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Abstract

Variants of uncertain significance represent a massive challenge to medical genetics. Multiplexed functional assays,
in which the functional effects of thousands of genomic variants are assessed simultaneously, are increasingly
generating data that can be used as additional evidence for or against variant pathogenicity. Such assays have the
potential to resolve variants of uncertain significance, thereby increasing the clinical utility of genomic testing.
Existing standards from the American College of Medical Genetics and Genomics (ACMG)/Association for Molecular
Pathology (AMP) and new guidelines from the Clinical Genome Resource (ClinGen) establish the role of functional
data in variant interpretation, but do not address the specific challenges or advantages of using functional data
derived from multiplexed assays. Here, we build on these existing guidelines to provide recommendations to
experimentalists for the production and reporting of multiplexed functional data and to clinicians for the evaluation
and use of such data. By following these recommendations, experimentalists can produce transparent, complete,
and well-validated datasets that are primed for clinical uptake. Our recommendations to clinicians and diagnostic
labs on how to evaluate the quality of multiplexed functional datasets, and how different datasets could be
incorporated into the ACMG/AMP variant-interpretation framework, will hopefully clarify whether and how such
data should be used. The recommendations that we provide are designed to enhance the quality and utility of
multiplexed functional data, and to promote their judicious use.

Background
A promise of precision medicine is that genetic informa-
tion can be used to guide the diagnosis, counseling, and
treatment of patients. However, our ability to acquire
genetic information has vastly outpaced our ability to
understand the relationship between genetic variation
and disease. This gap in understanding has led to an ex-
plosion in the number of variants of uncertain signifi-
cance in variant aggregation databases such as ClinVar
[1] and BRCA Exchange [2]. Thus, new strategies are
needed to aid variant interpretation.
Multiplexed assays of variant effects (MAVEs), in

which thousands of sequence variants are assayed for

their functional effects simultaneously, can help to ad-
dress the problem of variant interpretation by providing
information about the phenotypic consequences of sin-
gle nucleotide variants [3–6]. MAVEs have been applied
to diverse functional elements, including clinically rele-
vant protein-coding sequences (such as those of BRCA1
[7–9], CALM1/2/3 [10], NUDT15 [11], PPARG [12],
PTEN [13, 14], SRC [15], SUMO1 [10], TP53 [16–18],
TPK1 [10], and TPMT [14]) as well as promoters and
enhancers that have been linked to disease [19, 20]. Al-
though these data are being used as evidence to assist
variant interpretation in limited cases [1, 21], no detailed
recommendations exist that address the specific chal-
lenges associated with incorporating multiplexed func-
tional data into variant-interpretation frameworks. This
lack of standards has led to confusion about the use of
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such data and has prevented full realization of their po-
tential benefit.
The American College of Medical Genetics and Gen-

omics (ACMG)/Association for Molecular Pathology
(AMP) [22] and, more recently, the Clinical Genome Re-
source (ClinGen) Sequence Variant Interpretation (SVI)
Working Group [23] have developed guidelines for how
functional data can be used in clinical variant interpret-
ation. However, these guidelines focus on functional data
that are derived from traditional, low-throughput assays,
and do not necessarily generalize to multiplexed func-
tional data generated using MAVEs. The comprehensive
coverage and quantitative nature of multiplexed func-
tional data mean that rigorous measures of overall data
quality and each variant’s functional effect can be calcu-
lated. As many, if not all, clinically characterized single
nucleotide variants in a gene are assessed in a single
MAVE, the functional effect measured for any variant
of interest can be viewed in the context of the func-
tional effects of all of the variants in that gene, includ-
ing the effects of known pathogenic and benign
variants. This comprehensive coverage also means that,
when compared to assays examining only a few vari-
ants, MAVEs are more amenable to rigorous evaluation
of assay sensitivity, (i.e., the ability of an assay to iden-
tify true-positive pathogenic variants) and specificity
(i.e., the ability to avoid false-positive benign variants).
If MAVEs are conducted in accordance with a set of
coherent recommendations, these metrics of clinical
utility, along with other quality and performance mea-
sures, can be calculated to assess the suitability of the
data as evidence in variant interpretation.
Below, we provide recommendations for the experi-

mentalist seeking to create well-validated multiplexed
functional data, and for variant curators who need to
evaluate such data for clinical variant-interpretation
workflows. In particular, our recommendations are fo-
cused on the integration of multiplexed functional data
into the ACMG/AMP variant-interpretation framework
by establishing a set of principles that can be used to
evaluate the strength of evidence (up to PS3/BS3—
Pathogenic Strong, Benign Strong) that such data can
provide. We begin by addressing the design and report-
ing of multiplexed functional assays, which are closely
related to the issues covered in the new recommenda-
tions from the ClinGen SVI working group [24]. We
supplement these recommendations with MAVE-
specific guidance about how experiments should be con-
ducted and reported, including standards for including
internal and external controls. Next, we describe stan-
dards for data quality control, including estimation of
measurement error. Third, we present recommendations
for validation for clinical interpretation, including the as-
sessment of correlation between multiplexed functional

