Sevim Bayrak et al. Genome Medicine (2020) 12:9

https://doi.org/10.1186/513073-019-0709-8

Genome Medicine

Check for
updates

De novo variants in exomes of congenital
heart disease patients identify risk genes
and pathways

Cigdem Sevim Bayrak', Peng Zhang?, Martin Tristani-Firouzi®, Bruce D. Gelb**®" and Yuval Itan"®""

Abstract

Background: Congenital heart disease (CHD) affects ~ 1% of live births and is the most common birth defect.
Although the genetic contribution to the CHD has been long suspected, it has only been well established recently.
De novo variants are estimated to contribute to approximately 8% of sporadic CHD.

Methods: CHD is genetically heterogeneous, making pathway enrichment analysis an effective approach to explore
and statistically validate CHD-associated genes. In this study, we performed novel gene and pathway enrichment

analyses of high-impact de novo variants in the recently published whole-exome sequencing (WES) data generated
from a cohort of CHD 2645 parent-offspring trios to identify new CHD-causing candidate genes and mutations. We

performed rigorous variant- and gene-level filtrations to identify potentially damaging variants, followed by

enrichment analyses and gene prioritization.

Results: Our analyses revealed 23 novel genes that are likely to cause CHD, including HSP90AAT, ROCK2, IQGAP],
and CHD4, and sharing biological functions, pathways, molecular interactions, and properties with known CHD-

causing genes.

Conclusions: Ultimately, these findings suggest novel genes that are likely to be contributing to CHD

pathogenesis.
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Background

Congenital heart disease (CHD) is the most common
type of birth defect affecting ~ 1% of births. There have
been increasing efforts to elaborate genetic variation
underlying CHD using the advances in high-throughput
genomic technologies. De novo variants (DNVs) have
been shown to play a major role in severe, early-onset
genetic disorders such as neurodevelopmental disorders
and CHD, and their contribution in sporadic CHD has
been estimated as nearly 8%, increasing to 28% for indi-
viduals with CHD plus extra-cardiac anomalies and/or
neurodevelopmental delays [1-4]. The genetic causes of

* Correspondence: yuvalitan@mssm.edu

"Bruce D. Gelb and Yuval Itan contributed equally to this work.

YInstitute for Personalized Medicine, Icahn School of Medicine at Mount
Sinai, New York, NY, USA

Department of Genetics and Genomic Sciences, Icahn School of Medicine at
Mount Sinai, New York, NY, USA

Full list of author information is available at the end of the article

K BMC

sporadic CHD, the most common form of CHD, remain
largely unknown [5, 6].

Exome sequencing studies of parent-offspring trios
have been successful in providing insights into DNVs
and identifying causal genes, therefore extending our un-
derstanding of mechanisms underlying human diseases
[4, 7]. In recent studies of CHD trios enrolled in the
Pediatric Cardiac Genetics Consortium (PCGC) [8], sig-
nificant enrichment for genes related to histone modifi-
cation,  chromatin  modification,  transcriptional
regulation, neural tube development, and cardiac devel-
opment and enrichment in pathways including Wnt,
Notch, Igf, HDAC, ErbB, and NF-«B signaling have been
reported [1-3]. A comprehensive analysis of WES data
of a single large CHD cohort (2871 probands including
1204 previously reported trios) was recently performed,
where rare inherited recessive and dominant variants
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were analyzed by comparing observed and expected
numbers estimated from the de novo probabilities [9].

In the present study, we followed a pathway-level
approach, which is complementary to the previous
approaches of using DNVs to estimate variant rates
or to perform gene-level case-control analysis. We
performed enrichment analyses on the genes of
high-impact DNVs of the same cohort of trios, aim-
ing to identify pathways/networks altered in CHD
and novel CHD-causing genes by investigating their
shared biological functions, molecular interactions,
and properties with known CHD-causing genes. We
first rigorously filtered the DNVs in the CHD co-
hort exomes to determine potentially deleterious
ones based on several variant- and gene-level cri-
teria. We then applied enrichment analyses and
gene prioritizations based on biological networks,
pathways, relatedness to known CHD-causing genes,
and heart development tissue expression levels
(Fig. 1). We used WES data of 1789 control trios to
evaluate the statistical significance of our findings.
Assessment of overlapping findings based on several
supporting evidence scoring metrics suggested 23
plausible novel genes contributing to CHD.
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Methods

Patient subjects

De novo variants in patients of CHD and controls were
obtained from the recent study of the Pediatric Cardiac
Genomics Consortium (PCGC) on a large CHD cohort
[9]. We studied 2675 CHD parent-offspring trios re-
cruited to the PCGC and the Pediatric Heart Network
(PHN) programs and 1789 control trios comprising par-
ent and unaffected siblings of autism. Each participating
subject or their parent/guardian provided informed
consent.

PCGC subjects were selected for structural CHD (ex-
cluding PDA associated with prematurity, and pulmonic
stenosis associated with twin-twin transfusion) and were
recruited to the Congenital Heart Disease Genetic Net-
work Study (CHD GENES) [8]. PHN subjects were
chosen from the DNA biorepository of the Single Ven-
tricle Reconstruction trial [10]. Controls included 1789
previously analyzed families that include one offspring
with autism, one unaffected sibling, and unaffected par-
ents [11]. The permission to access to the genomic data
in the Simons Simplex Collection (SSC) on the National
Institute of Mental Health Data Repository was obtained.
Written informed consent for all participants was
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provided by the Simons Foundation Autism Research
Initiative [12]. Only the unaffected sibling and parents
were analyzed in this study. Controls were designated as
unaffected by the SSC [11].

Our validation cohort consisted of 559 CHD parent-
offspring trios recruited to the PCGC’s CHD GENES
whose DNAs had been subjected to WES similar to the
discovery case cohort.

The ethnicity and sex distributions of cases and con-
trols are given in Additional file 1: Table S1. Samples
with known trisomies or CNVs that are known to be as-
sociated with CHD were excluded. Cases include pheno-
types with and without extracardiac manifestations or
neurodevelopmental deficiency. CHDs were divided into
five categories (Additional file 1: Table S2): (i) conotrun-
cal defects (CTD), (ii) d-transposition of the great arter-
ies (d-TGA), (iii) heterotaxy (HTX), (iv) left ventricular
outflow tract obstruction (LVO), and (v) other [9].

Identification of de novo variants

All samples were sequenced at the Yale Center for Gen-
ome Analysis following the same protocol as previously
described [1]. Genomic DNA from venous blood or sal-
iva was captured using the Nimblegen v.2 exome capture
reagent (Roche) or Nimblegen SeqxCap EZ MedExome
Target Enrichment Kit (Roche) followed by Illumina
DNA sequencing. WES data were processed using two
independent analysis pipelines at Yale University School
of Medicine and Harvard Medical School (HMS). At
each site, sequence reads were independently mapped to
the reference genome (hgl9) with BWA-MEM (Yale)
and Novoalign (HMS) and further processed using the
GATK Best Practices workflows [13-15]. Single nucleo-
tide variants and small indels were called with GATK
HaplotypeCaller and annotated using ANNOVAR,
dbSNP (v138), 1000 Genomes (August 2015), NHLBI
Exome Variant Server (EVS), and ExAC (v3) [16, 17].
The MetaSVM algorithm, annotated using dbNSFP (ver-
sion 2.9), was used to predict deleteriousness of missense
variants using software defaults [18, 19]. Variant calls
were reconciled between Yale and HMS before down-
stream statistical analyses.

Relationship between proband and parents was esti-
mated using the pairwise identity-by-descent (IBD) cal-
culation in PLINK [20]. The IBD sharing between the
proband and parents in all trios was between 45 and
55%, as expected.

DNVs were called by Yale using the TrioDenovo pro-
gram [21] and filtered yielding a specificity of 96.3% as
previously described [2]. These hard filters include (i) an
in-cohort minor allele frequency (MAF) <4 x 107% (ii) a
minimum 10 total reads, 5 alternate allele reads, and a
minimum 20% alternate allele ratio in the proband if al-
ternate allele reads > 10, or if alternate allele reads is <
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10, a minimum 28% alternate ratio; (iii) a minimum
depth of 10 reference reads and alternate allele ratio <
3.5% in parents; and (iv) exonic or canonical splice-site
variants.

The observed and expected rates for presumably be-
nign synonymous DNVs showed no enrichment in cases
or controls [9]. The rate of synonymous DNVs in cases
was not different from that in controls.

