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Abstract

Background: Cancer neoantigens are expressed only in cancer cells and presented on the tumor cell surface in
complex with major histocompatibility complex (MHC) class | proteins for recognition by cytotoxic T cells. Accurate
and rapid identification of neoantigens play a pivotal role in cancer immunotherapy. Although several in silico tools
for neoantigen prediction have been presented, limitations of these tools exist.

Results: We developed pTuneos, a computational pipeline for prioritizing tumor neoantigens from next-generation
sequencing data. We tested the performance of pTuneos on the melanoma cancer vaccine cohort data and tumor-
infiltrating lymphocyte (TIL)-recognized neopeptide data. pTuneos is able to predict the MHC presentation and T
cell recognition ability of the candidate neoantigens, and the actual immunogenicity of single-nucleotide variant
(SNV)-based neopeptides considering their natural processing and presentation, surpassing the existing tools with a
comprehensive and quantitative benchmark of their neoantigen prioritization performance and running time.
pTuneos was further tested on The Cancer Genome Atlas (TCGA) cohort data as well as the melanoma and non-
small cell lung cancer (NSCLC) cohort data undergoing checkpoint blockade immunotherapy. The overall
neoantigen immunogenicity score proposed by pTuneos is demonstrated to be a powerful and pan-cancer marker
for survival prediction compared to traditional well-established biomarkers.

Conclusions: In summary, pTuneos provides the state-of-the-art one-stop and user-friendly solution for prioritizing
SNV-based candidate neoepitopes, which could help to advance research on next-generation cancer
immunotherapies and personalized cancer vaccines. pTuneos is available at https://github.com/bm2-lab/pTuneos,
with a Docker version for quick deployment at https://cloud.docker.com/u/bm?2lab/repository/docker/bm?2lab/

ptuneos.
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Background

Recent tumor immunotherapy studies demonstrated that
exploiting a patient’s own immune system is an ad-
vanced strategy for eliminating cancer cells [1]. Tumor-
specific neopeptides (so-called neoantigens), some of
which could be presented on the tumor cell surface
complexed with human leukocyte antigen (HLA) class I
protein, play an important role in this process. The
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recognition of peptide-major histocompatibility complex
(MHC)-I complexes by cytotoxic T cells can activate the
T cell response [2, 3]. Moreover, the tumor mutation
load and predicted neoantigen load are reported to
strongly correlate with the clinical response to immune
checkpoint inhibition in several cancer types [4—6].
Somatic mutations are largely heterogeneous across
different cancers and different patients. Therefore,
neoantigens must be identified and evaluated at a per-
sonalized level [7, 8]. In general, the prediction of neoan-
tigens based on next-generation sequencing (NGS) data
comprises three steps: (1) obtain a list of genomic som-
atic mutations from whole-exome sequence data and
convert it into mutation-containing “neopeptides” of
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appropriate lengths, (2) predict the binding affinity be-
tween the peptides and patient-specific HLA alleles, and
(3) evaluate the immunogenicity of the predicted pep-
tides [9, 10]. To date, several in silico tools for single-
nucleotide variant (SNV)-based candidate neoepitopes
prediction have been described, including pVAC-Seq
[11], MuPeXI [12], TSNAD [13], and Neopepsed14].
pVAC-Sedand TSNAD focus on MHC-I binding affinity
and implement filter-based strategies to obtain the final
neopeptide without prioritization, which prevents its fur-
ther clinical utilization. MuPeXIl prioritizes the candidate

peptide based on limited in vitro information. Neopepsee

constructs a machine-learning model based on the im-
munogenicity features of the peptide to optimize the
candidate neoepitope set. Among these tools, only Neo-
pepseeprovides a learning-based measurement of neoe-
pitopes, but issues remain to be overcame: (1) features
used in Neopepseeight be irrelevant and difficult to in-
terpret biologically, (2) the training data used in Neopep-
seelack specificity as the peptides come from generic
antigens rather than true noeantigens with experimental