data and variants of known clinical effect to determine
the strength of the evidence that the data represent. Fi-
nally, we present recommendations for using multiplexed
functional data as evidence for variant interpretation. As
both MAVEs and variant-interpretation workflows are
evolving quickly, we end by briefly discussing emerging is-
sues that will eventually need to be addressed in updated
recommendations. Data that are collected and described
in accordance with our recommendations will be more
readily integrated into variant-interpretation workflows,
thereby contributing to improved decision-making by pa-
tients and providers.

Methods
These recommendations grew out of discussions among
members of the Brotman-Baty Institute’s Mutational
Scanning Working Group, a group of researchers and
clinicians generating or applying functional data who are
based at the University of Washington, the Fred Hutch-
inson Cancer Research Center, and the Seattle Chil-
dren’s Research Institute in Seattle, WA. An initial
conversation between MAVE developers (Drs. Fowler,
Gelman, and Starita) and a molecular genetic pathologist
(Dr. Shirts) at the University of Washington led to a
proposal to develop standards for the use of MAVE data
in clinical workflows. The project was presented at a
meeting of the larger working group where the scope
and audience were further refined, and the first set of
specific recommendations were developed. A summary
of the notes from the meeting were circulated, and add-
itional experimentalists (Drs. Berger, James, Rubin, and
Shendure) and clinicians (Drs. Dines and Hisama) were
included in further conversations to develop the recom-
mendations. Subsequent iterations of the recommenda-
tions involved conversations (both in person and via
email) among collaborators before agreement on the final
content of the recommendations was reached. Dr. Berg
and Ms. Brnich are the leaders of the ClinGen SVI Work-
ing Group, which developed recommendations for the
evaluation of functional data within the ACMG/AMP
variant interpretation framework and provided guidance
on how to translate those recommendations into the con-
text of multiplexed functional data.

Design and reporting of multiplexed functional
assays
In a MAVE, a library of DNA variants of a promoter,
enhancer, or protein coding sequence is generated
through in vitro mutagenesis, DNA synthesis, or by
genome editing. Ideally, all possible single nucleotide
or codon-altering variants in the target sequence are
made (Fig. 1a). The resulting variant library is then
subjected en masse to a functional assay in which the
variant DNA sequence is directly linked to the
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readout of the assay (Fig. 1b). For example, in a
growth assay, the relative growth of each cell is af-
fected by the functional capacity of the DNA variant
within that cell. Alternatively, in a fluorescent re-
porter assay, each cell becomes fluorescent on the
basis of the functional capacity of its variant. The

direct linkage of each DNA-encoded variant to cell
growth or fluorescence allows changes in each vari-
ant’s abundance to be tracked during the functional
assay by DNA sequencing (Fig. 1c). Changes in each
variant’s frequency in the population before, during,
and after selection are transformed into a functional

Fig. 1 Overview of the steps required to produce, validate and use multiplexed functional data for variant interpretation. Multiplexed assays for
variant effect. a A DNA variant library is generated and introduced into cells before being b subjected to a functional assay. c Variants from a
sample of each cell population are sequenced and d functional scores that reflect their change in frequency are calculated for each variant. Data
quality control. e The dynamic range of the functional score distribution of the entire library (gray) is benchmarked by the observed scores for
known functionally normal (blue) or abnormal (red) variants; here, synonymous and nonsense protein variants are used as an example. f.
Comparison of functional scores across two or more replicate experiments generates an overall metric of reproducibility (R2). Biological replicates
have different input populations that result from separate introductions of the variant library and they provide a better characterization of
variation than technical replicates, which use the same starting population. g Confidence intervals for each variant functional score are calculated
from replicate experiments. h Multiplexed functional scores are benchmarked against other measurements of molecular function. Reporting. i
Sharing of data and analyses facilitates data reuse and enhances data utility. Validation for clinical utility. j Functional score ranges are divided
into categorical bins. Here, the cutoff between bins is determined by the measured functional score distributions of known interpreted variants. k
A precision-recall curve is used to assess the assay’s sensitivity and specificity. Multiplexed functional data as evidence for variant interpretation. l
Clinicians and diagnostic laboratories assess the overall quality of the assay and of specific variant information to determine the weighting, in
terms of strength of evidence that should be assigned to the functional information
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score, which reveals the variant’s effect on function
(Fig. 1d). For interested readers, more detail is avail-
able in MAVE reviews [3, 6, 25].
Developers of MAVEs who intend that their data

