
RESEARCH Open Access

Improved precision of epigenetic clock
estimates across tissues and its implication
for biological ageing
Qian Zhang1, Costanza L. Vallerga1, Rosie M. Walker2, Tian Lin1, Anjali K. Henders1, Grant W. Montgomery1, Ji He3,
Dongsheng Fan3, Javed Fowdar4, Martin Kennedy5, Toni Pitcher6,7, John Pearson5, Glenda Halliday8, John B. Kwok8,
Ian Hickie8, Simon Lewis8, Tim Anderson6,7, Peter A. Silburn9, George D. Mellick4, Sarah E. Harris2,10,
Paul Redmond10, Alison D. Murray11, David J. Porteous2,10, Christopher S. Haley12, Kathryn L. Evans2,
Andrew M. McIntosh2,10,13, Jian Yang1, Jacob Gratten1,9, Riccardo E. Marioni2,10, Naomi R. Wray1,9, Ian J. Deary10,14,
Allan F. McRae1† and Peter M. Visscher1*†

Abstract

Background: DNA methylation changes with age. Chronological age predictors built from DNA methylation are
termed ‘epigenetic clocks’. The deviation of predicted age from the actual age (‘age acceleration residual’, AAR) has
been reported to be associated with death. However, it is currently unclear how a better prediction of
chronological age affects such association.

Methods: In this study, we build multiple predictors based on training DNA methylation samples selected from 13,
661 samples (13,402 from blood and 259 from saliva). We use the Lothian Birth Cohorts of 1921 (LBC1921) and 1936
(LBC1936) to examine whether the association between AAR (from these predictors) and death is affected by (1)
improving prediction accuracy of an age predictor as its training sample size increases (from 335 to 12,710) and (2)
additionally correcting for confounders (i.e., cellular compositions). In addition, we investigated the performance of
our predictor in non-blood tissues.

Results: We found that in principle, a near-perfect age predictor could be developed when the training sample size
is sufficiently large. The association between AAR and mortality attenuates as prediction accuracy increases. AAR
from our best predictor (based on Elastic Net, https://github.com/qzhang314/DNAm-based-age-predictor) exhibits
no association with mortality in both LBC1921 (hazard ratio = 1.08, 95% CI 0.91–1.27) and LBC1936 (hazard ratio =
1.00, 95% CI 0.79–1.28). Predictors based on small sample size are prone to confounding by cellular compositions
relative to those from large sample size. We observed comparable performance of our predictor in non-blood
tissues with a multi-tissue-based predictor.

Conclusions: This study indicates that the epigenetic clock can be improved by increasing the training sample size
and that its association with mortality attenuates with increased prediction of chronological age.
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Background
Ageing is a major risk for diseases and mortality [1, 2].
Chronological age has been widely used as a marker of
ageing due to ease and accuracy of measurement [1].
However, it is not necessarily a good predictor of
biological ageing since individuals with the same
chronological age can vary in health, especially in later
life [3]. Therefore, researchers have attempted to search
for biomarkers of ageing that can predict functional cap-
ability at a later age [4, 5]. In 2013, Hannum et al. and
Horvath built chronological age predictors (termed ‘epi-
genetic clock’) based on DNA methylation [6, 7]. Subse-
quently, a number of other DNA methylation-based
‘clocks’ have been developed [8–11]. These clocks utilize
age acceleration residuals (AAR, defined as the residuals
from regressing predicted age on chronological age) as a
biomarker of ageing[7]. Individuals with positive AAR
are considered to be biologically older than their
chronological age, and vice versa.
A number of studies have identified associations