validation, and (3) the training data used in Neopepsee

are highly imbalanced. Such training data may induce
substantial bias in actual neoantigen identification. Fur-
thermore, all the available tools are developed based on
the data obtained from MHC multimer technology,
which stimulates patient-derived T cells with a synthetic
MHC-peptide complex, indicating that these tools are
mainly designed to predict the ability of MHC presenta-
tion and T cell recognition of the candidate neopeptide
in vitro. However, the actual immunogenicity of neoanti-
gen in patient tumor might be influenced not only by
the MHC presentation and T cell recognition, but also
by many other endogenous factors including neopeptide
cleavage probability, transporter associated with antigen
processing (TAP) transport efficiency, peptide expres-
sion level, mutation allele fraction, and neoantigen cellu-
lar prevalence. None of the existing tools provides a
quantitative and comprehensive metric to evaluate these
characteristics and the immunogenicity of the naturally
processed and presented neoantigen, which is the most
challenging issue for clinical application of these tools.
Here, we present a novel computational strategy to ad-
dress the abovementioned issues with its implementa-
tion. The program, called pTuneos (prioritizing tumor
neantigens from next-generation Sequencing data), pre-
sents an efficient in silico tool to predict the immuno-
genicity of SNV-based neopeptides based on
experimentally validated neoantigens, surpassing the
existing tools with a comprehensive and quantitative
benchmark of their neoantigen prioritization perform-
ance and running time. Together, pTuneosaddresses the
above challenges with the following advantages: (1) pTu-
neosfirstly presented a learning-based framework, i.e.,
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Pre&RecNeao predict and prioritize neoepitopes recog-
nized by T cell. This module can be applied to predict
the MHC presentation and T cell recognition ability of
the neoantigens, and it is suitable for the evaluation of
the neopeptide in vitro immunogenicity. Then, pTuneos
presented a novel neoepitope scoring schema, i.e., Refi-
nedNeo to evaluate the naturally processed and pre-
sented neoepitope immunogenicity (defined as the
refined immunogenicity scoyewhich was demonstrated
to successfully refine the neoepitope ranking list ob-
tained by the Pre&RecNeamodel and filters out those
neoepitopes that could be recognized by T cell but could
not be naturally processed and presented. This module
can be applied to prioritize the in vivo immunogenicity
of the peptides. (2) The refined immunogenicity score is
demonstrated to be a powerful and pan-cancer marker
for survival analysis compared to traditional well-
established biomarkers on TCGA data. (3) The refined
immunogenicity score is demonstrated to be leveraged
to better predict survival in anti-CTLA-4-treated melan-
oma patients and anti-PD-1-treated lung cancer patients.
(4) A quantitative evaluation measurement is presented to
comprehensively evaluate the predicted neoantigen rank-
ing result based on the golden standard data. (5) An effi-
cient data synthesizing technique is applied to address the
data imbalance issue for model training. (6) Multiple
thread processing is implemented in pTuneosfor running
speed acceleration, and (7) pTuneoscan be quickly in-
stalled and deployed with the Docker version at https://
cloud.docker.com/u/bm2lab/repository/docker/bm2lab/
pTuneos.

Implementation
Design of pTuneospipeline
Data preprocessing

Processing of whole-genome or whole-exome sequencing
(WGS/WES) data Sequencing quality control was per-
formed using Trimmomatic-0.36 [15] to trim the read
below an average Phred score of 20 and cut out standard
adapters. Reads were aligned to the human genome
(hg38) using the Burrows-Wheeler Aligner version
0.7.12 [16]. A BAM file was sorted and produced with
the Picard version 2.3.0 SortSam, and duplicate reads
were marked and removed using the Picard tool Mark-
Duplicates. Base recalibration was performed with
GATK version 3.8.0 [17] to reduce false-positive variant
calls. SNV calls were performed with Mutect2 while
indel calls were created utilizing GATK Mutect2 version
3.8.0 [18], Varscan2 [19], and Strelka2 [20]. All muta-
tions with allelic fractions of less than 0.05 or coverage
of less than 10x were excluded to eliminate false-
positive sites. HLA alleles of each sample were inferred
from trimmed WGS or WES data using OptiType [21]
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with default settings that could achieve HLA typing with
~97% accuracy.