should inform variant interpretation should follow the
same assay design guidelines as developers of single-
variant functional assays [24]. The ClinGen SVI working
group encourages assay developers and evaluators to
consider the physiological context, meaning how closely
the assay reflects the relevant cell or tissue type and its
origin. The molecular context, meaning how closely the
assay reflects the genetic and functional context of the
target gene and associated disease, is also important.
However, the SVI group emphasizes that the strength of
evidence that an assay can provide should not be based
on the design alone, but rather on the predictive power
of the assay results. This recommendation is particularly
important for MAVEs, which are unlikely to ever mimic
all of a gene’s functions perfectly.
Most of the recommendations that we make here focus

on how to harness the power of multiplexed functional
data to establish the reliability of an assay through careful
statistical analysis and validation. The metrics we define
can provide high confidence in a multiplexed functional
data set even if the assay does not exactly replicate the
physiological or molecular context of the disease.

Multiplexed assay development
Assessing assay suitability
A first requirement is that a MAVE must be capable of
measuring the disease-relevant effect of variation in the
chosen functional element. For example, if gain or loss
of function is the primary disease mechanism, then the
assay’s dynamic range must be wide enough to capture
such changes in function and to distinguish clinically
meaningful differences. Thus, to demonstrate assay suit-
ability, either in a pilot phase or in multiplexed form,
the dynamic range should be evaluated using variants of
known effect (e.g., synonymous and nonsense protein
variants). If the measurements for functionally normal
and abnormal variants overlap significantly, the assay
will not be able to detect changes in function (Fig. 1e).
Many genetic diseases are driven primarily by gain or
loss of molecular function (i.e., activity). However, other
mechanisms, such as changes in expression [26, 27],
localization [28–30], or dominant negative effects [18],
are also important and must be considered. Moreover,
in many cases, the mechanism by which genetic vari-
ation causes disease remains partly or wholly unknown.
Thus, care must be taken when crafting a MAVE and, in
some cases, direct assessment of disease-relevant mecha-
nisms may not be possible.
Recommendation 1: Assays must have sufficient dy-

namic range to separate robustly disease-relevant,

functionally abnormal variant classes such as loss- or
gain-of-function from functionally normal variants.

Choosing an assay platform
Experimentalists must ensure that the model system
(e.g., cell line or model organism) that they choose is ap-
propriate for the type of variant associated with disease.
No model system is appropriate for every application,
nor are there a class of models that cannot be used. In-
stead, the suitability of the chosen model must be
assessed relative to the variant type and the disease
mechanism. For example, assessing splice variants may
require the generation of a variant library by editing the
native genomic locus rather than by expressing a mu-
tated transgene. Likewise, the target sequence used to
generate the variant library is sometimes optimized for
high expression, but if transcript levels contribute to dis-
ease, expression level may need to be calibrated carefully
to ensure that clinically relevant changes in expression
level are not obscured by high baseline levels. Another
consideration is that accurate assessment of loss-of-
function variants, in particular, may require the en-
dogenous gene to be knocked out or repressed.
To date, most MAVEs have been conducted in model

systems such as yeast or in utilitarian human cell lines
such as HEK293T, HeLa, or HAP1. Despite early con-
cern about these model systems, variant functional ef-
fects that have been measured using them have been
highly correlated with variants of known clinical effect.
Thus, the gains in predictive accuracy that can be ob-
tained from conducting experiments in more disease-
relevant cell lines may be small, especially for genes that
are ubiquitously expressed. However, immortalized cell
lines that better represent specific cell types or stem-
cell-derived differentiated cells may be required for ex-
periments on genes that function in specific contexts or
during particular transitions in development.
Even carefully designed assays may be blind to some

important functional effects. For example, we recently
used a generalizable protein abundance assay to identify
possible pathogenic variants of PTEN and TPMT [14].
Known pathogenic active site variants, which damage
PTEN enzymatic function but do not affect protein
abundance, are not identified by this assay. The inability
of this assay to identify all pathogenic variants is not an
indication that the assay results are unreliable and un-
suitable for clinical use. Nevertheless, a clear explanation
of this limitation was essential to ensure that down-
stream users of the data understand what the assay did
and did not measure. Even though a generalizable assay
like the protein abundance assay cannot measure all
functions, it can still be extremely powerful because a
significant portion of damaging variants affect gene ex-
pression or stability and, therefore, all protein functions
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[14, 31]. However, an assay that more completely or spe-
cifically represents gene function and disease context may
be useful in facilitating a more confident prediction of a
benign effect, rather than in predicting pathogenic variants
more accurately. Thus, for every MAVE, there should be a
clear statement of what was measured and a disclosure of
the types of functional effects that were not measured.
Recommendation 2: Choose an assay design and model

system that can assess the type of variant associated with
disease. Flag any variants or class of variants that cannot
be accurately measured in the released data set.

