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Abstract

The discovery of synthetic lethal interactions between poly (ADP-ribose) polymerase (PARP) inhibitors and BRCA
genes, which are involved in homologous recombination, led to the approval of PARP inhibition as a monotherapy
for patients with BRCA1/2-mutated breast or ovarian cancer. Studies following the initial observation of synthetic
lethality demonstrated that the reach of PARP inhibitors is well beyond just BRCA1/2 mutants. Insights into the
mechanisms of action of anticancer drugs are fundamental for the development of targeted monotherapies or
rational combination treatments that will synergize to promote cancer cell death and overcome mechanisms of
resistance. The development of targeted therapeutic agents is premised on mapping the physical and functional
dependencies of mutated genes in cancer. An important part of this effort is the systematic screening of genetic
interactions in a variety of cancer types. Until recently, genetic-interaction screens have relied either on the pairwise
perturbations of two genes or on the perturbation of genes of interest combined with inhibition by commonly used
anticancer drugs. Here, we summarize recent advances in mapping genetic interactions using targeted, genome-wide,
and high-throughput genetic screens, and we discuss the therapeutic insights obtained through such screens. We
further focus on factors that should be considered in order to develop a robust analysis pipeline. Finally, we discuss the
integration of functional interaction data with orthogonal methods and suggest that such approaches will increase the
reach of genetic-interaction screens for the development of rational combination therapies.

Background
Whole genome and exome sequencing have provided an
encyclopedia of genes that are involved in cancer devel-
opment and progression, as part of programs such as
The Cancer Genome Atlas (TCGA). These heroic efforts
have revealed that many cancer cells hijack defined
signature cancer pathways through acquired mutations
that activate oncogenes or inactivate tumor suppressors
[1]. Yet, these efforts have also demonstrated that the
genetic backgrounds of different types of cancers are
vastly heterogeneous, resulting in a high number of cases
with inaccurate prognosis and ineffective chemotherapy
treatments. Precision cancer therapeutics, which aims to
tailor a treatment regimen to the unique genetic back-
ground of each disease, is a targeted and promising

approach. This strategy relies on targeting particular
mutants upon exploiting their genetic dependencies
through the identification and mechanistic characterization
of the genetic interactions involved in tumorigenesis, treat-
ment response, and the development of drug resistance.
Genetic interaction occurs when pairwise perturba-

tions of two genes involved in the same or parallel
pathways result in a phenotype that is different from
the expected additive effect of each individual mutation
[2–4]. Genetic (epistatic) interactions can be synergistic
(or synthetic), where the interaction of two genes exag-
gerates the phenotype, or buffering, where the perturb-
ation of one gene masks the perturbation of another.
Genes that result in a synergistic effect are commonly
interpreted as working in compensatory pathways. The
identification of such functional networks is particularly
important for understanding oncogenic pathways be-
cause the heterogeneity in the genetic background of
cancers is often associated with the connected pathways
that might provide multiple potential rewiring mecha-
nisms. Large-scale assessment of genetic interactions to
identify functional networks has been performed using
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high-throughput assays in model organisms. One such
example, in yeast, is the epistatic mini array profile (E-
MAP) approach, which uses a symmetric matrix of gene
perturbations to enable quantitative analysis of the type
and strength of the interaction between each pair of
genes that have been deemed to be functionally or physic-
ally related [5–8]. Hierarchical clustering analyses of the
scores obtained from these genetic-interaction screens
reveal functionally related genes and complexes.
In this article, we discuss recent targeted, genome-

wide, and high-throughput screening studies that have
employed dual loss-of-function, chemical–genetic inter-
action, and combinations of gene activation and inhib-
ition methods to identify relevant genetic interactions.
We also review the clustering and analysis pipelines used
in high-throughput genetic-interaction screens for rapid
translation of the generated data into effective therapies
for cancer treatment. Furthermore, we suggest that com-
bining genetic-interaction screens with orthogonal quanti-
tative approaches to generate global networks can facilitate
the development of rational combination therapies.

Genetic interactions as therapeutic targets in
cancer
Cancer cells often obtain selective advantage through
functionally cooperative genetic interactions, in which
the deleterious effects of oncogenic or tumor suppressor
mutations are, presumably, compensated for by second-
ary alterations. For example, cancer cells can tolerate
higher levels of replication stress that result from the
overexpression of oncogenes because of the amplifica-
tion of replication stress response kinases, such as ataxia
telangiectasia mutated (ATM) and Rad3-related (ATR)
kinase [9, 10]. Efforts by TCGA revealed such co-occurring
and mutually exclusive genomic alterations in cancer. In
this context, co-occurring mutations are potential candi-
dates for dependency factors, while mutually exclusive
alterations are potential candidates for synthetic lethality.
Yet, it is important to emphasize the possible limitations of
such approaches for functional interpretation. First, the
differential classification of functional genetic variants to
distinguish these from random passenger variants is not
trivial. Second, sequencing results are not reflective of the
protein levels or post-translational modifications in the cell.
Even though the mutation of two genes may appear to be
mutually exclusive at the genomic level, investigation of
their final protein products may indicate a tendency for
co-occurring alterations.
Inhibition of gain-of-function mutations in oncogenes