The gene sets

The genes in which coding mutations cause isolated or
syndromic CHD used in this study are referred to as
known CHD-causing genes and include both human and
mouse CHD genes. The human CHD gene set was
manually curated by members of the Pediatric Cardiac
Genomics Consortium [1, 2]. To generate the mouse
CHD gene set, mammalian phenotype ontology (MPO)
terms potentially relevant to CHD were identified. These
were reviewed to remove cardiovascular terms not spe-
cific to CHD, such as cardiac dilation/hypertrophy, ar-
rhythmias, and coronary artery disease [22]. Data on the
mouse strains associated with these MPO terms (n =
1020) were obtained from MouseMine dataset (http://
www.mousemine.org/mousemine/). Only single-gene
transgenic mutant mouse strains were kept (n=730),
and these mouse genes were converted to their human
orthologs (1 =728) based on data downloaded from the
Mouse Genome Informatics (MGI) (ftp://ftp.informatics.
jax.org/pub/reports/ HOM_MouseHumanSequence.rpt).

Mouse CHD genes were not split based into recessive/
dominant because there was no concordance between
autosomal dominant human CHD genes and mouse zy-
gosity (of the 50 monoallelic human CHD genes with
mouse models, only 20 have CHD observed on a hetero-
zygous background).

Another set of genes used in this study is the top quar-
ter of expressed genes during heart development (high
heart expression, HHE genes), which was identified by
RNA sequencing of mouse hearts at embryonic day
E14.5 [1, 2].

Statistical analysis

To identify potentially damaging mutations, we applied
several filtering steps based on molecular class, allele fre-
quency, intolerance to mutations, functional impact, and
the number of variants in cases and controls. Here, it is
important to note that the aim of this filtering strategy
was to identify a set of variants that were highly likely to
be pathogenic and the filtered-out variants were not ne-
cessarily benign.

The synonymous variants were filtered out from our
analyses by giving priority to frameshift, nonsense, ca-
nonical splice site, start loss, missense, and non-
frameshift insertion—deletion variants.
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Functional variants with MAF <0.001 across all sam-
ples in the Exome Aggregation Consortium (ExAC), the
NHLBI Exome Sequencing Project (ESP), the Genome
Aggregation Database (gnomAD), and the 1000 Ge-
nomes Project were examined by ANNOVAR [15-17,
23]. Variants whose frequency data were not available in
any of the databases were also taken into consideration.

We evaluated intolerance of genes to mutations using
the gene damage index (GDI) that provides an estimate
for the accumulated mutational damage of each gene in
the general population and helps to filter out highly
damaged genes as those unlikely to be disease causing
[24]. The genes with high GDI were filtered out from
our dataset.

To improve the use of common variant-level methods
that use a standard cut-off values across all genes, such
as the Combined Annotation Dependent Depletion
(CADD) score [25], we used the mutation significance
cut-off (MSC) method with 95% confidence interval (CI)
which provides gene-level and gene-specific low/high
phenotypic impact cut-off values [26]. Since the variants
with CADD>MSC predicted scores suggest high func-
tional effect, we filtered out the variants with CADD
score below the MSC.

As a last step of filtration, the variants that were spe-
cific to the cases were determined by comparing the
number of variants in cases to the number of variants in
controls in each gene. Here, we tried several different
approaches to decide how stringent a filter was appro-
priate for our data: (a) applying Fisher’s exact test on all
genes, (b) applying Fisher’s exact test on only cases
genes, (c) allowing all variants that are absent from
controls, and (d) considering the genes in which 75 —
Hcontrols = 2, where n is the number of variants. All
approaches except for (d) did not show statistical signifi-
cance in pathway analysis due to the small number of
genes in cases that account for the likely genetic hetero-
geneity of CHD. Thus, we used (d) for the analyses
described in this study.

Similar filtration steps, (i) removing synonymous, (ii)
MAF <0.001, (iii) low or medium GDI, (iv)
CADD>MSC, and (V) Heontrols — Meases = 2, were applied
to the controls’ data.

DNVs occurring on X chromosome with X-linked re-
cessive inheritance pattern were excluded from the
analysis.

Function, pathway, and network analysis

We investigated enrichment of variants in Gene Ontol-
ogy (GO) terms and biological pathways using InnateDB,
version 5.4 data analysis tool [27]. InnateDB performs a
hypergeometric distribution test to find over-represented
GO terms and pathways (imported from KEGG, Net-
Path, PID NCI, Reactome, INOH, and PID BioCarta)
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that are represented more than would be expected by
random chance [28-33]. The NetworkAnalyst tool on
String Interactome was applied with high-confidence
(score >0.9) to determine the interconnected subnet-
works of protein-protein interactions (PPIs) [34, 35].
Additionally, Ingenuity Pathway Analysis (IPA) software,
version 49309495  (http://www.qiagen.com/ingenuity)
was used for identifying statistical significance of canon-
ical pathways, diseases, biological functions, and
networks that were most relevant to the input genes. To
adjust the false discovery rate, the Benjamini-Hochberg
(B-H) correction method was applied to the p values in
all analyses. IPA analysis included the following parame-
ters: (i) Ingenuity Knowledge Base (genes only) was used
as the reference set, both direct and indirect relation-
ships are considered; (ii) endogenous chemicals were
included in networks interaction, the number of mole-
cules per network was selected as 140, and the number
of networks was selected as 25; (iii) all node types and
all data sources were used; (iv) only experimentally
observed information was considered; (v) molecules and
interactions were limited to human only; (vi) molecules
and relationships were selected from all tissues and cell
lines; and (vii) all mutation findings were used.

Biological distance calculations

The human gene connectome (HGC) is tailored to
prioritize a given list of genes by their biological proxim-
ity to genes that are known to be associated with a
phenotype of interest [36]. The biological proximity is
defined by in silico predicted biologically plausible
routes, distances, and degrees of separation between all
pairs of human genes and calculated by a shortest dis-
tance algorithm on the full network of human protein-
protein interactions. Since the causal genes of a specific
phenotype are generally closely related via core genes or
pathways, we determined the genes within the top 1% of
each candidate gene’s connectome.

Candidate gene prioritization
A priority score was defined to rank the genes based on
their proximity to the known CHD-causing genes. For a
given candidate gene, the score was the total number of
known disease-causing genes in (i) the significantly
enriched pathways (IPA canonical pathways, InnateDB
pathways, GO terms); (ii) the networks (IPA network of
cardiovascular diseases and PPI network); and (iii) the
top 1% of genes connectome (significant proximity to
the gene with p < 0.01) based on HGC. After ranking the
candidate genes based on their priority scores, their ex-
pression levels during heart development were also
taken into consideration.

To assess whether the known CHD-causing genes
have higher priority scores as expected, we performed an
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independent two sample ¢ test. We randomly selected
100 known CHD-causing genes and 100 genes from our
filtered control set among the genes having more vari-
ants in controls than cases (Mcontrols > Acases), and com-
pared the scores of two samples.

To test our gene candidates, we performed ToppGene
suite and ranked the genes based on functional similarity
to known CHD genes [37]. ToppGene first generated a
representative profile from the training genes (known to
be CHD-associated genes) based on functional proper-
ties such as gene expression, protein domains, protein
interactions, gene ontologies, pathways, drug-disease as-
sociations, transcription factor-binding sites, and micro-
RNAs, and then compared the candidate gene set to this
profile. All available features were used with default test
parameters. The genes were ranked based on their simi-
larity to the known CHD-causing genes by calculating p
values.

Prediction of functional effects on proteins

Functional effects of amino acid substitutions were pre-
dicted using PROVEAN vl1.1 that uses sequence
alignment-based scoring and SNAP2 that is based on a
variety of sequence and variant features [38, 39]. Both
methods evaluate the effect of an amino acid substitu-
tion on protein function.

The PROVEAN score measures the change in sequence
similarity of a given protein sequence to a protein se-
quence homolog before and after the variant occurs where
the sequence similarity is computed by an amino acid sub-
stitution matrix. A score equal to or below a predefined
threshold (default threshold = - 2.5) is considered to indi-
cate a “deleterious” effect, and a score above the threshold
is considered to indicate a “neutral” effect.

SNAP2 is a machine learning classifier based on a var-
iety of sequence and variant features including the evo-
lutionary information taken from multiple sequence
alignment, secondary structure, and solvent accessibility.
The predicted score ranges from —100 (strong neutral
prediction) to +100 (strong effect prediction) and indi-
cates the likelihood of variant to alter the protein
function.