Assay reporting
Disclosure of data sets and statistical methods
Given the expense of creating multiplexed functional
data sets and their applicability to genomic medicine, it
is important that the data sets be Findable, Accessible,
Interoperable and Reusable according to the FAIR Prin-
ciples [32]. These principles ensure that research prod-
ucts are as valuable as possible and are flexible to the
needs of the community. Many communities of re-
searchers generating data with clinical applications have
highlighted the difficulties that incomplete or inconsist-
ent reporting pose for data re-use [33–35]. Minimum
information-reporting requirements [36], data repositor-
ies, and shared standards can support the generation
and sharing of data that are suitable for reuse.
For MAVE datasets, the primary consideration is that

data can be re-used and re-analyzed as the field develops
and as more clinically interpreted variants become avail-
able. In addition, data from multiple groups must be eas-
ily comparable so that conflicting data points are
obvious to end users.
Fundamental to meeting all of these requirements is

making the underlying raw data, such as sequencing
files, read counts, and code for data processing and stat-
istical analysis, easily accessible (Fig. 1d, i). This includes
publishing data for each replicate and reporting the con-
figuration files and versions for any published software
used in analysis. Raw data availability should be ensured
by uploading sequencing data to a public repository such
as the Gene Expression Omnibus (GEO) or the Se-
quence Read Archive (SRA). Analysis files and scripts,
including R Markdown and Jupyter notebooks, should
be made available on publicly accessible, established
platforms such as GitHub or Bitbucket. MaveDB [37] is
an open-source database enabling FAIR data sharing for
MAVE data. Sequence information, raw data, calculated
scores, and experiment metadata are stably associated
and can be used for re-analyses, which can also be saved
and shared. MaveDB is also accessible via the Applica-
tion Programming Interface (API), enabling the con-
struction of new tools for data sharing and analysis.

Functional scores for variants can also be submitted to
ClinVar as supporting evidence [38].
Recommendation 3: Report data sets using FAIR stan-

dards, including the reporting of raw data such as se-
quencing reads and variant counts. Deposit experimental
details, analytical methods, and raw data into applicable
publicly accessible databases. To aid transparent and
complete reporting, we provide a checklist in Additional
file 1: Table S1.

Terminology
A universal and precise vocabulary to describe variant
effect is important for communicating results. The EN-
IGMA (Evidence-based Network for the Interpretation
of Germline Mutant Alleles) consortium, experts in
variant interpretation for hereditary breast and ovarian
cancer, developed such a standardized variant effect
ontology and it has been adopted by the ClinGen SVI
[24, 39]. The ENIGMA terminology avoids classifications
such as ‘pathogenic’ and ‘benign’ at the level of func-
tional assay reporting, as these determinations should be
made using multiple pieces of evidence and associated
with the final variant interpretation. Instead, variants are
classified as ‘functionally normal’ or ‘functionally abnor-
mal’, with abnormal variants described further (e.g., loss-
of-function, gain-of-function).
Recommendation 4: To standardize terminology, re-

port variant scores using the ENIGMA variant-effect
ontology. This will render scores machine readable, and
will also help to delineate loss- and gain-of-function for
end users of the data.

Target sequences
To describe variants scored in a MAVE accurately, it is
essential to have unambiguous information about the
reference sequence that was used as a basis for the mu-
tagenesis. Many recent studies provide gene symbols in-
stead of stable nucleotide accession numbers [9, 16, 17].
In many cases, this is of little consequence because there
are no common minor alleles in the population or alter-
native transcripts. However, a recent deep mutational
scan of TP53 was based on the common p.Pro72Arg allele
of TP53 [16], despite the fact that this is not the allele
present in the current version of the Reference Sequence
database (RefSeq). The p.Pro72Arg allele has been impli-
cated in multiple clinically relevant phenotypes, including
cell death rates, and is the subject of hundreds of pub-
lished papers (see dbSNP entry). Because p.Pro72Arg is so
common in the population, this study design is highly
relevant for 66% of the population, but the lack of clarity
could lead to incorrect interpretation in the cases of pa-
tients who harbor the reference allele.
Human Genome Variation Society (HGVS) nomencla-

ture [40] and accurate genomic coordinates will help to
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identify variants unambiguously. For example, noncod-
ing variants are impossible to communicate without pro-
viding exact genomic coordinates. The ClinGen Allele
Registry can be used to create or find stable unambigu-
ous Canonical Allele Identifiers (CAID) [41] and pro-
vides HGVS nomenclature for all possible transcript and
genomic identifiers. To adhere to FAIR principles, ex-
perimentalists should avoid creating new formats or re-
defining existing ones whenever possible.
Recommendation 5: Include each target’s stable, ver-

sioned accession number from a common genomic data-
base, such as a RefSeq Locus Reference Genome Sequence
[42], or the full nucleotide sequence, either inline in the
methods or as a FASTA file in the supplement. Report
variants in HGVS nomenclature for nucleotides with a
ClinGen Allele Registry identifier.