is an effective cancer therapy approach, but restoring the
functions of loss-of-function mutations in tumor sup-
pressors is not yet clinically feasible. Rather than func-
tional restoration, a strategic approach to exploit such
mutations is to identify synthetic lethal interactions of

tumor-suppressor genes in order to target tumor cells.
Synthetic lethality is a form of synergistic genetic inter-
action, in which simultaneous deletion of two genes
results in cell death whereas deficiency of either one of
the same genes does not. Specific synthetic lethal inter-
actions between the driver mutations of a tumor and
druggable targets have been exploited to develop effective
cancer treatments. For example, drugs targeting poly(-
ADP-ribose) polymerase (PARP) enzymes are synthetically
lethal with loss-of-function mutations of BRCA1 and
BRCA2 in tumor cells, leading to cell death resulting from
the homologous recombination repair defects [2, 11–13].
PARP1 is a DNA damage sensor that binds to DNA dam-
age sites, leading to the poly ADP-ribosylation (PARyla-
tion) of target proteins for the recruitment of DNA repair
effectors. In addition, PARP1 auto-PARylation mediates
its own release from the DNA damage sites [14]. PARP1 is
also implicated in the reversal and repair of blocked repli-
cation forks [15]. Inactivation of the catalytic activity of
PARP1 disrupts single-stranded DNA damage repair and
causes PARP1 trapping by impairing its own release from
the DNA damage site. These events block the replication
fork reversal and cause double-stranded DNA breaks [15].
In cells that have a deficiency in homologous recombin-
ation repair, PARP1 trapping results in double-stranded
lesions and eventually leads to cell death, providing an
opportunity for targeted therapy in BRCA-mutant cancer
cells (Table 1).
The use of PARP1 inhibitors as monotherapies for

patients with BRCA-mutated cancer demonstrates how
effective synthetic-lethality screens can be for drug de-
velopment. Yet, as with many other therapies, resistance
to PARP1 inhibitors arises in advanced disease, suggest-
ing that the most effective responses to treatment with
PARP1 inhibitors might be elicited either in early-stage
disease or through the development of rational drug
combinations [16]. To address both of these issues,
several clinical trials are currently evaluating the efficacy
of therapies that combine PARP1 inhibitors with chemo-
therapy or mutation-specific inhibitors (ClinicalTrials.-
gov reference NCT02576444) [17]. The PARP inhibitor
niraparib was also tested for use as maintenance therapy
in platinum-sensitive ovarian cancer, regardless of its
BRCA1 status [18]. The median duration of progression-
free survival was significantly longer for patients receiving
niraparib. These results, together with the observation that
about 50% of epithelial ovarian cancer patients without
BRCA1 mutations exhibit defective homologous recom-
bination, already indicate the potential wider reach of
these PARP inhibitor therapies [19].
The dynamic rewiring of cancer cells that are exposed

to anticancer drug treatments adds an additional layer of
complexity to traditional functional interaction studies.
In the clinic, the targeting of multiple factors within the
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same pathway has proven to be an effective strategy,
possibly because targeting a signaling pathway can result
in differential responses depending on the presence of
upstream mutations [20, 21]. Moreover, therapy-resistance
mechanisms in tumor cells rely on compensatory pathways
that functionally buffer the inhibition of drug target
genes. An example of this is the acquired resistance of
BRAFV600E-mutant melanoma cells to BRAF inhibitors
that occurs as a result of MAPK pathway activation. In
this case, specifically in the BRAFV600E-mutant back-
ground, melanoma patients treated with a combination
of a BRAF inhibitor with a MEK inhibitor exhibited
improved progression-free survival when compared to
patients treated with BRAF inhibitor alone [20–22]
(Table 1). Combination therapy to target both the pri-
mary target and the resistance mechanism has been

further supported as an effective strategy. A short hairpin
RNA (shRNA) screen of human kinases and several
kinase-related genes revealed that knockdown of epidermal
growth factor receptor (EGFR) synergized with PLX4032, a
BRAF inhibitor, in the suppression of BRAFV600E mutant
colorectal cancers [23]. A phase 3 clinical trial recently
demonstrated that a combination of encorafenib (a BRAF
inhibitor), binimetinib (a MEK inhibitor), and cetuximab
(an EGFR inhibitor) had an overall response rate (ORR) of
48% in BRAFV600E-mutant metastatic colorectal cancer
patients, which was an increase in ORR compared to
controls [24].
The development of high-throughput genetic-interaction

screens with robust analysis and clustering pipelines is thus
imperative to accelerate the identification of new druggable
synthetic-lethal or other genetic interactions and to guide
the improved prediction of drug synergies and rational
combination drug therapies.