The intolerance of protein domains to functional vari-
ants was calculated using subRVIS [40]. SubRVIS calcu-
lates a rank for sub-regions of gene by their intolerance
to functional variation. The sub-regions can be either
defined as protein domains based on conserved domain
sequences or exons. While a lower score indicates a
more intolerant sub-region, a higher score indicates a
more tolerant sub-region.

Prediction of exonic splicing enhancers
We applied our in-house software to identify if the gen-
etic variants were located in exonic splicing enhancers
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(ESEs) close to the canonical splice sites. There were in
total 2341 ESE motifs collected from RESCUE-ESE,
PESX, and SpliceAid [41-43]. By removing 16 duplicated
ESEs from different resources, a collection of 2325 ESE
motifs was retained for further analysis of our variants.

Optimizing case-control ratio

Since the numbers of cases and controls were not equal
(127 genes with 320 variants in cases and 36 genes with
73 variants in controls), we also tested our analysis on
an extended control set. We randomly selected 91 genes
from the 769 genes in controls where #¢ontrols — Mcases = 1
and increased the size of the control set to 127 genes
with 164 variants.

Results

Selection of de novo variants for analyses

We applied variant-level and gene-level filtrations on
DNVs observed in 2645 CHD trios and 1789 controls.
For the variant-level analysis, we filtered DNVs based
on (i) functional effect, (ii) allele frequency, and (iii)
phenotypic impact. For the gene-level, we filtered
genes based on (i) accumulated mutational damage
and (ii) the difference in the mutational burden be-
tween cases and controls (described in the “Methods”
section). The results included 127 genes (320 variants)
in cases and 36 genes (73 variants) in controls that
we further explored in our analyses (Fig. 1a, b, Add-
itional file 1: Tables S2 and S3). Notably, 232/320
variants were missense mutations (37 nonsense, 36
frameshift, 14 splicing mutations, and 1 start-loss)
(Additional file 2: Figure S1). Among cases, 282 had
only one predicted damaging DNV and 19 had two
predicted damaging DNVs. In controls, 65 samples
had only one predicted damaging DNV and four sam-
ples had two predicted damaging DNVs.

Gene enrichment and pathway analyses

CHD DNVs are enriched in signaling pathways

In enrichment analyses, genes sets are tested for over-
representation of shared biological or functional
properties as defined by the reference databases; hence,
the results depend on the database used in the analysis
[44, 45]. As no single database covers all known pathway
genes, a comprehensive interpretation of the results
requires analyses be performed on several complemen-
tary databases. For example, while Ingenuity Pathway
Analysis (IPA) software (QIAGEN Inc., https://www.qia-
genbioinformatics.com/products/ingenuity- pathway-
analysis) uses its own curated database, InnateDB uses
major public databases (e.g., KEGG, Reactome) as re-
sources [27, 28, 31]. Hence, to achieve a deeper under-
standing of the 127 genes in cases, we performed
pathway analyses using both tools.
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We found 99 statistically significant canonical pathways
(with a large proportion of biological overlap) by false dis-
covery rate (FDR < 0.05) using IPA. The most significant
pathways included the protein kinase A signaling (PKA)
pathway, which is known to be associated with cardiac re-
modeling and arrhythmias [46, 47] (FDR =2.29 x 107%),
regulation of the epithelial-mesenchymal transition
(EMT), which plays crucial roles including for heart mor-
phogenesis during development [48, 49] (FDR =4.57 x
107, and nitric oxide signaling in the cardiovascular sys-
tem [50] (FDR=1.55x10"%) (Fig. 2, Additional file 3:
Table S4). Overall, our results indicate significant enrich-
ment of signaling pathways including Notch, ErbB and
NEF-«B signaling pathways that recent studies have associ-
ated with CHD [2, 3], as well as opioid, neuregulin, gap
junction, VEGF, and FAK signaling pathways that were
previously associated with heart disease [51-57].

The pathway analysis using InnateDB returned 211
over-represented pathways (with a large proportion of
biological overlap) (FDR < 0.05), including VEGF, GPCR
metabotropic glutamate receptor, PDGFR-beta, ERK,
Notch, Igf, and NGF, affirming enrichment in signaling
pathways (Additional file 3: Table S5). The most signifi-
cant pathway was identified as focal adhesion (FDR =

Page 6 of 18

1.72 x 10™*), which was found enriched by IPA as well
and is known to have an important role in cellular dif-
ferentiation and migration during cardiac development
[56, 58, 59]. Another significantly enriched pathway was
axon guidance (FDR=0.0026). Slit-Robo signaling is
known to have roles in axon guidance and has been sug-
gested to be involved in heart development. Netrins, a
class of axon guidance molecules, have also been sug-
gested to have roles in cardiovascular biology and dis-
ease including angiogenesis [60—63].

Over-represented Gene Ontology (GO) terms
included heart development (FDR =8.96 x 107%), axon
guidance (FDR =0.0011), pulmonary valve
morphogenesis (FDR =0.0018), chromatin binding
(FDR =0.0017), Notch signaling involved in heart de-
velopment (FDR =0.0035), histone-lysine-N-methyl-
transferase activity (FDR=0.0035), and in utero
embryonic development (FDR=0.0053) (Additional
file 3: Table S6). Histone-modifying genes and chro-
matin binding have been previously implicated to
have a role in heart diseases [1, 64—66]. Interestingly,
among the ten genes associated with the GO term
heart development, only CAD had not been related to
CHD previously.

Canonical Pathways
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Fig. 2 Top canonical pathways found in 127 genes in cases by the Ingenuity Pathway Analysis (IPA). Orange dashed line indicates the p value =
0.05 threshold. Only the top 15 pathways with FDR < 7 x 107> are shown. See Additional file 3: Table S4 for all data
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No enrichment was detected in the extended control set
We did not identify any significant GO term or signaling
pathway enriched in the control genes using IPA. By
InnateDB, only five pathways had FDR < 0.05 (Additional
file 3: Table S7). To check if the lack of enrichment in
controls data could be attributable to smaller number of
variants, we repeated all pathway enrichment analyses
on an extended control set of the same size as for the
cases, 127 genes with 164 DNVs (see the “Methods” sec-
tion). Filtered DNVs in the extended control set did not
show any significantly enriched canonical pathway by
IPA. There were only one statistically significant Reac-
tome pathway (FDR =0.0027), transport of inorganic
cations/anions and amino acids/oligopeptides, and no
significant GO terms found by InnateDB in the extended
control set. The lack of pathway enrichments in the con-
trols group suggests the specificity of our results to
CHD.

Enrichment in cardiovascular disease categories

To investigate the causal relatedness between the identi-
fied genes and biological functions/diseases, we analyzed
the IPA-predicted top enriched diseases/functions cat-
egories (FDR < 0.05) and observed cardiovascular disease
as a highly significant disease category in CHD cases
(FDR = 5.36 x 107*%) (Additional file 3: Table S8). Among
the disease subcategories under “cardiovascular disease”
category, familial cardiovascular disease was the most
enriched. As the biological function/disease categories
have a hierarchical nature, the following enriched car-
diovascular disease subcategories give more specific in-
formation on candidate genes. For example, while
CDK13, CHD4, KDMS5A, and SCN10A are related to fa-
milial heart disease, CFH, DGUOK, and POLE are re-
lated to familial vascular disease. In contrast, the only
statistically significant cardiovascular disease in controls
was the branching morphogenesis of vascular endothelial
cells with FDR=0.013, and involved only the gene
PTPR]. Taken together, these results suggest that the
candidate CHD genes are enriched in phenotypes that
are closely associated with CHD.

A high-confidence subnetwork associated with
cardiovascular disease

In addition to pathways that describe a specific bio-
logical function and gene ontologies that describe gene
functions, we also analyzed biological networks that de-
scribe biological relationships and interactions between
biomolecules to further explore significant gene-CHD
associations. IPA identified two significant subnetworks
for cases with p values of 107> and 10™*°, indicating en-
richment of interactions and biological relatedness be-
tween the genes (Additional file 3: Table S9a). The
network with the most significant p value (p=10"%°)
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included 56 genes from our input gene set (or “focus
genes” as defined by the IPA), and interestingly, the net-
work genes were found associated with cardiovascular
disease, hereditary disorder, and organismal injury and
abnormalities (Fig. 3). Notably, 26/56 genes are known
CHD-causing genes (p <10~ by chi-squared test, com-
paring to 187/2504 in all cases genes). The second sig-
nificant subnetwork (p = 107*) included 36 focus genes
and was associated with cancer, cellular development,
and cellular growth and proliferation disorders. In con-
trols, the most significant subnetwork (p=107%) in-
cluded 22 focus genes and was associated with cell death
and survival, cellular movement, and connective tissue
development and function disorders. We did not identify
a network related to cardiovascular disease among the
control genes or in the extended control set.