Processing of RNA-seq data Kallisto [22] was utilized
to quantify the abundance of gene isoforms from the
RNA-seq data. The reference transcriptome was down-
loaded from the Ensembl database for GRCh38 using
Ensembl genome browser version 89. The data were
indexed using the default read-length option of 100-
200 bp in the RNA-seq data. The abundance of gene iso-
forms was calculated as transcripts per kilobase million.

Candidate neoepitope identification

Mutation annotation and peptide extraction All the
mutations were annotated with Ensembl Variant Effect
Predictor [23] (VEP) to identify non-synonymous muta-
tions, including SNVs and indels. For SNVs, the genomic
change was directly applied to the proteome reference,
leading to a 21-mer mutant peptide and a normal peptide,
and the peptides were cut into 9—11-mer short peptides
that match the length of the neoantigen. For indels, the
mutant protein sequence was inferred by translating the
mutant ¢cDNA sequence and 9-11-mer short peptides
were also produced.

Epitope prediction Both mutant peptide binding affin-
ity and normal peptide binding affinity were predicted
between peptides and the (up to 6) patient-specific HLA
alleles using NetMHCpan version 4.0 [24] in the binding
affinity (BA) model. The percent rank score of binding
affinity was obtained for neoantigen filtering because this
metric is less biased than binding affinity when compar-
ing binding between multiple HLA alleles. Neopeptides
with a percent rank score greater than 2 were excluded
to obtain candidate neoantigens that could be confi-
dently presented by the MHC-I molecule.

Model building for MHC-presented and T cell-recognized
neoepitope prediction

Currently, MHC multimer analysis is the most popular
technology for detecting an antigen-specific T cell response
[25]. Patient-derived T cells such as peripheral blood
mononuclear cells were cultured in vitro, followed by
stimulation of a synthetic peptide-MHC complex, and pep-
tides that elicited T cell immunoreactivity were considered
experimentally validated immunogenic neoepitopes. We
considered the following five non-redundant features re-
lated with neoepitope presentation and recognition, includ-
ing mutant peptide-MHC affinity percentile rank, the
normal peptide-MHC affinity percentile rank, sequence
similarity between the normal and mutant peptides, the
peptide hydrophobicity score, and T cell recognition of the
peptide-MHC complex. We performed feature engineering
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to scale every feature to the same range considering the
biologic value.

Mutant and normal peptide percentile rank score
Percentile rank was used to measure MHC-I binding af-
finity instead of ICso because this percentile rank is less
biased than ICs, when comparing binding between mul-
tiple HLA alleles [26]. The percentile rank was scaled
from O to 1 by a negative logistic function as a binding
affinity score L(x), which is given by:

alp

LXP Yo——
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This function gives a value approaching 0 for a high
percentile rank, a midpoint at a percentile rank of 2, and
a value of 1 for a low percentile rank. The constant 2 de-
fines the inflection point, and it was selected as the rec-
ommended cutoff for possible peptide binding given by
NetMHCpan. The function was applied to both the mu-
tant peptide-MHC affinity percentile rank and the nor-
mal peptide-MHC affinity percentile rank, leading to a
mutant peptide percentile rank score and a normal pep-
tide percentile rank score.

Self-sequence similarity between normal and mutant
peptides Several studies demonstrated that sequence
similarity is an important feature of immunogenicity
[27]. Using the BLOSUMS62 matrix, the amino acids at
each position along the paired tumor and normal pep-
tides were obtained as an aggregate similarity score, with
higher scores indicating higher similarity. As these
scores vary depending on the amino acid composition of
the peptide tested, we performed a normalization by div-
iding the similarity score for a neoantigen compared
with another peptide by the similarity score of the
neoantigen tested against itself to produce self-similarity
scores, which gave a value between 0 and 1, where a
value of 1 indicates a perfect match.