Cancer models in mammalian cells and their
applications in anticancer drug discovery
The key driver mutations causing oncogenesis and the
factors involved in rewiring cancer cells in response to
therapy remain unclear. Systematic and high-throughput
approaches to dissect these functionally interconnected
pathways might be clinically beneficial. Recent efforts to
identify genetic interactions in a high-throughput platform
involve combinatorial pairwise perturbations of two genes
in an arrayed or genome-wide format (Table 2). The most
common approaches to date are pairwise gene knockouts
or a combination of a gene knockout and drug inhibition.
A more recent and less-explored approach is to combine
gene activation with gene inhibition, although the activa-
tion of a mutated gene is currently not feasible in the
clinic.

Dual loss-of-function methods
Dual loss-of-function studies form the foundation of
genetic-interaction studies. Pairwise genetic-interaction
screens in mammalian cells can involve the pairwise
knockdown of specific genes using short interfering
RNA (siRNA) or CRISPR inhibition (CRISPRi) platforms
(where a catalytically dead version of Cas9 is fused to a
Krüppel-associated box (KRAB) transcriptional repres-
sion domain) [25, 26]. Downregulation of target genes
can result in a partial phenotype, so this approach can
be used advantageously to target genes that are essential
for viability [27]. Alternatively, combinatorial gene
knockouts in mammalian cells can be mediated using
the CRISPR-Cas9 platform [28, 29]. For example, Shen
et al. [30] developed a systematic approach to map gen-
etic networks by combining CRISPR-Cas9 perturbations.
Pairwise gene knockout combinations of 73 cancer genes
with dual-guide RNAs in three human cell lines—HeLa

Table 1 Phase 3 or 4 clinical trials based on synthetic lethal and
synergistic effects from genetic-interaction screen approachesa

Genetic interaction ClinicalTrials.gov
reference

Tumor Results
available

Synthetic lethality between
PARP inhibition and BRCA1/
BRCA2

NCT01945775 Breast Yes

NCT03150576 Breast No

NCT02163694 Breast No

NCT02184195 Pancreatic No

NCT01874353 Ovarian Yes

NCT02855944 Ovarian No

NCT01905592 Breast No

NCT02975934 Prostate No

NCT01844986 Ovarian Yes

NCT01847274 Ovarian Yes

NCT03863860 Ovarian No

NCT02000622 Breast Yes

NCT02502266 Ovarian No

Synergy between BRAF
inhibition and MEK
inhibitionb

NCT01584648 Melanoma Yes

NCT01682083 Melanoma Yes

NCT01245062 Melanoma Yes

NCT01597908 Melanoma Yes

NCT01909453 Melanoma No

NCT02967692 Melanoma No

NCT03551626 Melanoma No

NCT01689519 Melanoma Yes

NCT03273153 Melanoma No

NCT03340506 Melanoma,
lung,
glioma

No

Synergy between EGFR
inhibition and BRAF
inhibitionb

NCT02928224 Colorectal No

aInformation accessed October 2019. bStudy conducted in a BRAF-mutant
background. EGFR epidermal growth factor receptor
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(human papilloma virus-induced cervical adenocarcin-
oma cells), A549 (an adenocarcinomic alveolar basal
epithelial cell line), and HEK293T (human embryonic
kidney cells)—enabled the identification of interactions
that have potential therapeutic relevance. These interac-
tions were then tested with drug combinations in order
to develop synthetic-lethal therapies [30]. Interestingly,
only 10.5% of identified interactions were common to
given cell-line pairs, and no shared interactions were
seen in all three cell lines. These observations might
suggest a high degree of diversity in genetic interactions
between different tumors, demonstrating the necessity of
using a large number of cell lines and samples when
performing similar studies.
Combinatorial CRISPRi screening platforms have been

used to increase the throughput of approaches in which
individual genes or gene pairs are downregulated [31,
32]. The proof of concept experiment, which targeted
107 chromatin-regulation factors in human cells using a
pool of double-sgRNA constructs for the pairwise down-
regulation of genes, revealed both positive and negative
genetic interactions [31]. In this context, it is important
to confirm the repression efficiency of each combination
of single-guide RNAs (sgRNAs) because the efficiency of
double-sgRNAs was observed to be lower than that of
single-sgRNAs [31]. This study was followed by a large-
scale quantitative mapping of human genetic interactions