between AAR and mortality, obesity and other health-re-
lated traits [12–15]. However, a better way of predicting
these health-related traits is developing a predictor with
the target trait as a reference [8, 10, 11, 16]. For example,
a mitotic clock has been built for tracking the proliferation
of cancer [8, 16]. DNAPhenoAge [10] and DNAmGr-
imAge [11] predictors were developed to predict a com-
posite phenotype (composed of chronological age and
clinical markers). Both of these predictors show stronger
associations with lifespan and mortality than Horvath’s
age predictor [7]. By definition, AAR from a perfect
chronological age predictor should be zero. Therefore, no
information on inter-individual variation in biological age
can be identified based on such a predictor [17]. Neverthe-
less, whether we can develop a perfect chronological age
predictor based on DNA methylation is unknown. Besides,
whether the reported associations between AAR and
health-related traits (e.g., mortality) are inflated (e.g., by
potential confounders) and/or affected by the prediction
accuracy of ‘epigenetic clock’ has not been investigated.
In the present study, to investigate whether a

perfect DNA methylation-based age predictor is the-
oretically available, we estimated the proportion of
variance of age that could be explained by DNA
methylation using a mixed linear model. We devel-
oped age predictors based on training sets with
various sample sizes using Elastic Net [18] and Best
Linear Unbiased Prediction (BLUP) [19]. We calcu-
lated AAR based on these age predictors and
examined whether its association with mortality is
affected by the prediction accuracy and potential
confounders. We further investigated the perform-
ance of our predictor in samples from tissues other
than blood.

Methods
Study population
We collected 14 data cohorts with 13,661 samples (13,
402 from blood and 259 from saliva) in the age range of
2 to 104 years measured on the DNA methylation
HumanMethylation450 chips and Illumina EPIC (850 K)
arrays (Table 1). Eight of these cohorts were from the
public domain (GEO database) and six datasets from the
investigators. The six datasets include Lothian Birth Co-
hort (LBC) 1921/1936, Brisbane Systems Genomics
Study (BSGS), Systems Genomic of Parkinson’s Disease
consortium (SGPD), Motor Neuron Disease cohort
(MND), and Generation Scotland (GS). Details of sam-
ples in BSGS and LBC cohorts can be found in Powell et
al. [22] and Deary et al. [20, 21]. GS is a population- and
family-based cohort recruited through the National
Health Service (NHS) Scotland general practitioner re-
search network [24, 25]. The SGPD cohort is from a col-
laborative research project on systems genomics of
Parkinson’s disease. Similarly, the MND cohort is from a
systems genomics study of Motor Neuron Disease in
Chinese subjects (see descriptions in Benyamin et al.
[23]). DNA methylation beta value at each probe was
used for analysis.
After quality control, we obtained a set of 319,607

probes (called the No Pruned set) for each sample (Add-
itional file 1). The effective number of independent
methylation probes was previously reported to be around
200 [30], indicating a dense correlation structure. There-
fore, we generated a pruned probe set (128,405 probes)
(Additional file 1) and compared its performance in age
prediction with that based on No Pruned set. Two cohorts
were identified to be outliers in the principal components
analysis (PCA) using probes from the No Pruned set
(Additional file 1: Figure S1). However, the prediction ac-
curacy in both of these cohorts is not low, and thus, we
kept them in the subsequent analysis (Additional file 1).
Most of the training samples of our age predictors are

from the blood. To test the performance of our age pre-
dictors in non-blood tissues, we downloaded 13 add-
itional cohorts (from GEO database) with samples from
tissues other than the blood (Additional file 2: Table S1).

Estimating the proportion of variance of chronological
age explained by DNA methylation
The GS and SGPD samples were used in estimating the
proportion of variance of chronological age explained by
DNA methylation. Among the 5101 samples in the GS
cohort, a subset of 2586 unrelated individuals, with a
genetic relationship coefficient below 0.05 and with no
shared nuclear family environment, were considered for
the analysis. Meanwhile, we selected 1299 unrelated
(genetic relationship coefficient < 0.05) individuals with
available age information in SGPD. We estimated the
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proportion of variance of age explained when fitting all
probes simultaneously by the restricted maximum likeli-
hood (REML) method implemented in OSCA [31],
which is analogous to estimating heritability from SNP
data [32].