Data quality control
After a MAVE has been performed, the next step is to
assess the quality of the multiplexed functional data and
to establish the relationship between a reported func-
tional score and the variant’s actual effect on molecular
function.

Replication and error estimates
Using multiplexed functional data for variant interpret-
ation requires an understanding of both the reliability of
each variant functional score and the overall reliability of
the assay. Therefore, replicate experiments should be
conducted to ensure that functional scores are reprodu-
cible and to better estimate variant effects.
Early on, replicate experiments were often used as a

quality check, evaluating an overall R-squared or similar
correlation coefficient (Fig. 1f). These correlation metrics
remain useful determinants of overall assay robustness
and should be reported. For individual variants, func-
tional scores from different replicates have generally
been combined using simple averaging. More recently,
statistical frameworks have been developed to incorpor-
ate replicate experiments more rigorously, including cal-
culating uncertainties for functional scores for each
variant [43]. This gives experimentalists a principled
approach to determine the appropriate number of repli-
cates needed to minimize error. Most importantly, cal-
culating individual variant errors gives downstream
users valuable information about the trustworthiness of
an individual variant score, which may differ from the
overall quality of the multiplexed functional data set
(Fig. 1g). Although many existing data sets do not report
individual variant errors, we strongly encourage experi-
mentalists to take advantage of existing tools and to cal-
culate these errors going forward. If underlying raw data
are reported in MaveDB [37] or similar databases, errors
can be calculated post-publication.

Recommendation 6: Conduct replicates to characterize
the reliability of assay results. Report correlations between
replicates and distinguish them clearly. Error estimates
should be calculated for individual variant scores and re-
ported as confidence intervals.

Assessment of assay measurements
The reliability of multiplexed functional data should be
assessed by testing individual variants that are chosen to
span the range of functional scores in a low-throughput
version of the same assay. For example, in a growth-
based MAVE, the growth rate of variants spanning the
functional score range should be tested individually to
ensure that the functional score is well correlated with
growth rate. In addition, a set of variants will often be
chosen for functional assessment in an orthogonal assay
to ensure that the relationship between the MAVE-pro-
duced functional scores and variant function is well
understood (Fig. 1h). For well-studied genes, such as
BRCA1 [8, 9] and TP53 [16–18], extensive orthogonal val-
idation data sets already exist in the literature and these
can be used for comparison. In other cases, orthogonal
functional data sets were generated for the purpose of val-
idating MAVE-derived functional scores [12, 14, 15].
Choosing a set of variants to test from across the full

range of the functional score distribution is critical for
further characterizing the assay’s useful dynamic range
beyond looking at the score distributions described
above. The set should also include variants with a known
effect on molecular function and those with known clin-
ical effects. Sufficient variants should be assessed to
allow the calculation of a quantitative measure of
consistency between the MAVE functional scores and
the validation data (e.g., R2, Spearman’s rho). In some
cases, it may be that some or all of the variants with
known clinical effects tend to have severe functional ef-
fects near the extremes of the observed range. If this is
the case, consistency in this part of the assay’s dynamic
range should be separately assessed because perform-
ance at the extremes may be more variable as a result of
low sequencing depth (Fig. 1b–d).
Recommendation 7: Variants from across the full range

of assay scores should be tested singly in the same and/or
orthogonal functional assay such that a quantitative meas-
ure of consistency can be calculated and reported.

Validation for clinical interpretation
Before MAVE data can be used for clinical variant inter-
pretation, the relationship between the functional scores
and disease association must be confirmed and quantified.

Curating clinical evidence for MAVE validation
Validation for clinical interpretation requires curating a
truth set of interpreted variants, that is, those with an