using a CRISPR interference platform, in which 472 gene
pairs were systematically perturbed in two related human
hematopoietic cancer cell lines (K562 and Jurkat) [32].
Interestingly, even though this experimental pipeline
captured 79.3% of the interactions listed in the STRING
(Search Tool for the Retrieval of Interacting Genes/Pro-
teins) database for the tested genes, the vast majority of
the highly correlated gene pairs (315 of 390 genetic inter-
actions (GI) with GI correlation > 0.6) were not captured
by STRING annotation [33]. These results are indicative
of either a lack of physical interactions between these
functionally related gene pairs or unidentified protein–
protein interactions. Systematic gene ontology annotation
of the emergent gene clusters enabled the identification of
gene clusters that might be functionally related in K562
and Jurkat cells, and suggested new factors that are in-
volved in vital processes such as ER protein trafficking
and DNA synthesis. The epistasis analysis used in this
study revealed that the accumulation of an endogenous
metabolite intermediate, isopentenyl pyrophosphate (IPP),
causes replicative DNA damage and therefore increases
the dependence of cells upon an intact DNA damage
response pathway. This finding suggests a potential
combination-treatment strategy, which both targets the
pathway that promotes the accumulation of IPP and at
the same time exploits the newly acquired dependence of
the tumor cells upon the DNA damage response pathway.

Table 2 Comparison of different methods used to map genetic interactions

Technique Strength Limitation Considerations

Loss-of-
function

shRNA,
RNAi or
CRISPRi

Allows investigation of essential genes
Phenotype is reversible

Phenotype is gene-dosage
dependent

Essential genes that are specific to a
particular cell type are of interest

CRISPR-
Cas9

Allows investigation of complete functional
shutdown

Ploidy in cancer cells may
make the complete
knockout of the gene
difficult

Combinatorial or multiplexed knockouts
enable investigation of the phenotypic
effects of disrupting multiple genes at once

Chemical
inhibition

Allows direct investigation of therapeutic
relevance

Dynamic range is
dependent on drug
dosage and treatment
duration

Chemical-inhibition-based screens provide
information on the mechanisms of action
of the drugs

Gain-of-
function

CRISPRa Allows investigation of gain-of-function
mutations

Feasibility beyond the
K562 cell line is not clear

Combinations of CRISPRa and CRISPRi
screens provide information on
directionality of GIs

Screening
approaches

Targeted or
arrayed GI
screening

Gene-editing efficiency can be analyzed by
Sanger sequencing
Enables straightforward exploration of multiple
cell lines and conditions
Amenable to the incorporation of more
mechanistically informative phenotypes (e.g.
using single-cell RNA-seq or imaging
technologies)

Requires information on
the genes and pathways
of focus

Milder phenotypes may inform rational
combinatory therapy designs

Genome-
wide GI
screening

Allows determination of functional relations
between previously unexplored gene pairs

Gene-editing efficiency is
analyzed by next
generation sequencing
Requires increased
computational bandwidth

Clustering analysis may enable
identification of novel multi-molecular
modules

CRISPRa CRISPR activation, CRISPRi CRISPR inhibition, GI genetic interaction, RNAi RNA interference, shRNA short hairpin RNA
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These experiments illustrate the potential of genetic-
interaction maps in revealing combinations of druggable
target genes that do not have a known physical
association.

Mapping chemical–genetic interactions
Quantitative chemical–genetic studies, in which inhib-
ition by a compound is combined with a gene knock-
down or knockout, are an alternative to pairwise gene
perturbations [34, 35]. For example, investigation of the
influence of the knockdown of 612 DNA-repair and
cancer-relevant genes on the response to 31 chemother-
apy compounds revealed that loss-of-function mutations
in ARID1A and GPBP1 contribute to PARP inhibitor
and platinum resistance in MCF10A, a non-tumorigenic
human breast epithelial cell line [34]. This result is in
contrast to the findings of another chemical–genetic
screen that tested isogenic ARID1A-deficient MCF10A
cells against a panel of chemotherapeutic drugs and
DNA-repair inhibitors [36]. This screen indicated an
increased sensitivity of ARID1A-deficient cells to a
combination of ionizing radiation with PARP inhibition
[36]. Inactivating mutations in ARID1A have been de-
tected in multiple forms of human cancers. ARID1A is a
component of the SWI/SNF chromatin remodeling com-
plex and is implicated in non-homologous end joining
(NHEJ), suggesting that it might be an important modu-
lator of the response to PARP inhibitors and combin-
ation therapies.
Deep investigation of the genetic targets of therapies