Y ¼ Xuþ e

where Y is an n × 1 vector of phenotype values (here
chronological age) with n being the sample size. X is an
n ×m matrix of standardized DNA methylation mea-
sures of all m probes, u is an m× 1 vector of the joint ef-
fects of all probes on the phenotype, and e is an n × 1
vector of residuals. Both u and e are random effects with
u�N ð0; Iσ2uÞ and e�N ð0; Iσ2eÞ , σ2u and σ2e can be esti-
mated by REML. The proportion of variance of chrono-
logical age explained by all DNA methylation probes is
defined as:

ρ2 ¼ σ2u
σ2u þ σ2e

ρ2 = 0 means that DNA methylation is not associated
with phenotypic differences between individuals; ρ2 = 1
means all the variation in the phenotype can be

explained by the joint effects of DNA methylation from
all probes.

Building age predictors
We generated 65 training sets from the 14 cohorts. Each
training set has a certain number (ranging between 1
and 13) of cohorts sampled from the 14 cohorts, and the
unselected cohorts were used as test set(s). For each
number, we repeated random sampling five times (Add-
itional file 2: Figure S1). For example, there will be five
training sets composed of ten cohorts, and the ten
cohorts in each training set were sampled from the 14
cohorts randomly. In total, 65 (13 × 5) training sets were
generated.
Based on each training set, we built our predictors

using two methods, namely Elastic Net and BLUP. Both
of them are based on a linear regression:

Y ¼ Xβþ e

where Y is an n × 1 vector of chronological age with n
being the sample size. X is an n ×m matrix of
DNA methylation measures of all m probes, whereby Xij

is the DNA methylation of individual i at probe j, and e
is the Gaussian error. The two methods differ in how

Table 1 Description of DNA methylation cohorts

Cohort1 Sample size2 Number of samples with valid age Mean age (SD) Age range Source Disease

LBC1921 [20, 21] 692 692 82.3 (4.3) [77.8, 90.6] Blood Not available

LBC1936 [20, 21] 2326 2326 72.4 (2.8) [67.7, 77.7] Blood Not available

BSGS [22] 614 614 21.4 (14.1) [9.9, 74.9] Blood Not available

SGPD 1962 1556 67.2 (9.5) [23.0, 104.0] Blood Parkinson’s disease
988, control 974

MND [23] 695 600 45.2 (15.0) [17.0, 76.0] Blood Motor neuron disease
(MND) 497, control 198

GS [24, 25] 5101 5100 48.5(14.0) [18.0, 94.5] Blood Not available

GSE72775 [26] 335 335 70.2 (10.3) [36.5, 90.5] Blood Not available

GSE78874 [26] 259 259 68.8(9.7) [36.0, 88.0] Saliva Not available

GSE72773 [26] 310 310 65.6 (13.9) [35.1, 91.9] Blood Not available

GSE72777 [26] 46 46 14.7 (10.4) [2.2, 35.0] Blood Not available

GSE41169 [27] 95 95 31.6 (10.3) [18.0, 65.0] Blood Schizophrenia 62,
control 33

GSE40279 [6] 656 656 64.0 (14.7) [19.0, 101.0] Blood Not available

GSE42861 [28] 689 689 51.9 (11.8) [18.0, 70.0] Blood Rheumatoid arthritis 354,
control 335

GSE53740 [29] 384 383 67.8(9.6) [34.0, 93.0] Blood Alzheimer’s disease 15,
corticobasal degeneration
1, frontotemporal dementia
(FTD) 121, FTD/MND 7, progressive
supranuclear palsy 43, control 193,
unknown 4

1LBC Lothian Birth Cohort, BSGS Brisbane Systems Genomics Study, SGPD Systems Genomic of Parkinson’s Disease consortium, MND Motor Neuron Disease cohort,
GS Generation Scotland. Cohorts with prefix GSE are from the GEO database
2The number of samples in each cohort. Some samples in LBC were measured from the same individual but at different chronological age
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they select probes that are associated with age and how
their effects are estimated (Additional file 1). BLUP
would perform better than Elastic Net when there are
many predictors (probes), all with non-zero effects on
the target trait and effects drawn from a normal distri-
bution. However, this method needs a large sample size
to estimate small effect sizes. It is not always the case
that there are many predictors associated with a trait.
We implemented two estimates to evaluate the per-