Gelman et al. Genome Medicine           (2019) 11:85 Page 6 of 11



established clinical effect, from literature or from pub-
licly available databases such as ClinVar. Databases such
as gnomAD [44], Catalogue of Somatic Mutations in
Cancer (COSMIC) [45], OncoKB [46], and the Cancer
Genome Atlas [47] are used to determine the allele fre-
quencies of variants in the general population or in tu-
mors. Although there are some exceptions, germline
variants that have frequencies greater than 0.5% in the
general population are presumed to be benign [48] and
can be used for validation [12, 14]. Some MAVEs have
also been compared with variants described in linked
clinical studies [12].
The number of interpreted variants is typically small

relative to the number assessed in a MAVE, so usually
all of the interpreted variants that are available are used
for validation. Experimentalists should keep in mind,
however, that the quality of data from these sources can
vary, so they should preferentially use variants whose
clinical interpretation is supported by expert panels
(such as 3-Star variants in ClinVar). Another consider-
ation is that, to avoid circularity, interpreted variants
that have been classified on the strength of functional
data should not be used for validation. These consider-
ations are particularly important for the validation of
datasets for genes with relatively few interpreted vari-
ants, as the inclusion of low-quality or inappropriate
data could have an outsized effect on validation metrics.
When possible, collaborating with a clinician trained in
variant interpretation can help experimentalists to build
a robust set of interpreted variants for validation.
Recommendation 8: List all pathogenic and benign

variants chosen for MAVE validation along with their
database of origin and, if possible, their accession num-
bers or publication references.

Determining the predictive value of the multiplexed
functional data
The continuous functional scores generated by a MAVE
are often binned into categories, such as functionally
normal or gain- or loss-of-function, to make them easier
to interpret by users. Functional score ranges for the
bins can be set in a number of ways: an arbitrary cut-off
can be used, or the categories can be defined by signifi-
cant overlap with variants of known molecular function
[8, 14] or clinical effect [10, 12] (Fig. 1j). Then, the pre-
dictive value of these variant categorizations is evaluated
by constructing a receiver operating characteristic
(ROC) or precision-recall curve using the curated set of
validation variants (Fig. 1k). Sensitivity and specificity
values that are based on these categories are the stand-
ard metrics for conveying the clinical utility of a MAVE.
Although they have yet to be used in the context of mul-
tiplexed functional data, positive and negative predictive
values may also be calculated and have the potential to

be more informative because they will account for the
presumably low prevalence of pathogenic variants in
many genes. If all of the underlying data are appropri-
ately reported, end users can calculate the performance
metrics that are most appropriate for their needs.
Even if a MAVE does not perform well according to

some statistical measures of clinical utility, it may still
provide valuable information for variant interpretation.
For example, results from a high-specificity assay may be
used to ‘rule-out’ a variant as being abnormal for that
function even if the sensitivity is modest. In this situation,
the multiplexed functional data set may be very useful in
providing evidence for classifying benign variants, but not
as useful for classifying pathogenic variants. The opposite
may be true of a data set with high sensitivity and modest
specificity. We note that standard cutoffs for acceptable
assay performance (e.g., sensitivity and specificity > 90%)
are based on experience with targeted diagnostic sequen-
cing tests, where a single gene or small panel of genes are
sequenced or assessed for a single variant of interest in pa-
tients in whom the probability that a variant is causative is
relatively high. In a screening context, such as whole gen-
ome or exome sequencing, however, there is a low prob-
ability that any single detected variant is causative. The
appropriate predictive thresholds for such applications will
differ from those that are currently established, and
MAVE standards will need to evolve with clinical stan-
dards for this workflow [49].
We note that the level of validation that is feasible de-

pends on the number of known pathogenic and benign
variants, so an iterative process should be established to
allow the updating of validation metrics as more inter-
preted variants become available, enhancing the lifetime
and applicability of the multiplexed functional data.
MAVEs can be designed to assess a spectrum of mild to

severe phenotypes that are associated with variants in a sin-
gle gene. For example, in a MAVE that measured the phos-
phatase activity of PTEN variants, variants that were
associated with autism spectrum disorder had less severe
functional effects than those associated with PTEN hamar-
toma tumor syndrome [13]. For MAVEs that are designed
to assess variants associated with multiple clinical pheno-
types, each variant should be validated separately.
Recommendation 9: Report the predictive value of

multiplexed functional data in terms of sensitivity and
specificity. Validate and report each gene–disease pair
separately.

Multiplexed functional data as evidence for
variant interpretation
If the above recommendations for data production and
reporting have been followed, and a trustworthy and
transparent multiplexed functional data set has been
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produced, the data can be incorporated with existing clin-
ical and in silico evidence for or against pathogenicity.