that have already been approved by the US Food and
Drug Administration has the potential to expand the
number of patients who can benefit from these therapies
by revealing novel targets that are highly mutated in
cancer cells. For example, further investigation of the
synthetic lethality of PARP inhibitors with BRCA1 and
BRCA2 mutations instigated a series of discoveries that
suggest that PARP inhibitors can also be used to target
deficiencies in other genes that are involved in homolo-
gous recombination [37–40]. Several studies investigated
the synthetic lethal interactions of PARP inhibitors [11,
41] and ATR inhibitors [9, 42] against custom siRNA
libraries. The clinical relevance of these studies is cur-
rently being tested in clinical trials of multiple rational
drug combination therapies (Table 1, ClinicalTrials.gov
reference NCT04065269) [17, 43, 44]. In addition to
defects in genes involved in homologous recombination,
mutations in other genes have also been shown to
sensitize cancer cells or immortalized cells to PARP
inhibitors. Recently, a genome-wide dropout CRISPR
screen for genes that, when mutated, sensitize cells to
PARP inhibition was performed using the human cell
lines HeLa, RPE1-hTERT (a telomerase-immortalized
retinal pigment epithelium cell line), and SUM149PT (a

triple-negative breast cancer cell line with BRCA1 muta-
tion). Dropout screens are generally used to identify
genes that are essential for cell viability, and they involve
RNA interference (RNAi) or CRISPR screening of two
or more cell lines over a series of cell divisions. In this
case, the screen revealed the hypersensitivity of RNase-
H2-deficient cells to PARP inhibition [35]. Of 155 high-
confidence gene knockouts that sensitized cells to the
PARP inhibitor olaparib, 13 genes scored positive in all
three cell lines, and 60 genes were common to two cell
lines. Besides the factors that are known to be involved
in homologous recombination and Fanconi anemia, and
the kinases ATM and ATR (which are involved in the
DNA damage response), genes encoding splicing and
transcription factors and the RNase H2 enzyme complex
were shown to sensitize cells to olaparib treatment in all
three cell lines. A parallel screen utilized a similar
genome-wide CRISPR-Cas9-based approach in three
independent human cell lines to identify genes that,
when depleted, showed synthetic lethality with ATR in-
hibition [45]. Interestingly, depletion of the RNAse H2
enzyme also led to a synthetic lethality with ATR inhib-
ition. Collectively, these data indicate that loss of RNase
H2 might be a promising biomarker for PARP and ATR
inhibitor-based therapy, and provide an opportunity for
a rational combination therapy involving PARP and
ATR inhibitors for RNase H2 loss.
An orthogonal strategy, which has the simultaneous

advantage of increasing the throughput of screens, is to
leverage the conserved interactions in model organisms.
Large-scale genetic-interaction screens have been devel-
oped in the yeasts Saccharomyces cerevisiae and Schizosac-
charomyces pombe, and have been used extensively to
gather biological insights [5, 46–48]. However, the genetic
interactions observed in model organisms need to be vali-
dated in mammalian cells and in the clinic. Thus, a viable
hybrid approach is to target conserved tumor suppressor
genes for genetic interactions in yeast, followed by valid-
ation of the identified interactions in mammalian cells.
For this purpose, synthetic genetic array (SGA) analysis
provides a convenient and large-scale platform for system-
atic construction of double mutants in yeast, allowing the
mapping of synthetic genetic interactions. SGA involves
the construction of double mutants by crossing a query
mutant strain to an array of approximately 5000 viable
deletion mutants [48]. In order to connect tumor suppres-
sor genes to druggable targets, Srivas et al. [49] used SGA
technology in S. cerevisiae and constructed a genetic-
interaction map of 43,505 gene pairs that are known to be
small molecule targets, tumor suppressors, or clinically
relevant [49]. Guided by the yeast network, a more
targeted chemo-genetic interaction map obtained using 21
drugs and 112 tumor suppressor genes in HeLa cells
revealed a total of 127 synthetic sick or synthetic lethal
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interactions. Clonogenic assays were then performed to
determine whether the interactions identified in the
chemo-genetic screen (on the basis of an observed reduc-
tion in cell growth) also resulted in the reduced survival of
individual tumor cell clones. Five of the seven combina-
tions identified from the conserved tumor suppressor
XRCC3 network resulted in negative effects on tumor cell
clonal survival when XRCC3 is also knocked down.
XRCC3 is involved in the homologous recombination
repair pathway. These results suggest that the drugs tar-
geting relevant genes should be investigated as therapies
for tumors with XRCC3 loss-of-function mutations.

Mapping the directionality of genetic interactions
Functional and modular data obtained through genetic-
interaction methods can fall short in providing informa-
tion about directional and regulatory dependencies.
Orthogonal approaches that can be incorporated with
the genetic-interaction data to overcome this limitation
are discussed in the next sections. This shortcoming has
been addressed by several studies. For example, in com-
binatorial RNAi screens conducted in Drosophila cells,
regulatory and temporal directionality was derived through
mathematical modeling and time-dependent analysis of
differential genetic interactions [50, 51].
A recent quantitative dual screen addressed this issue

