included in our analysis, including mutation
burden, copy number alteration burden, mutation sta-
tus of a few frequently mutated genes, and intra-tumor
heterogeneity (ITH) inferred by our method SMASH.
We conclude that using entropy instead of high ITH
indicator as the ITH metric leads to higher power in
association analysis. The effect of ITH may depend on
other somatic mutation features such as mutation bur-
den. Accounting for the uncertainty of ITH inference
has some but limited benefit. To improve the power
for association analysis, it is much more effective to
increase the sample size than generating more reads
per sample.
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