formance of our age predictors: (1) correlation between
predicted age and chronological age in the test data set
and (2) root mean square error (RMSE) of the predicted
age in the test data set. Correlation indicates the
strength of a linear relationship between the predicted
age and chronological age, and RMSE reveals the vari-
ation of the difference between predicted and chrono-
logical age.
The relationship between chronological age and DNA

methylation could be nonlinear [33]. We selected eight
DNA methylation cohorts with a sample size larger than
600 to evaluate the impact of data transformation in age
prediction: LBC1921, LBC1936, GS, BSGS, SGPD, MND,
GSE40279, and GSE42861. For each cohort, we ran-
domly selected 70% of the samples as a training set and
the remaining 30% were used as the test set. Only 50,
000 randomly selected probes were used for computa-
tional efficiency. Power parameter λ (ranges from 0.1 to
2 with 0.05 as the interval) was used to transform the
original beta value of DNA methylation BV to BVλ. Only
BLUP was used for age prediction because of its low
bias. DNA methylation M value, arcsine square root
transformed methylation beta value, and log transformed
methylation beta value were also used to compare to
raw DNA methylation beta value in prediction accuracy.

Association between age acceleration residual and
mortality
We detected the association between age acceleration
residual (AAR) and mortality by using the Cox propor-
tional hazards regression model with age at sample col-
lection, sex plate, array, position on the array and
hybridization date as the covariates (all treated as fixed
effect factors). Samples from the updated data in Mar-
ioni et al. [12]: LBC1921 (wave one, N = 436, Ndeaths =
386) and LBC1936 (wave one, N = 906, Ndeaths = 214)
were used in this analysis. AAR was calculated based on
age predictors excluding LBC1921/LBC1936 as part of
the training set (sample size ranges from 335 to 12,710).
Cox models were performed utilizing the ‘survival’ li-
brary in R [34]. We applied a sensitivity analysis by add-
itionally including the measured cell count of each white
blood cell type (basophils, eosinophils, monocytes, lym-
phocytes, and neutrophils) as covariates in the Cox

model. The change of test statistics of AAR before and
after fitting these covariates was quantified.
Variation in cellular compositions is known to be associ-

ated with DNA methylation [35]. We examined whether
AAR-associated CpG sites were enriched in the probes
that show heterogeneity in DNA methylation across cell
types (72,393 cellular heterogeneity probes) [36] using the
Fisher exact test. We calculated AAR for samples from
LBC1936 wave one using predictors without LBC1936 in
the training set. Based on AAR from each predictor, we
estimated its association with DNA methylation at each
CpG site. AAR-associated CpG sites were defined as the
probes with P value smaller than Bonferroni-corrected P
value threshold (P = 0.05/319,607).

Results
Estimation of variation in age from using all probes
The proportion of variance of age explained by DNA
methylation was close to 1 in both cohorts based on
REML analysis (GS: proportion explained = 1, SE = 0.0036;
SGPD: proportion explained = 0.99, SE = 0.058) (‘Methods’
section), suggesting that variation of chronological age be-
tween individuals could be entirely explained by the joint
effect of DNA methylation from all CpG sites. It indicates
that a perfect age predictor can in principle be developed
based on DNA methylation data if all probe associations
are estimated without error. To demonstrate that this re-
sult is not caused by overestimation, we undertook a per-
mutation test using the same cohorts. We shuffled the
ages across individuals and found that DNA methylation
did not explain any significant amount of variation in GS
(proportion explained = 0, SE = 0.0030) and SGPD (pro-
portion explained = 0.0079, SE = 0.013).