by combining the CRISPR-mediated activation (CRIS-
PRa) of one gene with the knockout of a second gene
[52]. This combinatorial approach has the additional
advantage of enabling studies of the effects of gene amp-
lification or gain-of-function alterations of several proto-
oncogenes, which are known to be just as important as
the effects of gene deletions for rewiring of cancer cells.
This enabled the formation of a directional dependency
network for human K562 leukemia cells. The systematic
identification of genes whose activation altered the
fitness of K562 cells treated with the tyrosine kinase
inhibitor imatinib was conducted using a genome-wide
library targeting every coding and over 4000 non-coding
transcripts [52]. In addition to genes with known roles
in leukemia and imatinib resistance, this screen identi-
fied previously uncharacterized genes (BBX, NOL4L, and
ZC3HAV1), which were shown to have roles in drug
resistance. To quantify dual genetic interactions, activating
sgRNAs targeting 87 candidate genes from the primary
screen were combined with knockout sgRNAs targeting
1327 genes from KEGG-annotated cancer-relevant signal-
ing pathway genes. The directional dependencies of the
genetic interactions were then inferred for those cases in
which one gene activated its partner. In these gene pairs,
individual activation and knockout of the activating gene
partner produce opposing phenotypes, providing an
opportunity to incorporate this information into the
genetic-interaction scoring algorithm that accounted for

the singular and combinatorial perturbation phenotypes.
Such a high-throughput approach enables the identifica-
tion of genes that can be exploited for cancer therapy. As
this approach has been limited to K562 cells, it still
remains to be explored whether this method is widely
applicable to other models.

Considerations for a robust analysis pipeline
The inference of functional data from large-scale genetic
network mapping in human cells requires robust and
thorough data-analysis pipelines. In this context, a data-
analysis workflow involves considerations for experimen-
tal design, quality control, and mathematical scoring.
The earliest studies on the use of genetic-interaction
mapping to dissect the functions of protein complexes
involved E-MAPs in yeast [47, 53, 54], as mentioned
earlier. These studies established the ground rules in
terms of experimental design for isolating hits and build-
ing a reliable genetic-interaction map. The computational
scoring and clustering algorithms used to analyze the data
include statistical analyses of the strength of each genetic
interaction, of the correlation between replicates, and of
the clustering of biological complexes [55]. Similar com-
putational scoring algorithms can be applied to mamma-
lian systems.
In mammalian systems, several high-throughput

genetic-interaction screens have been conducted using a
targeted approach with some prior knowledge on the
interaction networks of the genes or the pathways to be
studied [30–32, 34, 49]. This kind of approach decreases
the noise and minimizes the potential for false negatives
in the data, allowing milder phenotypes to be detected.
Even though these milder phenotypes might not be good
targets for monotherapy, they might provide clues for
combinatorial drug design and about functional redun-
dancy in cancer cells. A promising strategy for combina-
torial drug discovery is to target compensatory pathways
to block functional redundancies. With the current
methodologies, genome-wide trigenic interaction map-
ping is not trivial, but these milder phenotypes can be
used to predict target candidates for combinatorial drugs
and can be tested in combinatorial, trigenic contexts
[56]. As compared to targeted screens, genome-wide
analysis allows the unbiased determination of genetic
interactions without prior knowledge of physical or
functional networks [45, 57, 58]. Genome-wide screens
have a potential to reveal unexpected interactions be-
tween previously uncharacterized gene pairs (Table 2).
However, any CRISPR-Cas9 based genetic-interaction

analysis comes with three major considerations. First, there
is heterogeneity in the editing efficiencies provided by
different sgRNAs. This consideration applies to CRISPR-
Cas9-based screens performed either in an arrayed format
or as pooled libraries. In addition to using at least three
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sgRNAs for each targeted gene, quantitative assessment of
gene-editing efficiency in arrayed knockout experiments
should be conducted using tools such as TIDE (Tracking
of Indels by Decomposition) or using ICE (Inference of
CRISPR Edits) analysis following Sanger sequencing [59–
61]. Once the gene-editing efficiency for each sgRNA is
confirmed, the genotype–phenotype correlation in arrayed
formats is straight forward. In comparison, the analysis of
genome-wide pooled screens requires the use of next-gener-
ation-sequencing (NGS) technologies for genotype–pheno-
type correlation.
The second consideration is cell-line variability. The

Cancer Genome Atlas (TCGA) dataset indicates that
89% of tumors, of 33 cancer types, contain at least one
somatic driver alteration in ten canonical signaling path-
ways that are known to be highly mutated in cancer [1].
These data represent commonalities between different
cancer types. Yet, predictions of disease prognosis and
drug sensitivity in cancer are vastly inaccurate because
of the diverse mutational landscape of individual tumors.
For example, a recent study suggested that the tumor
lineage determines whether mutations in BRCA1 and
BRCA2 are indispensable founding events or biologically
neutral events for tumorigenesis [62]. In addition, the
genomic copy number of different cell lines was sug-
gested to affect CRISPR targeting and toxicity after gen-
ome editing [63, 64]. These observations are indicative
of the importance of conducting functional interaction
screens in multiple different cell lines, not only for the
identification of robust synthetic lethal or other interac-
tions, but also for the identification of more targeted
precision treatment opportunities.
Third, drug dosing and timing should be considered.