We also generated a protein-protein interaction net-
work by the NetworkAnalyst tool on the String Interac-
tome (Additional file 3: Table S9b) to verify our results
and determined a subnetwork of 149 genes including 58
input genes using the minimum network option with
P=25x10"" [34, 35] (Fig. 4). Despite the fact that this
network was generated based only on direct protein-
protein interactions (PPIs), unlike the IPA network for
which both direct and indirect interactions between all
biomolecules are considered, there was a large overlap
between the two networks (39 common genes). Further-
more, the most significant GO biological process term
found in this subnetwork was heart development (FDR =
551 x 107%), followed by circulatory system develop-
ment (FDR =1.71x1077) [34]. Considering all of these
findings, we suggest that involvement in a network asso-
ciated with cardiac disease with a significant number of
interactions supports the role of candidate network
genes in CHD.

Validation of the enrichment results in cases

To assess our findings in the cases, we repeated our
analysis on an independent CHD cohort comprising
559 parent-offspring trios with a total of 977 de novo
variants. After following the same variant filtering
method that we applied on cases and controls (de-
scribed in the “Methods” section), we identified 30
genes (with 54 DNVs) to further analyze (Additional
file 4: Table S10). Despite the smaller sample size, we
again observed enrichment in signaling pathways in-
cluding opioid, netrin, protein kinase A, and axonal
guidance, as well as enrichment in GO terms includ-
ing blood vessel development and embryonic heart
tube development (Additional file 4: Tables S11-S13).
The most significant network identified by IPA (p=
107 included 26 genes and was associated with car-
diac dysfunction, cardiovascular disease, and organis-
mal injury and abnormalities (Additional file 4: Table
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S14a). We further explored our findings by randomly
selecting 30 genes from the unfiltered dataset of 559
samples and repeating the enrichment analyses. In the
random set of genes, we did not identify any signifi-
cantly enriched pathway, or a network related to car-
diovascular disease. There were only some GO terms
with FDR > 0.04 including a single gene, which were
not significantly enriched in the cases (Additional file
4: Table S15). These results validated that our

approach is effective in identifying CHD-related gene
pathways and networks.

Candidate novel CHD-causing genes

Our gene enrichment analysis results revealed that
some genes that were not among currently known
CHD-causing genes (see the “Methods” section)
were involved in multiple significantly enriched
pathways and in a network of cardiovascular disease
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together with known CHD-causing genes. Since we
have applied relaxed criteria to allow analyses of
additional genes, these genes had a low number of
hits (2 or 3), while the genes with higher number of
hits (> 5) were all known genes (KMT2D: 16, CHD?7:
15, PTPN11I: 10, and NOTCHI: 6) (Additional file 5:
Table S16). To identify the most plausible novel
CHD-causing gene candidates, we performed sys-
tematic analyses by considering involvement in
enriched pathways, connections in the biological
networks, and expression levels during heart
development.

Gene prioritization
To assess novel candidate CHD-causing genes suggested by
the enrichment analyses in the previous section, we defined
a priority score (see the “Methods” section), where a higher
score indicates the gene’s connectivity to a high number of
known CHD-causing genes through (i) multiple significant
pathways (FDR < 0.05) [27-33, 67], (ii) multiple significant
networks [34, 67, 68], and (iii) the Human Gene Connec-
tome (HGC) [36]. We also checked if the candidate gene
was highly expressed during heart development (Additional
file 5: Table S16) [1, 2]. Pathway and network analysis have
been effectively integrated in candidate gene prioritization
by different methods based on the rationale that disease-
associated genes/proteins interact with each other [69-71].
Similarly, the biological distance between candidate genes
and known disease-causing genes is shown to be an effi-
cient measure for gene prioritization [72]. Altogether, these
analyses that are based on different heterogenous data types
and data sets provided partially overlapping and comple-
mentary information, resulting in prioritizing the plausible
candidate genes based on the combined evidence of their
biological relatedness to the known CHD-causing genes.
Among all 127 case genes that we identified, 95 were
not previously associated with CHD and 41 of them
were also highly expressed during heart development.
The Circos plot [73] of genes in cases with respect to
the scores is shown in Fig. 5a. The 32 known CHD-
causing genes had scores ranging between 105 and 960.
Among the 95 CHD-causing candidate genes, 38 had
scores ranging between 109 and 422, falling into the
same range of the scores of known CHD-causing genes.
To test our scoring method, we performed an independ-
ent samples ¢ test to compare scores of 100 randomly se-
lected known CHD-causing genes and 100 randomly
selected control genes. The 95th percentile confidence
intervals for the scores of the CHD-causing and control
genes were 443-608 and 20-25, respectively. There was
a significant difference in the scores of known CHD
genes (mean = 525.59, sd =421.5) and scores of controls
(mean =22.54, sd=11.6); t=11.86, p=955x10"2.
Among the 38 candidate genes, 23 were highly expressed
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in embryonic mouse heart [1] (Fig. 5b), adding to their
plausibility. The genes HSP90AAI, ROCK2, IQGAPI,
and CHD#4 were on the top of the list. Among 23 candi-
date genes, damaging DNVs in nine of them (ROCK2,
CHD4, KDMS5A, APBBI1, USP4, PYGL, CAD, BODILI,
and GANAB) were found in syndromic CHD patients, in
three of them (HSP90AAI, IQGAPI, and TJP2) were
found in isolated CHD patients, and remaining were
found in either both types of CHD or those with un-
known phenotype status (Additional file 5: Table S16).
Interestingly, there were two loss-of-function heterozy-
gous mutations in HSP90AAI as reported in the previ-
ous study on the same cohort [9]. Additional file 2:
Figure S2 shows the phylogenic tree based on HGC bio-
logical distances between the 95 novel candidate genes
and 32 known CHD-causing genes among the 127 fil-
tered case genes. Most of the candidate genes with high
scores were scattered among the branches of known
CHD-causing genes, while the genes with low score were
clustered as an outgroup, further supporting the plausi-
bility for functional relevance of these candidate genes
to CHD.

To investigate if considering mouse CHD genes as
known CHD-causing genes had an impact on our re-
sults, we repeated our analysis with only human CHD
genes as the known genes. All novel candidate genes
were again ranked at top of the list along with nine
mouse CHD genes (see Additional file 5: Table S17). We
further calculated the average biological distance of can-
didate genes with respect to human CHD genes only
(mean = 13.36, sd =4.27) and mouse CHD genes only
(mean = 13.04, sd =4.17). The average distances showed
no significant difference (independent ¢ test, t = 0.57, p =
0.56) when using human or mouse CHD genes (Add-
itional file 5: Table S18), supporting the notion that
mouse CHD genes were plausible to use in this study.

Tissue enrichment in candidate genes

We examined the expression of 23 novel candidate
genes using the Human Protein Atlas (HPA) RNA-seq
data and observed that 20/23 of the genes were
expressed in all tissues or mixed, and 3/23 were tissue
enhanced (LAMBI: placenta, LAMCI: placenta, and
RACGAPLI: testis). We also observed that the majority of
the known CHD-causing genes (67.5%) are expressed in
all or mixed and the rest (32.5%) have elevated expres-
sion (tissue enhanced/enriched or group enriched), while
approximately 54% of the protein coding genes in hu-
man body is expressed in all/mixed [74, 75] (https://
www.proteinatlas.org/). While the tissue expression pro-
files of the candidate genes are significantly different
from expression levels of all genes (chi-square with Yates
correction, two-tailed p value = 0.0077), there is no sig-
nificant difference from the expression profiles of the
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(See figure on previous page.)