Age predictors with different prediction accuracy
Based on each training set (65 in total), we built our pre-
dictors using BLUP and Elastic Net (‘Methods’ section).
Results on the test sets show that both methods have a de-
crease of RMSE (Fig. 1) and an increase of correlation
(Additional file 2: Figure S2) when the training sample size
increased. The smallest RMSE based on Elastic Net was
2.04 years, which is lower than that based on Hannum’s
and Horvath’s age predictors (Additional file 2: Figure S3).
This method gave better results with RMSE relative to
BLUP for small training sample size, although the differ-
ence with BLUP became smaller with increased sample
size (Additional file 2: Figure S4). The imperfect predic-
tion performance (RMSE = 2.04) of the predictor in this
study could be caused by an insufficient number of train-
ing samples and/or different batch effects between the
training and test dataset. Analogous to estimation and
prediction of complex traits using SNPs, prediction accur-
acy is expected to be less than the total variance explained
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by all features. They are the same when effect sizes are es-
timated without error.
Apart from the sample size, we found increasing the

age range of training set and the age similarity between
training and test set can improve the prediction accuracy
(Additional file 2: Table S2 & S3). No steady improve-
ment could be achieved by using transformed beta value
(‘Methods’ section, Additional file 2: Figure S5 & S6). In
addition, higher RMSE and lower correlation can always
be observed for prediction results based pruned set than
full probe set (Additional file 2: Figure S7). The overlap
(and correlation) is small between 514 probes in our
predictor (selected by Elastic Net, based on 13,566
training samples) and that in the age predictors of Han-
num (30 in common) and Horvath (11 in common)
(Additional file 2: Figure S8). Probes in these two predic-
tors were found to be redundant for age prediction
(Additional file 2: Figure S9), and better prediction ac-
curacy can still be observed after removing these probes
(Additional file 2: Figure S10).

Association between AAR and mortality
Based on samples from wave one of both LBC1921 and
LBC1936, we observed a decrease of the test statistics (z-
statistic) for the association between AAR and death
(from the Cox regression) with increasing sample size in
training data set (Fig. 2). For AAR calculated from the

predictor with the largest training sample size, it was not
associated with the mortality in either LBC1921 or
LBC1936 using BLUP (LBC1921: hazard ratio = 1.20,
95% CI 0.99–1.46, P value = 0.066; LBC1936: hazard ra-
tio = 1.25, 95% CI 0.95–1.64, P = 0.12) or Elastic Net
(LBC1921: hazard ratio = 1.08, 95% CI 0.91–1.27, P =
0.38; LBC1936: hazard ratio = 1.00, 95% CI 0.79–1.28,
P = 0.96) (Table 2). In contrast, results based on the age
predictors of Hannum and Horvath were significant
(P < 0.05, Table 2).
AAR-associated CpG sites from age predictors of Han-

num (odds ratio = 3.85, 95% CI 3.71–4.00, P < 2.2 ×
10−16) and Horvath (odds ratio = 2.53, 95% CI 2.45–2.61,
P < 2.2 × 10−16) were found to be enriched in probes that
show heterogeneity in DNA methylation across cell
types (‘Methods’ section), suggesting AAR from these
two predictors is affected by the cellular compositions. A
decrease of the odds ratio from the enrichment test was
observed with the increase of training sample size for
both Elastic Net and BLUP-based age predictors (Fig. 3).
No significant enrichment (Elastic Net: odds ratio = 0.78,
95% CI 0.47–1.23, P = 0.33; BLUP: odds ratio = 1, 95%
CI 0.82–1.21, P = 1.00) was found for the age predictors
based on the largest training sample size (Table 3).
Apart from AAR, cellular compositions are also related

to mortality [37], which suggests it could be a confounder
in the association between AAR and mortality. We re-ran

Fig. 1 The relationship between training sample size and predictor error measured at the square root of the mean squared error (RMSE) in test
data sets. Each point represents the RMSE of the test result based on predictors with different sample size and methods. Points with RMSE larger
than 15 are excluded. Prediction results from Horvath are marked as black dash line, and the black solid line represents prediction result from
Hannum’s age predictor

Zhang et al. Genome Medicine           (2019) 11:54 Page 5 of 11



the analysis based on AAR adjusting for measured white
blood cell (WBC) counts (basophils, eosinophils, mono-
cytes, lymphocytes, and neutrophils) (‘Methods’ section).
A decrease of the test statistics (from the Cox regression)
after correcting for the WBC counts was observed, espe-
cially when the training sample size is small (Add-
itional file 2: Figure S11). After adjustment for WBC, none
of the associations remained significant (P < 0.05) except
for the association in LBC1936 based on the predictor of
Horvath (P = 0.032). Nevertheless, the significance of this
association did not pass the Bonferroni-corrected P value
threshold (P = 0.05/4) (Table 2).