Peptide hydrophobicity score The hydrophobicity of
amino acids at T cell receptor (TCR) contact residues is
a strong hallmark of CD8+ T cell-mediated immunity
[28]. We first collected all peptide MHCs with a positive
T-cell response classified as the immunogenic peptide
group and the nonimmunogenic self-peptide group,
which represents cell surface ligand-eluted MHC-I self-
peptides that were antigenically processed and MHC-
bound from Immune Epitope Database (IEDB, www.
iedb.org). Additional curation resulted in a final dataset
with 5018 9-11-mer immunogenic peptides and 8227
9-11-mer nonimmunogenic peptides. Next, we con-
structed three eXtreme Gradient Boosting (XGBoost)
algorithm-based machine-learning models to predict
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the probability of peptides recognized by T cells corre-
sponding to 9-mer, 10-mer, and 11-mer peptides, re-
spectively (Additional file 1: Figure S1. A). A 10-fold
cross-validation reaches an area under the curve (AUC)
score of 0.68, 0.77, and 0.77 corresponding to 9-mer, 10-
mer, and 11-mer peptides (Additional file 1: Figure SI.
B, C, D), respectively, which outperformed the model
trained by the three-layer neuron network reported by
Chowell et al. [28]. The output of each model represents
the T cell recognition probability ranging from 0 to 1.

T cell recognition probability of the peptide-MHC
complex Early studies revealed that TCRs have relatively
low affinities for their peptide-MHC ligands, making stud-
ies of TCR:pepMHC binding prediction difficult [29]. Re-
cently, several methods measuring the T cell recognition
probability of peptide MHCs were proposed based on a se-
quence comparison analysis [14, 30, 31]. Here, we used the
computational model presented by Luksza et al. to calculate
the T cell recognition probability. The model gives R the
probability that a neoantigen will be recognized by the TCR
repertoire, by alignment with a set of peptides retrieved
from Immune Epitope Database (IEDB). These peptides are
linear epitopes from human infectious diseases that are
positively recognized by T cells after class I MHC presenta-
tion. The model assumed that a neoantigen predicted to
cross-react with a TCR from this pool of immunogenic
peptides is a neoantigen that is more likely to be immuno-
genic itself, as members of the TCR repertoire both
recognize a high number of presented antigens and have in-
trinsic biases in their generation probability. R is defined by
a multistate thermodynamic model. In this model, se-
quence similarity is treated as a proxy for binding energy.
To assess the sequence similarity between a neoantigen
with peptide sequence s and an IEDB epitope € a gapless
alignment between the two sequences with a BLOSUM62
amino acid similarity matrix was computed and their align-
ment scores were denoted as |S€|. Given these sequence
similarities, for a given neoepitope with peptide sequence S
the probability that it will bind to a TCR specific to some
epitope e from the IEDB pool was calculated as:

RY,Z& b!

e IEDB

expd k& js ¢ Hp v

where a represents the horizontal displacement of the
binding curve, K sets the steepness of the curve at a, and

Z&bvip

e IEDB

expd k& js ¢ Hp #

which represents the partition function over the un-
bound state and the all-bound state. Here, k =4.87 and
a =26, which were determined in the original study [31].