Importantly, for screens that measure phenotype upon
drug treatment, the dynamic range of experiments is
highly dependent on the drug concentration and treat-
ment duration. Boettcher et al. [52] showed that, when
compared with a single treatment, repeated drug treat-
ment can allow for greater enrichment of resistance
genes. For chemogenetic interaction profiling that ac-
counts for the stated considerations, drugZ scoring has
been introduced as a software tool for the identification
of both synergistic and suppressor interactions [35, 65].

Combining genetic interaction screens with
orthogonal quantitative approaches to generate
global networks
A major goal of functional-interaction mapping studies is
to elevate gene-association studies from the identification
of individual genes that are associated with phenotypes to
providing more interpretable genetic information on the
biological pathways that are involved. In addition, the
ability to combine functional interactions with physical
interaction modules, in order to build global interaction

networks, is important for dissecting the effects of differ-
ential mutations in cancer. High-throughput genetic-
interaction screens generate an unprecedented amount of
cell-specific functional genomics data that can help to
reveal genetic networks. Genetic-interaction profiles pro-
vide a quantitative measurement of functional similarity.
These maps can be overlapped with different kinds of net-
work information obtained by orthogonal approaches to
further inform functional interpretation and the predic-
tion of novel gene function (Fig. 1) [67]. These approaches
include gene-ontology analysis, as well as analyses of the
mutational landscape of patient tumors, gene regulation,
and protein–protein interaction.
Gene-ontology analysis provides a platform for the

systematic annotation of the gene clusters that are
enriched for genes known to act in similar pathways or
in a given complex [32, 68]. Statistical analysis of the
genomic mutational landscape of patient tumors from
TCGA provides an additional layer of information, as
gene pairs that are rarely co-mutated are candidates for
synthetic lethal interactions [69–71]. In addition,
because cancer cells are under selective pressure, two
genes might need to be co-mutated to provide a growth
advantage to tumor cells. Yet, as discussed earlier, these
approaches for functional interpretation are statistically
limited by the small number of tumors that have been
sequenced and by the unclear classification of function-
ally relevant mutations. Integrating co-expression data
and gene-regulation information from gene expression
profiles can also be a useful approach for establishing
correlations and extracting functional subnetworks. In
particular, recent advances in the analysis of single-cell
RNA sequencing data provide a reliable platform for the
interrogation of gene–gene relationships [72–74].
Perturb-seq combines single-cell RNA-seq with pooled
CRISPR-based gene perturbations, and this tool has been
developed to obtain a greater amount of mechanistic
information from genetic perturbation screens by the
identification of gene targets through changes in gene
expression [74]. Norman et al. [73] also applied this
technology to the CRISPRa platform, and were able to
determine the differential expression profiles of 112
genes whose activation resulted in growth enhancement
or retardation in K562 human leukemia cells [73].
Finally, the incorporation of annotated protein–protein
interaction data into genetic-interaction screens can en-
able the mapping of comprehensive global networks that
include information at both the genomic and the prote-
omic level in the cell. Protein–protein interaction studies
using multiple different cell lines can provide a network-
level framework for differential genetic interactions that
are observed in various cell lines [75].
Several recent studies have employed integrated net-

work analysis to investigate the long-standing question
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of the involvement of virus infections in the development
of cancer. Large-scale protein–protein and genomic
screens addressed the roles of human papillomavirus
(HPV) in oncogenesis and human lymphotropic virus type
I (HTLV-I) in adult T cell leukemia/lymphoma (ATLL)
[76, 77]. The physical interactions of HPV and human
proteins in three different cell lines (C33A, HEK293, and
Het-1A) were determined by mass spectrometry following
the affinity purification of complexes associated with viral
proteins. The protein–protein interaction data were then
combined with data defining the genomic mutational land-
scape of tumors. Comparison of HPV+ and HPV− tumor
samples led to the identification of eight genes that are
altered frequently in HPV− tumors but rarely in HPV+

tumors. This finding was followed by the generation of a
network propagation framework, in which proteins were
scored on the basis of their proximity to HPV-interacting
proteins or proteins that are preferentially mutated in
HPV− tumors within the Reactome functional interaction
(ReactomeFI) reference network. This integrative approach
resulted in the identification of an interaction between L2
HPV protein and the RNF20/40 histone ubiquitination
complex that promotes tumor cell invasion [76, 78].
Around the same time, a pooled shRNA screen targeting
lymphoid regulatory factors in eight ATLL cell lines re-
vealed essential roles for the BATF3–IRF4 transcriptional
network in malignant ATLL cell proliferation [77]. The