Germline variants
Incorporation into the ACMG/AMP variant-interpretation
framework
Multiplexed functional data that meet the above require-
ments can be incorporated into the ClinGen SVI frame-
work [24] for variant interpretation, where the strength
of evidence that can be applied for a specific variant (up
to the ACMG/AMP PS3/BS3) will be determined by the
overall quality of the assay, the quality of the data
reporting, the assay’s predictive power, and the individ-
ual variant score and its confidence interval (Fig. 1l).
Multiplexed functional data that do not meet the above
recommendations for assay design, quality control,
reporting, and validation should be used with caution
and, in general, their evidence strength should be capped
at the supporting evidence level (see decision tree in
Additional file 1: Figure S1). As a multiplexed functional
dataset is re-evaluated with newly interpreted validation
variants, the strength of evidence provided by that data-
set may change.
Clinical workflows are evolving towards quantitative

variant assessment, and multiplexed functional data can
also be incorporated into these new workflows. Recently,
Bayesian odds of pathogenicity (OddsPath)—corre-
sponding to the ACMG/AMP criterion for supporting,
moderate or strong evidence—have been determined
[50], and clinicians and variant curators are encouraged
to move towards the use of more quantitative assess-
ments of variant pathogenicity. An OddsPath can be cal-
culated for multiplexed functional data and incorporated
directly into a Bayesian framework [24] or equated to a
supporting, moderate, or strong evidence level [50] de-
pending on the individual variant’s functional score and
error estimate.
Recommendation 10: The strength of evidence that

can be provided by the multiplexed functional data
should be determined on a variant-by-variant basis that
accounts for both the error associated with the measure-
ments for the specific variant and the overall trustworthi-
ness and predictive power of the assay. Once an evidence
level is determined, it can be incorporated into the
ClinGen SVI and ACMG/AMP variant classification
frameworks like any other functional assay data.

Evidence stacking
We recommend that functional assays should only be
used once as a pathogenic supporting, moderate, or
strong criterion. This is because, in general, it will be
nearly impossible to determine whether the separate
MAVEs are measuring orthogonal or overlapping func-
tions. Concordance between two functional assays for a

variant does add reassurance that functional scores are
robust. Machine-learning models can be used to incorp-
orate functional scores from several different assays that
were applied to the same functional element to predict
an overall variant effect. Initial efforts combining data
from multiple MAVEs that query different functions of
the same protein have shown that the prediction of
pathogenic variants can be improved by integrating the
datasets [7, 11, 16]. The improvements in predictive per-
formance are likely to come from the formation of a
more complete picture of variant effect. These compos-
ite scores should only be used once and should not be
stacked with scores derived from individual functional
assays, or from orthogonal assays that are not included
in the composite score.
Recommendation 11: Do not stack evidence from mul-

tiple MAVEs for the same variant. If multiplexed func-
tional data for the same variant are conflicting, use the
results of the most well-validated assay or do not use
functional data as evidence. A possible exception is sep-
arate splicing and protein functional data that both
point to a variant being functionally normal, which may
be used as independent pieces of evidence in support of a
benign interpretation.

Somatic variants
Variant interpretation is increasingly a standard part of
clinical oncology, especially in tumor types where
genotype-driven therapies are standard-of-care. The
AMP/American Society of Clinical Oncology (ASCO)
guidelines for somatic variant interpretation focus on
the therapeutic and diagnostic or prognostic significance
of the variant [51]. Somatic variants of strong clinical
significance, Tier I, can be used to predict response or
resistance to US Federal Drug Administration (FDA)-ap-
proved therapies, both on- (Level A) or off-label (Level
B). Tier II variants, which are of potential clinical signifi-
cance, can be used as inclusion criteria for clinical trials
of investigational treatments. Tier III variants are vari-
ants of uncertain (or unknown) significance (VUS) and
should not be used alone to determine clinical signifi-
cance. Tier IV variants have no evidence that suggests a
role in cancer and are considered benign. The AMP/
ASCO guidelines do not specifically define a role for
functional data, although they can be used as evidence
supporting Tier I, II, and IV classifications.
Although specific guidelines for the use of functional

evidence for somatic variant interpretation have yet to
be written, one could imagine that prospective maps of
all possible resistance mutations in a drug target would
provide valuable information, or that the identification
of all possible loss-of-function variants in tumor sup-
pressors would help to inform the interpretation of both
somatic and germline variants. In addition, the bar for
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including functional data as evidence for somatic-variant
interpretation may be lower than it is for germline vari-
ants, as the patients are already under treatment for a
known disease. Nevertheless, assay quality, reporting,
and validation requirements should not be loosened for
somatic targets. FAIR result reporting is possibly more
important for somatic variants than for germline vari-
ants: as more tumor sequencing is conducted, validation
metrics can be updated in the light of post-publication
re-analysis of multiplexed functional data.
Recommendation 12: MAVEs directed at somatic vari-

ants should follow all of the above assay design, data qual-
ity, and reporting guidelines. As interpretation standards for
somatic variants evolve, and an increasing number of clinic-
ally relevant somatic variants are reported, datasets follow-
ing these standards will be well-positioned for re-analysis.

Future directions
The development of MAVE methods is a fast-moving
field. In the near future, we envision vast improvements
in machine-learning methods to predict functional ef-
fects for unseen variants and in new assays to gain ac-
cess to additional cellular phenotypes.