Page 4 of 17

Collection of training data and testing data for

model building Training data were gathered from 16
studies relating to cancer immunotherapy (Add-
itional file 2: Table S1). These studies assessed the im-
munogenicity of larger sets of neopeptides and
published lists of neopeptides that did or did not elicit a
T cell response in vitro. In 14 of 16 studies, both neo-
peptides and their corresponding unmutant peptides
were retrieved. In the other two studies, some neopep-
tides resulted from genomic frameshift indels and their
corresponding normal peptides were missing or partially
missing, and therefore, we identified the most similar
peptide by aligning the neopeptide to the reference hu-
man proteome with the BLOSUM62 amino acid similar-
ity matrix. The human reference sequence proteome
(release 89 based on genome GRCh38) was downloaded
from Ensembl. The final training dataset included 2191
peptides that were experimentally tested, 84 of which
could elicit a T cell response, resulting in 2107 negative
samples and 84 positive samples. The testing dataset was
obtained from Carreno et al. [32]. Nine of 21 tested pep-
tides were immunogenic (Additional file 3: Table S2).

Handling data imbalance issue As the training set was
extremely imbalanced (84 vs 2107), the classifier trained
on this kind of data would be biased; thus, the Synthetic
Minority Over-sampling Technique (SMOTE) was ap-
plied to the dataset to address this problem. SMOTE
[33] is an over-sampling approach in which the minority
class is over-sampled by creating “synthetic” examples
rather than by over-sampling with replacements and the
minority class is over-sampled by taking each minority
class sample and introducing synthetic examples along
the line segments joining any/all of the k minority class
nearest neighbors. We performed this process utilizing
python package imblearn with parameters k=4 and
kind = “borderlinel”, leading to a balanced dataset for
model training.

Model building Finally, we constructed two machine-
learning classifiers: eXtreme Gradient Boosting [34]
(XGBoost) and random forest (RF). XGBoost was built
using the xgboost package, and the learning rate, max-
imum tree depth, and other hyper-parameters were
tuned by built-in cross-validation coupled with a param-
eter grid search method. RF was built using the sklearn
ensemble package by adjusting the option of using out-
of-bag samples to estimate the generalization accuracy
(oob_score) to true. The performance of the two classi-
fiers was measured identically by 10-fold cross-validation
on the training set and testing set and reached a training
AUC of 0.987 and 0.998 and a testing AUC of 0.654 and
0.833, respectively. Therefore, RF was selected as the
final classifier in our model.
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Score scheme for neoepitope immunogenicity prioritizing
The model presented in the former section could predict
the MHC presentation and T cell recognition ability of
the neoepitope, but actual neoepitope immunogenicity
might be influenced by many other endogenous factors,
including neopeptide cleavage probability, TAP trans-
port efficiency, peptide expression level, mutation allele
fraction, and neoantigen cellular prevalence [32, 35, 36].
To this end, we proposed a quantitative score scheme,
i.e., the refined immunogenicity score based on several
previous studies [11, 12, 31, 37] to refine the immuno-
genicity of the neoepitopes identified above.

Refined immunogenicity score scheme For paired
peptides and MHC alleles, the following values were
obtained:

A = Allele fraction of the mutant gene corresponding
to the neoepitope

E = Expression level of the mutant gene, in transcript
per million (TPM)

N = Combined score of binding affinity, proteasomal
C terminal cleavage, and TAP transport efficiency, as
output by NetCTLpan[35]

C = Cellular prevalence measures the percentage of
tumor cells containing the identified neoantigen, as out-
put by PyClone[38]

Rn = % percentile rank of affinity of the mutant pep-
tide, obtained from NetMHCpan 4.0 [24]

R, = % percentile rank of affinity of the normal pep-
tide, obtained from NetMHCpan 4.0 [24]

S = Sequence dissimilarity between the mutant peptide
and normal peptide, calculated by (1 minus sequence
similarity)

H = T cell recognition probability of the peptide-
MHC, determined by a machine-learning model using
peptide hydrophobicity information

R =T cell recognition probability of the peptide-MHC
complex, calculated by the formula 2

The refined immunogenicity score P was defined as:

P%A tan®EP N C LR, Bl LR, 2P S R
b
where L(x) is a logistic function given by:
1
Lxp Ya—— &b