gene expression profiles of BATF3 or IRF4 knockdowns
overlapped significantly with each other, with 494 genes
decreasing significantly. In addition, inactivation of HBZ,
the HTLV-1 viral protein whose expression is maintained
in all ATLL cells, resulted in decreased abundance of
BATF3 and MYC mRNAs. ChIP-seq analysis revealed that
MYC is a direct target of BATF3–IRF4, but not of HBZ,
suggesting that HBZ regulates MYC expression through
BATF3. Finally, the relevance of this type of analysis to the
development of new treatments was tested by evaluating
the sensitivity of ATLL cells to bromodomain and extra-
terminal motif (BET) inhibitor JQ1. BET family proteins
can regulate the expression of several oncogenes upon rec-
ognizing histone lysine acetylation to assemble transcrip-
tional activators and chromatin-interacting complexes [79].
JQ1 treatment was toxic to the ATLL cells and reduced
BATF3 and MYC mRNA levels in the cell. Currently, BET
inhibitors are being studied extensively in clinical trials,
both as monotherapy and in combination therapy to halt
the transcription of oncogenes and to decrease cancer cell
survival in multiple different cancer types [80].

Conclusions and future directions
Genetic-interaction screens conducted in mammalian
cells within the past couple of years have proven to be
powerful approaches for the functional characterization
of genes by determining novel genetic dependencies of
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genes or pathways, through dual loss-of-function or
chemicogenetic analysis, respectively. The combination
of CRISPR-based screening technologies and integrative
analysis pipelines has enabled the formation of inter-
action networks that provide new insights into the func-
tions of genes. Moreover, synthetic lethal or synthetic
sick interaction pairs guide the design of selective com-
bination therapies (Fig. 2). For example, mutations in
several homologous recombination factors or inhibitors
of the phosphatidylinositol 3-kinase signaling pathway,
which were shown to synergize with PARP inhibition in
BRCA1-proficient cancer cells in preclinical studies, are
currently being tested in clinical trials (ClinicalTrials.gov
reference NCT03344965). In line with this, buffering
genetic interactions of drug target genes are candidates
for drug-resistance mechanisms. Thus, the inhibition of
these resistance mechanisms together with the primary
genes may be an effective therapeutic strategy. It is im-
perative that genetic-interaction screens are expanded to
include more genes and cell types to enable the identifi-
cation of global networks. Comparisons of different cell
types can reveal differences among cell types that can
have important distinguishing biological implications.
To gain insights into the dynamic functional relation-

ships between cellular processes and the rewiring of

cancer cells in response to changing conditions such as
drug treatment, it is important to consider differential
genetic-interaction approaches in response to a stimulus.
Most genetic-interaction analysis in mammalian systems
is limited by ‘end-point’ experiments and by the use of
non-specific phenotypic readouts, such as cellular growth
rate. The analysis of genetic network plasticity and
context-dependent rewiring events has been demonstrated
in yeast and Drosophila cells, where quantitative compari-
sons of genetic interactions in untreated and treated con-
ditions at different timepoints have revealed an
enrichment of interactions in the target pathway [51, 81].
Similar dynamic rewiring events can also be revealed by
time-resolved analysis following loss-of-function muta-
tions in mammalian systems. Coupling CRISPR-based
gene perturbations to more mechanistic readouts, such as
proteomic, transcriptomic or cell-localization phenotypes,
will also enable the mechanistic elucidation of epistatic
interactions. A derivative approach that is yet to be con-
ducted in high-throughput systems is the inference of
drug-resistance mechanisms. These approaches would
inform rational drug combinations and accelerate the
development of targeted therapies.
To date, genetic-interaction screens in mammalian

cells have relied on differential gene copy number and
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expression profiles in cancer cells and cell-proliferation
readouts. Yet, most tumors arise as a result of a muta-
tion rather than the complete absence of a gene [71].
Distinguishing driver mutations and their specific func-
tions will facilitate the discovery of target pathways.
Therefore, conducting gene-interaction screens using
pathogenic mutant versions of the target genes, rather
than complete gene knockouts, will be important for
drug development.
Analyses of the mutational landscapes of tumors indi-

cate that each tumor harbors a high number of somatic
mutations. Global network analysis might reveal that
these mutations converge in several hub events, such as
protein interactions or transcriptional regulation. The
integration of genetic-interaction datasets with other
sources of information obtained through orthogonal
experimental and computational tools is challenging and
requires effective collaborations between molecular and
cancer biologists, computational biologists, and clini-
cians. Several groups have formed such collaborative
mapping initiatives in mammalian systems [73, 75, 82].
Ultimately, these efforts promise to lead to global net-
work maps, which could allow predictions of effective
drug–target combinations for each individual cancer cell
background.
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