Age prediction in non-blood tissues
The majority of our samples are from the blood, and we
observed a significant improvement in the prediction re-
sults for the samples from saliva when more blood samples
were included in the training set (Fig. 1, Additional file 2:
Figure S5). This increase is expected since samples from
saliva were reported to exhibit more than 80% contamin-
ation by immune cells [38]. We also quantified the per-
formance of our predictor in other non-blood tissues based
on samples from 13 additional data sets (Additional file 2:
Table S1). We compared the performance of our predictor
(based on Elastic Net) with Horvath’s age predictor (based
on Elastic Net) in these cohorts. Horvath’s age predictor is

a pan-tissue epigenetic clock (training samples were from
51 tissues and cell types). It has a good tolerance for tissue
specificity since DNA methylation on the selected CpG
sites by his predictor was related to age across the tissues
and cell types in his training dataset. We found that our
predictor has better performance in samples from the
endometrium and saliva, in terms of the Pearson correl-
ation between predicted age and chronological age (Fig. 4a).
On the other hand, Horvath’s age predictor outperformed
our predictor in samples from the brain. Their performance
in other tissues (breast, liver, adipose, and muscle) was
similar, even though training samples in our predictor are
not from these tissues. A similar pattern was observed
when comparing the RMSE between these two predictors
(Fig. 4b).

Discussion
We investigated the relationship between the prediction
accuracy of a DNA methylation-based age predictor (‘epi-
genetic clock’) and its application as a biomarker of age-
ing. Age predictors with various prediction performance
were built based on datasets with different sample sizes
(ranging from N = 335 to 13,566). We used Cox regression
to detect the association between age acceleration resid-
uals (AAR, from different age predictors) and mortality
based on samples from LBC1921 and LBC1936. We

Fig. 2 Relationship between the training sample size and the test statistics (t test) from the association between age acceleration residual (AAR)
and mortality. Each point represents the test statistic from the survival analysis based on the predicted ages from predictors with different
training sample sizes
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Fig. 3 The change of odds ratio from the enrichment test with the increase of training sample size (excluding LBC1936). The enrichment test
examines whether AAR-associated CpG sites are enriched in probes with cellular heterogeneity

Table 2 Summary details of two LBC cohorts and the relationship between all-cause mortality and predicted age from different
methods (before and after cell count correction)

LBC1921 wave one LBC1936 wave one

N 436 906

Ndeaths 386 214

Chronological age, mean (SD)1 79.1 (0.6) 69.5 (0.8)

Before cell count correction

Hannum, mean (SD) 80.3 (6.2) 71.3 (5.7)

Hannum, hazard ratio (P value, 95% CI)2 1.12 (0.016, 1.02–1.23) 1.18 (0.020, 1.02–1.37)

Horvath, mean (SD) 73.8 (6.9) 66.1 (6.4)

Horvath, hazard ratio
(P value, 95% CI)

1.09 (0.038, 1.00–1.20) 1.19 (0.0022, 1.06–1.32)

Elastic Net, mean (SD)3 77.4 (3.6) 72.5 (3.2)

Elastic Net, hazard ratio (P value, 95% CI) 1.08 (0.38, 0.91–1.27) 1.00 (0.96, 0.79–1.28)

BLUP, mean (SD)3 77.3 (3.3) 72.5 (2.8)

BLUP, hazard ratio (P value, 95% CI) 1.20 (0.066, 0.99–1.46) 1.25 (0.12, 0.95–1.64)

After cell count correction

Hannum, hazard ratio (P value, 95% CI) 1.10 (0.057, 1.00–1.21) 1.11 (0.15, 0.96–1.29)