Fig. 5 Priority score and expression level during heart development of genes in cases. a Circos map illustrating the top 100 genes among 127
filtered genes in cases. The genes are ordered in clockwise direction with respect to the scores. The known CHD-associated genes are indicated
by color blue, and the candidate genes are indicated by color pink. Different shades of colors indicate expression level during heart development
(darker shade indicates high expression). The inner ring in the score segment represents the score of each gene, and the outer ring represents
the relative contribution of each gene’s score to the total score. b All 95 candidate genes and 32 known CHD genes, where the x-axis (0-100)
denotes the percentile of heart expression in developing (E14.5) mouse heart, and the y-axis denotes the priority score. The candidate genes are
shown in blue squares, and known CHD-causing genes are shown in orange circles. The high scored genes that are in the top 25% of expression
in developing heart, HSP90AAT, ROCK2, IQGAP1, and CHD4, are selected as the most plausible gene candidates

known CHD-causing genes (chi-square with Yates cor-
rection, two-tailed p value = 0.08).

Association of candidate genes with known CHD-causing
genes

We used the Human Gene Connectome (HGC) server
to calculate the distances of candidate genes to the
known CHD-causing genes [36, 76]. The HGC provides
biological/functional distance between any two human
genes, which is defined as the weighted sum of direct
distances in the shortest path connecting the two genes.
Table 1 presents the closest known CHD-causing gene

and its route to the candidate genes. The p values indi-
cated that 20 of the candidate genes are in the first percent-
ile of the corresponding known gene’s connectome.

Assessing candidate genes with ToppGene

To further validate our findings, we also prioritized
genes based on their functional similarity to the known
genes by using ToppGene suite [37]. Ten of the 23 novel
candidate genes were also ranked at the top by Topp-
Gene with p <10~ (Additional file 5: Table S16). The
ranked gene list was in good agreement with our list of
candidate genes.

Table 1 The closest known CHD-causing gene to the 23 candidate genes calculated by HGC

Candidate Known Distance p value Route Degrees of separation
APBB1 MGRN1 1.77 0.00078 MGRN1[1.77]APBB1 1
BODI1L1 SOX2 3.27 0.01344 SOX2[3.26]BOD1L1 1
BRD4 HEXIM1 1.25 0.00012 HEXIM1[1.25]BRD4 1
CABIN1 PPP3CB 1.11 0.00239 PPP3CB[1.11]CABIN1 1
CAD ACACB 1.04 0.00012 ACACB[1.04]CAD 1
CDK13 CDC73 148 0.00227 CDC73[1.48]CDK13 1
CHD4 ZEB2 1.25 6.00E-05 ZEB2[1.25]CHD4 1
CTR9 CDC73 1.08 0.00024 CDC73[1.07]CTR9 1
GANAB CALR 1.1 0.0003 CALR[1.11]GANAB 1
HSPO0AAT AP 1.11 6.00E-05 AIP[1.11]JHSP90AAT 1
IQGAP1 WHSC1 1.25 0.0003 WHSC1[1.25]IQGAP1 1
KDMS5A RBP)J 1.25 0.00329 RBPJ[1.25]KDM5A 1
LAMBT DAGI 1.11 0.00054 DAGT1[1.11]LAMB1 T
LAMCI DAGT 1.11 0.00167 DAGT[T.11]LAMCT 1
MINK1 KIFAP3 175 0.0009 KIFAP3[1.74]MINKT1 1
NAA15 NEK1 6.01 0.01703 NEKT[1.25]XRCC5[1.75]NAA1S 2
PHIP CSNK2A1 328 0.01285 CSNK2AT1[3.27]PHIP T
POGZ HDAC7 4.08 0.00759 HDAC7[4.08]POGZ 1
PYGL GBET1 444 0.00191 GBET[1.11]GYG2[1.11]PYGL 2
RACGAP1 DSP 472 0.00269 DSP[1.25]PKP4[1.11]RACGAP1 2
ROCK2 MYH10 1.1 0.00036 MYH10[1.11]JROCK2 1
TIP2 RAPGEF2 1.25 0.00018 RAPGEF2[1.25]TJP2 1
USP4 HUWE1 1.77 0.00149 HUWET1[1.77]USP4 1




Sevim Bayrak et al. Genome Medicine (2020) 12:9

Candidate genes in isolated and syndromic CHD

Among 301 CHD cases carrying possibly damaging DNV,
73 were isolated CHD patients (CHD without extracardiac
manifestation or neurodevelopmental deficiency) and 180
were syndromic CHD patients (with EM and/or NDD)
(Additional file 1: Table S2). To investigate the pathways
and genes altered in these two different types of CHD, we
performed pathway enrichment analyses and gene
prioritization in the two subgroups separately. We identi-
fied 64 candidate genes involved in isolated CHD and 105
candidate genes involved in syndromic CHD (45 involved
in both). In isolated CHD, the pathways including nitric
oxide signaling in the cardiovascular system, PKA signal-
ing, Igf receptor activity, positive regulation of cardioblast
differentiation, Notch signaling involved in heart develop-
ment, and pulmonary valve morphogenesis were found to
be highly enriched (Additional file 6: Tables S19-21).
Some of these pathways (e.g., Notchl, Igf-1 signaling)
were reported in a recent study of Sifrim et al. on a pre-
dominantly nonsyndromic CHD cohort [3]. In syndromic
CHD, the pathways such as PKA signaling, opioid signal-
ing, heart development, chromatin binding, and focal ad-
hesion were found to be significantly enriched (Additional
file 6: Tables S24—26). Despite the smaller sample sizes,
following our gene prioritization approach, we identified
11 and 22 candidate genes for isolated and syndromic
CHD, respectively (Additional file 6: Tables S23 and S28).
Top candidate genes in isolated CHD include HSP90AA1I,
IQGAPI, and TJP2, and top candidate genes in syndromic
CHD include ROCK2, APBBI, KDMS5A, and CHD4.

Candidate genes in patients with conotruncal defects and
left ventricular obstruction

Cardiac phenotypes of the CHD proband were defined as
(i) conotruncal defects (CTD, 30%), (ii) d-transposition of
the great arteries (d-TGA, 9%), (iii) heterotaxy (HTX, 9%),
(iv) left ventricular outflow tract obstruction (LVO, 28%),
and (v) other (24%) in the previously reported study [9]
(see Additional file 2: Figure S3 for details). Among 301
patients carrying possibly damaging DNVs, 84 had CTD
(27.5%), 21 had d-TGA (7%), 23 had HTX (7.5%), 99 had
LVO (33%), and 74 had other (25%) types of CHD (Add-
itional file 1: Table S2). We identified 59 candidate genes
in CTD and 68 candidate genes in LVO and, therefore,
were able to perform a subgroup analysis for these two
subtypes of CHD. Pathway analyses in CTD genes showed
that VEGF signaling, PKA signaling, axon guidance, distal
tube development, and Igf-1 signaling pathways were
highly enriched (Additional file 7: Tables S29-31). After
prioritizing the genes, ROCK2 was on top of the list (Add-
itional file 7: Table S33). LVO genes showed significant
enrichment in CDKS5 signaling, Notch signaling, pulmon-
ary valve morphogenesis, and Beta3 integrin cell surface
interactions pathways (Additional file 7: Tables S34—36).
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Gene prioritization revealed that the top genes include
KDMSA and PHIP (Additional file 7: Table S38).

Function-affecting genetic variants in candidate CHD-
causing genes

To verify that the 23 novel candidate genes were unlikely
to be false positives, we checked if the variants in those
genes existed in the non-pathogenic genetic variants list,
the “blacklist” [66]. This recently curated list includes
variants absent or rare in public databases but too com-
mon in patients suffering from severe genetic diseases
and, therefore, are unlikely to cause disease. None of our
damaging DNVs was included in the blacklist.

Next, to evaluate whether the 41 missense variants in
the 23 strong candidate genes are likely to have functional
effects, we analyzed them with PROVEAN and SNAP2
[38, 39] (Additional file 8: Table S39). We did not use the
functional impact prediction tools in the filtering step as
we considered all non-synonymous mutations, and they
provide a score for missense mutations only. Among 41
missense variants, 24 were predicted to be damaging by
both tools and 6 were predicted to be damaging by one of
the tools. We also estimated the intolerance of protein do-
mains to functional variation using the subRVIS [40] tool
to further analyze the effects of the DNVs in candidate
CHD-causing genes. Among 41 variants, 31 were found to
affect regions intolerant to mutations and, therefore, more
likely to cause disease. We then checked if the candidate
CHD-causing genetic variants were already included in
the HGMD database [77]. Four DNVs (one in CDK13,
one in KDMS5A, and 2 in NAA15) were classified as CHD-
causing variants, and 23 DNVs were classified as likely to
be CHD-causing mutations in the HGMD Professional
2019.2 database (Additional file 8: Table S39).