Machine learning models for imputation
The large amounts of data generated by a MAVE are a nat-
ural starting point for machine-learning models that can
predict missing functional scores, or that could even be ap-
plied to genes without multiplexed functional data. Indeed,
multiplexed functional scores—along with structural infor-
mation, physiochemical properties, and evolutionary infor-
mation—have already been used to impute scores for
variants that were not measured in the assay [10, 52]. These
imputed scores lie somewhere between empirical functional
scores and in silico data, which are limited to being used as
supporting evidence in the ACMG/AMP framework.
The performance of these predictive models is promis-

ing, and in some cases, the correlations between the im-
puted scores and known functional effects are similar to
correlations with measured scores. Eventually, confi-
dence in imputed scores could be high enough that they
could be used as strong evidence for variant interpret-
ation. Currently, however, imputed scores should be
kept separate from measured scores and should be used
similarly to other in silico data (i.e., the strength of evi-
dence should be capped at the supporting level). New
standards will be needed to address how the results of
such models for missing data can be incorporated into
cohesive variant classification workflows.

The next generation of MAVEs
To date, MAVEs have queried simple cellular pheno-
types such as gene expression, cell growth, or reporter
activation. Although fruitful, these first efforts ignore

many complex cellular phenotypes that are currently im-
possible to interrogate in a multiplex fashion. The
current assays are not informative in deciphering
variant-specific effects on a cell’s biology. For example,
we might learn that a variant is required for cell survival
or reporter activation, but it would be more valuable to
understand whether the cell remodels signaling path-
ways when expressing a variant, or whether it upregu-
lates a gene that could be targeted by a drug or that
causes a change in the differentiated state of the cell.
The next generation of MAVEs will allow access to more
phenotypes, such as cell morphology, behavior, differen-
tiation, and transcriptional state. The increased informa-
tion content generated by these new assays will require
new statistical frameworks to relate these more complex
readouts to disease relevance.

Conclusions
There is a noticeable gap between the large amount of
data being generated by MAVEs and the small amount
that has been used for the clinical interpretation of vari-
ants. We brought experimentalists and clinical geneti-
cists together to identify barriers that were precluding
the use of multiplexed functional data and to develop a
set of recommendations to help close the gap.
First, we determined that experimentalists were not val-

idating and communicating their data sets in a way that
led to the transparency and rigor required for clinical up-
take. We addressed these shortcomings with recommen-
dations for assay design and reporting (Recommendations
1–5), data quality control (Recommendations 6 and 7),
and validation for clinical interpretation (Recommenda-
tions 8 and 9). In addition, we supply a checklist in Add-
itional file 1: Figure S1 for experimentalists to use as a
template to ensure that their multiplexed functional data
are thoroughly reported, tightly controlled, and well vali-
dated. Our hope is that completed checklists will also
serve as a document that variant curators use to assess ad-
herence to our recommendations and the clinical utility of
their data, thus making the data easier to use.
Second, like other groups, we found that there was

confusion regarding the application of the ACMG/
AMP’s PS3/BS3 criterion for using ‘well-validated func-
tional data’ in variant interpretation frameworks. The
ClinGen SVI Working Groups’ updated recommenda-
tions [24] provide a much clearer picture of what a
‘well-validated assay’ actually looks like and, importantly,
communicate that not all functional data will reach the
level of strong evidence. Here, we expanded upon those
recommendations as they pertain to multiplexed func-
tional data (Recommendations 9–11). To aid this
process, we also provide a decision tree in Additional file
1: Figure S1 so that clinicians and variant curators can
use assay-level (provided in Additional file 1: Table S1)
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and variant-level (provided by the variant score and/or
categorization) information to determine the appropriate
strength of evidence provided by multiplexed functional
data for variant interpretation. Our hope is that by com-
bining the two sets of recommendations, multiplexed
functional datasets will be more readily incorporated
into the ACMG/AMP variant-interpretation framework.
An explosion in clinical genetic sequencing is resulting

in a rapid increase in observed genetic variation, but
with a much smaller increase in variants that have a
known impact on patient health, disease progression, or
treatment. The generation of multiplexed functional data
for disease-relevant genes provides a way forward—evi-
dence for a clinical interpretation of newly observed or
rare variants can be provided by prospective evaluation
of a variant’s effect on gene function. Our recommenda-
tions seek to bridge the gap between multiplexed func-
tional data and existing clinical variant-interpretation
frameworks, so that multiplexed functional data can be
combined with other sources of evidence to more rap-
idly assign a meaningful clinical interpretation to a larger
number of observed variants.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13073-019-0698-7.

Additional file 1: Table S1. A checklist for experimentalists to create
complete data sets. Figure S1. A decision tree for using multiplexed
functional data in clinical variant interpretation.
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