1p e 2P

As seen in formula (4), the refined immunogenicity
score is calculated based on the product of three
terms related to neoepitope processing, presentation,
and recognition, including neoepitope abundance,
neoepitope dissimilarity with a normal peptide, and
T cell recognition probability. The first term mea-
sures the abundance of neoepitopes; here, abundance
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means the probability of the peptide being naturally
expressed and processed before presentation by
MHC-1. The expression level (E) of all the tran-
scripts corresponding to the neoantigen is trans-
formed by a hyperbolic tangent function while
variant allele fraction (A), combined score (N) inte-
gratingbinding affinity, proteasomal C terminal cleav-
age and TAP transport efficiency, and cellular
prevalence (C) are not manipulated. The second
term is related to a potential decrease in immuno-
genicity of the peptide due to negative selection
against cross-reacting T cells, and a sigmoidal logis-
tic function is applied to rank the peptide-MHC
binding affinity. The third term is related to the T
cell recognition probability of the peptide MHC de-
termined by the peptide hydrophobicity information
and T cell cross-reacting immunogenicity, which are
elaborated and calculated in the “Model building for
MHC-presented and T cell-recognized neoepitope
prediction” section. Finally, the immune score gives
a value ranging from 0 to 1, with a higher score in-
dicating stronger immunogenicity. The candidate
neoepitope lists are then ranked by this score to ob-
tain the final neoepitope ranking.

Calculation of the overall neoantigen immunogenicity
score We summed the refined immunogenicity score of
all neoepitopes that were predicted to be positive in the
Pre&RecNeanodel as the so-called the overall neoanti-
gen immunogenicity scar@his metric measures the total
immunogenicity of the neoantigen in a patient.

Benchmarking and comparison of pTuneoswith existing
tools

A variant call format (VCF) file was generated by GATK
Mutect2 as input, and pTuneos Pre&RecNedluPeX]
and Neopepseeere run with default parameters, leading
to three distinct neoantigen ranking lists. To evaluate
the ranking performance of the three tools, the Rank-
CoverageScorneas defined as:

X X
rank, ranky
RankCoverageScore ¥4 % coverage P % coverage® P
dranky b
coveragek P Vw k a;pb
&b

where T denotes the total neoepitope number identified
and p and n denote the set of positive and negative pep-
tides, respectively, that were experimentally validated
in vitro. The first term evaluates the rank of negative pep-
tides considering the average percentile rank and max-
imum rank percentile (coverage), whereas the second
term evaluates the rank of positive peptides considering
the same factors. It is preferred that a positive peptide has
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a smaller rank value and a negative peptide has a larger
rank value, indicating a better ranking result.

Application of pTuneosto The Cancer Genome Atlas
(TCGA) cohort study

Cohorts of patients with stomach adenocarcinoma
(STAD), lung adenocarcinoma (LUAD), and skin cuta-
neous melanoma (SKCM), which were the most con-
cerned cancers in cancer immunotherapy study, were
obtained from The Cancer Genome Atlas (TCGA) to
evaluate the association between our defined overall
neoantigen immunogenicity score and several well-
established immune infiltration measures including
microsatellite instability status (MSI), MHC-II expres-
sion signature, and cytolytic activity (CYT). Only sam-
ples with stage III/IV characteristic were retained.
Somatic mutation file in VCF format, expression profile
in FPKM, and SNP 6.0 microarray data were retrieved
from TCGA genomic data commons (GDC) portal. For
each sample, FPKM was normalized to TPM. Segment
copy number and tumor purity were estimated by
ASCAT from SNP 6.0 data. Samples were excluded due
to lack of accurate copy number estimation, leading to
101 LUAD samples, 166 STAD samples, and 191 SKCM
samples (Additional file 4: Table S3. A, B, C). pTuneos
was then applied to the three cohorts with mutation
profile, expression profile, and copy number profile as
input. For all three cohorts, MSI status of these samples
was retrieved from previous study [39], as there were no
samples with MSI status in SKCM and LUAD. We only
applied MSI status to STAD cohort for statistic and sur-
vival analysis. For all three cohorts, immune signature
associated with a 13-gene MHC II signature, which was
calculated as an average gene expression of all genes in
the list (Additional file 5: Table S4) [40]. Lymphocyte
score was obtained from previous study [41], and we
only applied this metric to SKCM cohort as the clini-
copathological annotation information from frozen
section slides of STAD and LUAD was not available
for us to calculate the lymphocyte score. For all three
cohorts, cytolytic activity (CYT) was calculated as the
log-average (geometric mean) of granzyme A (GZMA)
and perforin (PRFJ) expression in transcripts per mil-
lion (TPM) [42]. The survival data of these cohorts
were also retrieved for survival analysis. We used the
log-rank test and Cox proportional hazard model test
to assess the correlation between all the biomarkers
and overall survival (OS). The median of each metric
was selected as a cutoff for high vs low separation in
all biomarkers including tumor neoantigen burden
(TNB), overall tumor neoantigen immunogenicity
score (TNS), mutation burden, and several well-
established immune infiltration measures.
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Application of pTuneosto immunotherapy-treated patient
cohort study