To check the population genetics-level functional im-
pact of the variants occurring in the top four candidate
genes (HSP90AAI, ROCK2, IQGAPI, and CHD4), we vi-
sualized the minor allele frequencies with respect to
damage prediction scores (CADD) using PopViz [78].
Additional file 2: Figure S4 displays all missense variants
in European population with CADD>MSC score (95%
confidence interval) in gnomAD database [23]. These
plots suggest that the rare variants in the top candidate
genes likely have a strong functional impact.

Interestingly, five of the 23 candidate genes (ROCK?2,
BRD#4, TJP2, MINK1, and CDK13) were kinases (Table 2),
a class of proteins that has previously been implicated in
cardiac diseases [79-83]. Two of the DNVs, p.D255G in
ROCK?2 and p.N842S in CDK13, were predicted to alter
the protein kinase domains by subRVIS [40] (Additional
file 8: Table S39). Mutations in the kinase domain of
CDK13 were previously found to be related to a syn-
dromic form of intellectual disability with or without
congenital heart disease [84].



Sevim Bayrak et al. Genome Medicine (2020) 12:9

Table 2 Twenty-three plausible CHD candidate genes
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Gene ID Gene name Type

APBB1 Amyloid beta precursor protein binding family B member 1 Transcription regulator
BODI1L1 Biorientation of chromosomes in cell division 1 like 1 Other

BRD4 Bromodomain containing 4 Kinase

CABIN1 Calcineurin binding protein 1 Other

CAD Carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase Enzyme

CDK13 Cyclin dependent kinase 13 Kinase

CHD4 Chromodomain helicase DNA binding protein 4 Enzyme

CTR9 CTR9 homolog, Paf1/RNA polymerase Il complex component Other

GANAB Glucosidase Il alpha subunit Enzyme

HSPO0AAT1 Heat shock protein 90 alpha family class A member 1 Enzyme

IQGAP1 IQ motif containing GTPase activating protein 1 Other

KDM5A Lysine demethylase 5A Transcription regulator
LAMB1 Laminin subunit beta 1 Other

LAMC1 Laminin subunit gamma 1 Other

MINK1 Misshapen like kinase 1 Kinase

NAAT15 N (alpha)-Acetyltransferase 15, NatA auxiliary subunit Transcription regulator
PHIP Pleckstrin homology domain interacting protein Other

POGZ Pogo transposable element derived with ZNF domain Enzyme

PYGL Glycogen phosphorylase L Enzyme

RACGAP1 Rac GTPase activating protein 1 Transporter

ROCK2 Rho-associated coiled-coil containing protein kinase 2 Kinase

TJP2 Tight junction protein 2 Kinase

USP4 Ubiquitin specific peptidase 4 Peptidase

Synonymous DNVs in exonic splicing enhancers

To check if synonymous DNVs in cases contribute to
CHD, we analyzed them by first applying the same filter-
ing steps as described for the other variant types, and
next performing enrichment analyses. We identified nine
genes having two synonymous variants in cases and
none in controls. Four of these genes (HSP90BI, GIT1,
ARIDIB, and CASZI) were highly expressed during
heart development. Interestingly, one of these genes,
HSP90B1, was previously associated with CHD. We ap-
plied the state-of-the-art pathogenicity prediction tool,
S-CAP, and calculated scores of eight synonymous vari-
ants [85]. Except for the two synonymous variants in
CASZ1, all six variants were predicted to be pathogenic
by S-CAP. We further applied our in-house software to
identify if these variants are located in the exonic spli-
cing enhancers (ESE) near the canonical splice sites (see
the “Methods” section). We observed the variant (chrl12-
104336346-C-T), which locates + 41 bp of the splice ac-
ceptor site of exon 12 of gene HSP90BI1, was shown to
overlap with 7 aligned ESE motifs (GATCAA, ATCAAG,
CAAGAA, TCAAGA, CAAGAAGA, TCAAGAAG,
ATCAAGAA). The underscored nucleotide in each
motif sequence is where the variation occurs. These

seven ESE motifs are aligned to the same genomic re-
gion close to the splice acceptor site, suggesting the im-
portance of this region to bind with SR proteins to
promote the exon splicing. The variant changes the
highly conserved C to T in these ESE motifs, which may
result in reduced or inhibited affinity for splicing factors.
Subsequently, the altered ESEs by this variant may in
turn lead to the aberrant splicing events.

Discussion

Here, we performed a comprehensive analysis of DNVs in
a large set of CHD patient and control trio data. Our goal
was to identify novel CHD-associated candidate genes
through pathway/network analyses and by using the con-
trols and a validation set to assess the significance of our
findings. Our approach included variant filtering to iden-
tify potentially damaging DNVs followed by enrichment
analysis and knowledge-driven prioritization based on bio-
logical pathways, annotations, molecular interactions,
functional similarities, and expression profiles. While fil-
tering and prioritization depend on the specific study at
hand, we demonstrate that our procedure yielded plaus-
ible candidate genes with statistically significant enrich-
ment by supporting evidence from multiple aspects.



Sevim Bayrak et al. Genome Medicine (2020) 12:9

Unlike previous CHD studies where gene-level case-
control studies were performed, in this study, we applied a
pathway-level approach to identify risk genes. Another
major novel component of our analysis was comparing
the number of variants in cases and controls instead of
applying a strict gene burden filter such as Fisher’s exact
test. To account for the very low number of hits in indi-
vidual genes, we followed a relaxed approach, thereby
obtaining sufficient numbers of potentially disease-causing
mutations to enable statistical power for case-control en-
richment analyses.

Pathway analysis showed significant enrichment in heart
development and signaling pathways (i.e., PKA, EMT, ni-
tric oxide signaling, focal adhesion) in filtered cases genes
that have been previously associated with heart disease,
and conversely, no enrichment was found in filtered con-
trols genes [3, 9]. In addition to previously known CHD-
associated genes, we also observed novel genes involved in
these pathways. Since we have applied a relaxed approach
to include more candidate genes into pathway analyses,
we evaluated the plausibility of each candidate gene.

To prioritize the candidate genes, we defined a priority
score based on the number of known CHD-causing genes
in a candidate gene’s pathway, network, and HGC distance
to known CHD-causing genes. The higher scores and high
expression levels during heart development provided sup-
porting evidence for candidate genes, since a majority
(54%) of human CHD genes are highly expressed in the
developing heart. It is also important to note that the
genes with lower scores or lower expression levels should
be considered as candidates with less evidence. The genes
HSP90AA1, ROCK2, IQGAPI, and CHD4 were at the top
of the list with highest scores and as being highly
expressed during heart development. For example,
HSP90AALI is associated with pathways including nitric
oxide signaling in the cardiovascular system, VEGF signal-
ing that has been shown to be linked to CHD [86-88],
and axon guidance; ROCK?2 is associated with pathways
including PAK signaling, VEGF signaling, focal adhesion,
and axon guidance; IQGAPI is associated with IL-8 signal-
ing, epithelial adherens junction signaling, and EGFRI;
and CHD4 is associated with Th2 pathway, transcription
factor binding, and zinc ion binding.

Notably, DNVs in HSP90AA1 and IQGAP1 were found
in isolated CHD patients, whereas DNVs in ROCK2 and
CHD4 were found in syndromic CHD patients. Two
DNVs in CHD4 (p.Y1345D and p.M202I), p.R1330W in
IQGAPI, and p.S39F in ROCK?2 were previously associated
with CHD and p.M9541 in CHD4 was associated with de-
velopmental disorder [2, 3, 9] (Additional file 8: Table
S39). Overall, our findings suggested 23 novel plausible
genes contributing to CHD.

To ensure that our results were robust and not biased as
a result of lower number of filtered control variants
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compared to cases (320 variants in cases and 73 variants
in controls), we repeated our analyses on an extended
control set. We still did not identify any significant enrich-
ment in the extended control gene set.

To test our filtering strategy, we also performed enrich-
ment analysis on rare DNVs after removing the synonym-
ous variants (2278 variants in 1951 genes) without further
filtering. Significant enrichment persisted in signaling
pathways and cardiovascular diseases among 1951 genes
supporting our findings for potentially damaging DNVs.