Horvath, hazard ratio (P value, 95% CI) 1.07 (0.13, 0.98–1.17) 1.14 (0.032, 1.01–1.28)

Elastic Net, hazard ratio (P value, 95% CI)3 1.07 (0.39, 0.91–1.27) 1.03 (0.79, 0.82–1.31)

BLUP, hazard ratio (P value, 95% CI)3 1.21 (0.05, 1.00–1.48) 1.21 (0.17, 0.92–1.60)
1Mean (predicted) age and its standard deviation
2Hazard ratio, P value, and 95% confidence interval from the survival analysis based on the predicted age. Hazard ratios were expressed per 5 years of methylation
age acceleration
3Both results of Elastic Net and BLUP were based on the age predictor with the largest training sample size (sample size = 10,411 for LBC1936 and sample size =
12,710 for LBC1921)
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observed a decrease in the significance of the association
between AAR and mortality with the improvement of the
age predictor. No significant (P < 0.05) associations were
found based on the age predictor with the largest training
sample size (Table 2), suggesting the improved prediction
of chronological age from DNA methylation limits it as a
biomarker of ageing. Our age predictor from the largest
training set of 13,566 individuals is available online [39]
(see Declarations).
Among the 13,661 samples from 14 cohorts in this

study, 2088 were known to have a disease. DNA methy-
lation at a few CpG sites might be different between
these samples and others. Such probes would not be se-
lected into a chronological age predictor when they are
not related to age. Even if they are age-related, these
probes would be weighted less (or still unselected) since
their associations with the disease could affect their pre-
diction accuracy on chronological age. Assigning these
probes small effect sizes (or removing them) would

decrease the prediction error in the training process.
Our results from randomization training and test sets
show that our age predictors do not appear to be biased
by the disease status.
Notwithstanding the highly correlated pattern of DNA

methylation across the genome, we observed a decline of
prediction accuracy when using a correlation pruned
probe set, so that including more probes in the training
model is beneficial, especially when the training sample
size is small (Additional file 2: Figure S7). The improve-
ment of prediction accuracy could be explained by the
decrease of noise effect (such as batch effects) of DNA
methylation in age prediction since using more probes
can reduce the unexpected impact of the noise. It could
also be caused by the existence of many probes with a
small correlation with age, and the cumulative effect of
these may be lost when using a pruned set of probes.
The AAR-associated probes from the age predictors of

Horvath and Hannum were enriched in CpG sites

Table 3 Enrichment test on the AAR-associated CpG sites from different methods based upon samples from LBC1936 wave one

Number of significant associations (P < 0.05/
319,607)

λmedian Number of CpG sites showing significant cellular
heterogeneity

Odds ratio (P value, 95%
CI)1

Hannum 12,015 3.6 4958 3.85 (P < 2.2 × 10−16,
3.71–4.00)

Horvath 18,847 5.4 5955 2.53 (P < 2.2 × 10−16,
2.45–2.61)

Elastic
Net2

159 2.1 21 0.78 (P = 0.33, 0.47–1.23)

BLUP2 793 2.6 130 1.00 (P = 1.0, 0.82–1.21)
1The odds ratio for the enrichment of EWAS significant CpG sites in the probe set showing significant cellular heterogeneity
2Both results of Elastic Net and BLUP were based on the age predictor with the largest training sample size (training set without LBC1936, sample size = 10,411)

Fig. 4 Comparison of prediction performance (a correlation and b root mean square error) between the predictor from this study (based on
Elastic Net) and Horvath’s age predictor in non-blood samples