Further datasets of immunotherapy-treated patients included
a cohort with stage IV NSCLC treated with pembrolizumab
(cohort Rizvi) [4] and two cohorts with advanced melanoma
treated with anti-CTLA4 immunotherapies (cohort Snyder
and cohort Van Allen) [5, 6]. In cohort Rizvi, 3 patients
which did not reach 6 months’ follow-up were excluded. In
cohort Snyder and cohort Van Allen, 5 patients and 7 pa-
tients were excluded due to lack of accurate copy number es-
timation. Final cohorts consisted of n=31 Rizvi, N=59
Snyder, and N =103 Van Allen patients. Patient survival was
the outcome measure in these cohorts. For cohort Snyder
and cohort Vann Allen, overall survival (OS) was available.
For cohort Rizvi, only the progression-free survival (PFS) was
available. In this study, we used the log-rank test and Cox
proportional hazard model test to assess the correlation be-
tween neoantigen burden and PFS or OS. We used the log-
rank test and Cox proportional hazard model test to assess
the correlation between the neoantigen immune score and
PFS or OS. The median of each value was selected as a cutoff
for high vs low separation in biomarkers including tumor
neoantigen burden (TNB), overall tumor neoantigen im-
munogenicity score (TNS), and mutation burden. We used
Wilcoxon rank sum test to determine the neoantigen burden
difference between the durable clinical benefit (DCB) and no
durable benefit (NDB) groups.

Results

General pipeline of pTuneos

The pTuneosworkflow consists of four steps (Fig. 1): data
preprocessing, candidate neoepitope identification, model-
based filtering, and neoepitope prioritization based on the
refined immunogenicity score.

In the first step, raw sequencing data (WGS/WES and/
or RNA-seq) are analyzed to identify somatic mutations
(SNVs and indels) in a VCF file and expression profile.
HLA alleles are determined from WGS/WES and/or
RNA-seq data by OptiType. Second, for SNVs, the nu-
cleotide change is translated into the corresponding
amino acid change, which is then applied to the prote-
ome reference, and nucleotide insertion and deletion
changes are applied directly to the cDNA reference and
translated into a 21-mer peptide containing variant sites.
The long peptide is then chopped up into 9-11-mer
long peptides. Peptide-MHC binding affinities for both
mutant and normal peptides are then determined by
NetMHCpan version 4.0. In addition, pTuneosadopts
several preliminary filtering strategies to obtain reliable
neo-epitopes: (1) sequence coverage and gene variant al-
lele frequency, (2) %rank affinity of mutant peptides, and
(3) gene expression level of corresponding mutant pep-
tides. Third, pTuneosconstructs a random forest model,
Pre&RecNeoto predict the MHC presentation and T
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