Due to the extreme heterogeneity of CHD, gene-level
approaches have statistical power limitations for suggest-
ing novel risk genes. This study represents a pathway-level
approach that enables discovery of novel plausible CHD
risk genes. We considered all genes having at least two
more DNVs in cases than controls to be able to reach
pathway-level statistical significance. However, it is im-
portant to note that this criterion depends on the size of
the cohort and characteristic of the disease. While this ap-
proach has been efficient for identifying novel risk genes
in this large cohort, we anticipate that it can be applied for
studying rare variants in other genetically heterogeneous
diseases.

Conclusions

Previous approaches that use DNVs to estimate variant
rates or perform gene-level case-control analysis have
limitation on identifying novel CHD genes due to extreme
genetic heterogeneity of the disease. A recent study com-
paring the observed and expected rates of DNVs on the
same data suggested 66 genes having more than one dam-
aging de novo variants as risk genes [9]. Among those,
only five genes (CHD7, KMT2D, PTPNI11, GATA6, and
RBFOX2) reached genome-wide significance and all were
already known CHD-causing genes. In this study, we
aimed to discover new plausible candidate genes and ap-
plied a pathway-level approach that enabled us to discover
23 novel genes. Our approach explored whether genes
having a low number of hits altered common molecular
pathways in CHD patients and prioritized genes based on
their biological proximity to the known CHD-causing
genes. This large-scale study indicates that using pathway-
level approaches is effective to analyze the effects of rare
de novo variants in heterogenic diseases.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/513073-019-0709-8.

Additional file 1: Cases and controls: Table S1. Ethnicity and sex
distributions of all CHD cases and controls, Table S2. Filtered de novo
mutations in cases, Table S3. Filtered de novo mutations in controls.

Additional file 2: Figure S1. Variant types of filtered 320 DNVs in cases,
Figure S2. A phylogenetic tree of biological distances between 32
known CHD-causing genes and 95 candidate genes in cases, Figure S3.



https://doi.org/10.1186/s13073-019-0709-8
https://doi.org/10.1186/s13073-019-0709-8

Sevim Bayrak et al. Genome Medicine (2020) 12:9

Cardiac phenotypes considered in this study, Figure S4. Minor allele fre-
quency of all missense mutations in: A) HSP90AAT, B) ROCK2, C) IQGAPT,
D) CHDA4.

Additional file 3: Enrichment analyses in cases and controls: Table S4.
IPA canonical pathways among 127 genes in cases, Table S5. InnateDB
pathway analysis among 127 genes in cases, Table S6. InnateDB GO
analysis among 127 genes in cases, Table S7. InnateDB pathway analysis
among 36 genes in controls, Table S8. IPA top diseases and functions
among 127 genes in cases, Table S9a. IPA Networks among 127 genes
in cases, Table S9b. NetworkAnalyst PPl Network among 127 genes in
cases.

Additional file 4: Enrichment analyses in validation set: Table S10. De
novo mutations in the filtered validation dataset, Table S11. IPA
canonical pathways among 30 genes in validation dataset, Table S12.
InnateDB pathway analysis among 30 genes in validation dataset, Table
$13. InnateDB GO analysis among 30 genes in validation dataset, Table
S14a. IPA Networks among 30 genes in validation dataset, Table S14b.
NetworkAnalyst PPl Network among 30 genes in validation dataset,
Table S15. InnateDB GO analysis among 30 random genes from
unfiltered validation dataset.

Additional file 5: Gene prioritization: Table S16. Priority scores of 127
genes in cases, Table S17. Priority scores of 127 genes in CHD cases
based on human CHD genes only, Table $18. Average biological
distance of each candidate gene to human and mouse CHD genes
based on Human Gene Connectome.

Additional file 6: Enrichment analysis in isolated and syndromic CHD:
Table S19. IPA canonical pathways among 64 genes in isolated CHD
cases, Table S20. InnateDB pathway analysis among 64 genes in isolated
CHD cases, Table S21. InnateDB GO analysis among 64 genes in isolated
CHD cases, Table S22. NetworkAnalyst PPl Network among 64 genes in
isolated CHD cases, Table $23. Priority scores of 64 genes in isolated
CHD cases, Table S24. IPA canonical pathways among 105 genes in
syndromic CHD cases, Table S25. InnateDB pathway analysis among 105
genes in syndromic CHD cases, Table $26. InnateDB GO analysis among
105 genes in syndromic CHD cases, Table S27. NetworkAnalyst PPI
Network among 105 genes in syndromic CHD cases, Table S28. Priority
scores of 105 genes in syndromic CHD cases.

Additional file 7: Enrichment analysis in CTD and LVO: Table S29. IPA
canonical pathways among 59 genes in conotruncal defects (CTD), Table
$30. InnateDB pathway analysis among 59 genes in conotruncal defects
(CTD), Table S31. InnateDB GO analysis among 59 genes in conotruncal
defects (CTD), Table $32. NetworkAnalyst PPl Network among 59 genes
in conotruncal defects (CTD), Table S33. Priority scores of 59 genes in
conotruncal defects (CTD), Table S34. IPA canonical pathways among 68
genes in left ventricular outflow tract obstruction (LVO), Table S35.
InnateDB pathway analysis among 68 genes in left ventricular outflow
tract obstruction (LVO), Table S36. InnateDB GO analysis among 68
genes in left ventricular outflow tract obstruction (LVO), Table S37.
NetworkAnalyst PPl Network among 68 genes in left ventricular outflow
tract obstruction (LVO), Table S38. Priority scores of 68 genes in left
ventricular outflow tract obstruction (LVO).

Additional file 8: Table S39. Functional effects of DNMs on 23
plausible candidate genes in cases, Table S40. De novo mutations in
validation set, Table S41. Human CHD genes, Table S42. Mouse CHD
genes.

Abbreviations

B-H: Benjamini-Hochberg; CADD: Combined Annotation Dependent
Depletion; CHD: Congenital heart disease; Cl: Confidence interval;

DNV: De novo variant; EMT: Epithelial-mesenchymal transition;

ESE: Exonic splicing enhancer; ESP: Exome Sequencing Project;

ExAC: Exome Aggregation Consortium; FDR: False discovery rate;

GDI: Gene damage index; gnomAD: The Genome Aggregation Database;
GO: Gene Ontology; HGC: The Human Gene Connectome; HHE: High
heart expression; HPA: Human Protein Atlas; IBD: Identity-by-descent;
IPA: Ingenuity Pathway Analysis; MAF: Minor allele frequency;

MGI: Mouse Genome Informatics; MPO: Mammalian Phenotype Ontology;

MSC: Mutation significance cut-off, PCGC: Pediatric Cardiac Genetics

Page 16 of 18

Consortium; PHN: Pediatric Heart Network; PKA: Protein kinase A
signaling; PPI: Protein-protein interaction; WES: Whole-exome sequencing

Acknowledgements
We are grateful to the patients and families who participated in this
research.

Authors’ contributions

BG and YI conceived the project and supervised the study. CSB and VI
designed the computational methods. CSB implemented the methods
and performed the calculations. PZ developed and performed the exonic
splicing enhancer analysis. YI, BG, and MTF advised the analysis. CSB
wrote the manuscript with PZ, MTF, BG, and YI. All authors have read
and approved the final manuscript.

Funding

The project described was supported by Award Number(s) UMTHL098147,
UMTHL098123, UMTHL128761, UMTHL128711, UMTHL098162, UOTHL098163,
U0THL098153, UOTHL098188, and UOTHL131003 from the National Heart, Lung,
and Blood Institute, and The Charles Bronfman Institute for Personalized
Medicine, Icahn School of Medicine at Mount Sinai. The content is solely the
responsibility of the authors and does not necessarily represent the official
views of the National Heart, Lung, and Blood Institute or the National Institutes
of Health.

Availability of data and materials

Cases’ and controls’ datasets used in this study are available in the
supplementary datasets (Tables S9 and S10) in the previously published
paper https://doi.org/10.1038/ng.3970 [9]. Validation dataset is included
in Additional file 8: Table S40. Known CHD gene sets are available in
Additional file 8: Tables S41-S42. Expression percentiles of genes in the
developing mouse heart are available in Additional file 4: Table S10 of
[2]. The code for the in-house script used for predicting the genomic
variants affecting exonic splicing enhancers (ESEs) is available by request
from the corresponding author. All data generated or analyzed during
this study are included in the supplementary files.