Zhang et al. Genome Medicine           (2019) 11:54 Page 8 of 11



showing DNA methylation heterogeneity across cell
types, suggesting AAR from these predictors is affected
by the variation in cellular composition. The sensitivity
analysis confirmed that no significant (P < 0.05/4) associ-
ations were observed after adjusting for white blood cell
counts (Table 2). This demonstrates that the difference
in the cellular makeup of the samples in our test sets is
a confounder in the association between AAR from the
Hannum/Horvath age predictors and mortality. This re-
sult was not consistent with what has been reported by
the previous study. Chen et al. demonstrated that AAR
still predicts mortality after adjusting for blood cell
counts in a large meta-analysis. [15] However, it should
be noted that their blood cell counts were estimated
based on DNA methylation, but not measured by the ex-
periment. Hence, the actual cellular composition could
still affect the association between AAR and mortality. It
is also worth noting that the insignificant result in this
study could be caused by lack of power. The association
between AAR and mortality was merely examined in
two cohorts (LBC1921 and LBC1936). More datasets
with measured white blood cell counts are needed to in-
crease detection power.
Our results show that improving the prediction accur-

acy of an age predictor would reduce the effect of con-
founders and thereby attenuate the association between
AAR and death (Fig. 2). This decrease could be caused
by the loss of biological age-associated CpGs in an im-
proved epigenetic clock. It should be noted that building
a biological age predictor is difficult since there is no
clear definition of biological age. Nevertheless, one of
the essential features of biological age is its ability to in-
dicate the different ageing rates between individuals with
the same chronological age. A previous study has re-
ported a number of CpG sites that show variation in the
longitudinal changing rates between individuals [40].
Utilizing these probes to build a biological age clock
might be useful. An alternative approach is developing a
predictor for biological age-related traits (e.g., life ex-
pectancy [41]), but not for biological age itself.
Although most of the samples in our age predictor are

from the blood, it showed good out-of-sample prediction
performance in samples from non-blood tissues. Com-
pared with Horvath’s age predictor, we observed larger
correlations (between predicted age and chronological
age) and smaller RMSE in samples from the saliva and
endometrium, but lower correlations and larger RMSE
in samples from the brain. These smaller correlations
(and larger RMSE) are expected since a large proportion
(23.4%) of training samples in Horvath’s age predictor
are from the brain. Moreover, these two predictors have
similar performance in other tissues. The CpG sites in
our age predictor were selected based on their associa-
tions with chronological age in blood samples. And

Horvath’s age predictor used CpG sites with DNA
methylation associated with chronological age across tis-
sues and cell types. The comparable performance of
these two predictors implies that most of the age-associ-
ated DNA methylation sites in the blood also change
along with age in non-blood tissues.

Conclusions
Our results have several implications for the utility of
DNA methylation patterns of age as biomarkers of
ageing. From the REML analysis on the SGPD and
GS cohorts, we estimated that almost 100% of the
variation in chronological age in those samples could
be effectively captured by all the DNA methylation
probes on the arrays. This implies that a near-perfect
predictor of chronological age can be built based on a
very large training set. Our results showing that larger
sample sizes lead to a more accurate prediction is
consistent with this implication. The association be-
tween AAR and mortality is confounded by the vari-
ation in cellular composition (i.e., white blood cell
counts), especially when AAR is from of an age pre-
dictor (‘epigenetic clock’) with low performance.
Overall, these results suggest that caution is war-
ranted when interpreting estimates from these epigen-
etic clocks as an indicator of mortality or lifespan.
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Figure S4. The difference between BLUP and Elastic Net with the
increase of sample size in training data set. Figure S5. Improvement of
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value, and DNA methylation beta value. Figure S7. The comparison
between the full probe and pruned probe sets. Figure S8. The
correlations of DNA methylation between probes selected by Elastic Net
(based on 13,566 training samples) in this study and those in Horvath’s
and Hannum’s age predictors. Figure S9. The comparison of prediction
accuracy before and after removing probes from probes in the Hannum
and Horvath predictors. Figure S10. The prediction accuracy of
predictors without DNA methylation probes in Hannum’s and Horvath’s
Age predictors. Figure S11. Relationship between the training sample
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cell counts. Table S1. Description of 13 DNA methylation cohorts with
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sample size, the absolute mean age difference between training data set
and test data set, and standard deviation of age from training data set)
on the prediction accuracy (RMSE). Table S3. The contributions of three
factors (training sample size, the absolute mean age difference
between training data set and test data set, and standard deviation
of age from training data set) on the prediction accuracy
(correlation). (DOCX 2106 kb)
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