Ethics approval and consent to participate

The institutional review boards of Boston's Children’s Hospital, Brigham
and Women'’s Hospital, Great Ormond Street Hospital, Children’s Hospital
of Los Angeles, Children’s Hospital of Philadelphia, Columbia University
Medical Center, Icahn School of Medicine at Mount Sinai, Rochester
School of Medicine and Dentistry, Steven and Alexandra Cohen
Children’'s Medical Center of New York, and Yale School of Medicine
approved the protocols of this study. All individual participants or their
parent/guardian provided written informed consent. This research study
conformed to the principles of the Helsinki Declaration.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

'Institute for Personalized Medicine, Icahn School of Medicine at Mount
Sinai, New York, NY, USA. “St. Giles Laboratory of Human Genetics of
Infectious Diseases, The Rockefeller University, New York, NY, USA. 3Nora
Eccles Harrison Cardiovascular Research and Training Institute, University of
Utah, Salt Lake City, UT, USA. “Mindich Child Health and Development
Institute, lcahn School of Medicine at Mount Sinai, New York, NY, USA.
SDepartment of Pediatrics, lcahn School of Medicine at Mount Sinai, New
York, NY, USA. ®Department of Genetics and Genomic Sciences, Icahn School
of Medicine at Mount Sinai, New York, NY, USA.

Received: 4 September 2019 Accepted: 26 December 2019
Published online: 15 January 2020

References
1. Zaidi S, et al. De novo mutations in histone-modifying genes in congenital
heart disease. Nature. 2013;498(7453):220-3.


https://doi.org/10.1038/ng.3970

Sevim Bayrak et al. Genome Medicine

20.
21.

22.

23.

24.

25.
26.

27.

28.
29.

30.

(2020) 12:9

Homsy J, et al. De novo mutations in congenital heart disease with
neurodevelopmental and other congenital anomalies. Science. 2015;
350(6265):1262-6.

Sifrim A, et al. Distinct genetic architectures for syndromic and
nonsyndromic congenital heart defects identified by exome sequencing.
Nat Genet. 2016;48(9):1060-5.

Acuna-Hidalgo R, Veltman JA, Hoischen A. New insights into the generation and
role of de novo mutations in health and disease. Genome Biol. 2016;17(1):241.
Zaidi S, Brueckner M. Genetics and genomics of congenital heart disease.
Circ Res. 2017;120(6):923-40.

Fahed AC, et al. Genetics of congenital heart disease: the glass half empty.
Circ Res. 2013:112(4):707-20.

Veltman JA, Brunner HG. De novo mutations in human genetic disease. Nat
Rev Genet. 2012;13(8):565-75.

Pediatric Cardiac Genomics, G, et al. The Congenital Heart Disease Genetic
Network Study: rationale, design, and early results. Circ Res. 2013;112(4)698-706.
Jin SC, et al. Contribution of rare inherited and de novo variants in 2,871
congenital heart disease probands. Nat Genet. 2017;49(11):1593-601.

Ohye RG, et al. Comparison of shunt types in the Norwood procedure for
single-ventricle lesions. N Engl J Med. 2010;362(21):1980-92.

Krumm N, et al. Excess of rare, inherited truncating mutations in autism. Nat
Genet. 2015;47(6):582-8.

Fischbach GD, Lord C. The Simons Simplex Collection: a resource for
identification of autism genetic risk factors. Neuron. 2010;68(2):192-5.
McKenna A, et al. The Genome Analysis Toolkit: a MapReduce framework for
analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):
1297-303.

Van der Auwera GA, et al. From FastQ data to high confidence variant calls:
the Genome Analysis Toolkit best practices pipeline. Curr Protoc
Bioinformatics. 2013;43:11 10 1-33.

The Genomes Project, C, et al. A global reference for human genetic
variation. Nature. 2015;526(7571):68-74.

Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic
variants from high-throughput sequencing data. Nucleic Acids Res. 2010;
38(16)e164.

Lek M, et al. Analysis of protein-coding genetic variation in 60,706 humans.
Nature. 2016,536(7616):285-91

Liu X, Jian X, Boerwinkle E. dbNSFP v2.0: a database of human non-
synonymous SNVs and their functional predictions and annotations. Hum
Mutat. 2013;34(9):£2393-402.

Dong C, et al. Comparison and integration of deleteriousness prediction
methods for nonsynonymous SNVs in whole exome sequencing studies. Hum
Mol Genet. 2015;24(8):2125-37.

Purcell S, et al. PLINK: a tool set for whole-genome association and
population-based linkage analyses. Am J Hum Genet. 2007;81(3):559-75.
Wei Q, et al. A Bayesian framework for de novo mutation calling in parents-
offspring trios. Bioinformatics. 2015;31(9):1375-81.

Blake JA, et al. Mouse Genome Database (MGD)-2017: community
knowledge resource for the laboratory mouse. Nucleic Acids Res. 2017;
45(D1):.D723-9.

Karczewski KJ, et al. 2019. Variation across 141,456 human exomes and
genomes reveals the spectrum of loss-of-function intolerance across human
protein-coding genes. https.//doi.org/10.1101/531210.

Itan Y, et al. The human gene damage index as a gene-level approach
to prioritizing exome variants. Proc Natl Acad Sci U S A. 2015;112(44):
13615-20.

Kircher M, et al. A general framework for estimating the relative
pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310-5.

Itan Y, et al. The mutation significance cutoff: gene-level thresholds for
variant predictions. Nat Methods. 2016;13(2):109-10.

Breuer K, et al. InnateDB: systems biology of innate immunity and beyond--
recent updates and continuing curation. Nucleic Acids Res. 2013;
41(Database issue):D1228-33.

Kanehisa M, et al. KEGG: new perspectives on genomes, pathways, diseases
and drugs. Nucleic Acids Res. 2017;45(D1):D353-61.

Kandasamy K, et al. NetPath: a public resource of curated signal
transduction pathways. Genome Biol. 2010;11(1):R3.

Schaefer CF, et al. PID: the pathway interaction database. Nucleic Acids Res.
2009;37(Database issue):D674-9.

Joshi-Tope G, et al. Reactome: a knowledgebase of biological pathways.
Nucleic Acids Res. 2005;33(Database issue):D428-32.

32.

33

34.

35.

36.

37.

38.

39.

40.

42.

43.

44,

45.

46.

47.

48.

49.

50.

52.

53.

54.

55.

56.

57.

58.

59.

60.

62.

63.

Page 17 of 18

Yamamoto S, et al. INOH: ontology-based highly structured database of signal
transduction pathways. Database. 2011;2011:bar052.

Ashburner M, et al. Gene ontology: tool for the unification of biology. The
Gene Ontology Consortium. Nat Genet. 2000;25(1):25-9.

Szklarczyk D, et al. STRING v10: protein-protein interaction networks,
integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):
D447-52.

Xia J, Benner MJ, Hancock RE. NetworkAnalyst--integrative approaches for
protein-protein interaction network analysis and visual exploration. Nucleic
Acids Res. 2014:42(Web Server issue):W167-74.

ltan Y, et al. The human gene connectome as a map of short cuts for
morbid allele discovery. Proc Natl Acad Sci U S A. 2013;110(14):5558-63.
Chen J, Aronow BJ, Jegga AG. Disease candidate gene identification and
prioritization using protein interaction networks. BMC Bioinformatics. 2009;
10:73.

Hecht M, Bromberg Y, Rost B. Better prediction of functional effects for
sequence variants. BMC Genomics. 2015;16(Suppl 8):S1.

Choi Y, et al. Predicting the functional effect of amino acid substitutions and
indels. PLoS One. 2012,7(10):246688.

Gussow AB, et al. The intolerance to functional genetic variation of protein
domains predicts the localization of pathogenic mutations within genes.
Genome Biol. 2016;17:9.

Fairbrother WG, et al. RESCUE-ESE identifies candidate exonic splicing
enhancers in vertebrate exons. Nucleic Acids Res. 2004;32(Web Server
issue):W187-90.

Zhang XH, Chasin LA. Computational definition of sequence motifs
governing constitutive exon splicing. Genes Dev. 2004;18(11):1241-
50.

Piva F, et al. SpliceAid: a database of experimental RNA target motifs bound by
splicing proteins in humans. Bioinformatics. 2009;25(9):1211-3.

Mathur R, et al. Gene set analysis methods: a systematic comparison. BioData
Min. 2018;11:8.

Pers TH. Gene set analysis for interpreting genetic studies. Hum Mol Genet.
2016;25(R2):R133-40.

Soni S, et al. Anchored protein kinase A signalling in cardiac cellular
electrophysiology. J Cell Mol Med. 2014;18(11):2135-46.

Leroy J, Vandecasteele G, Fischmeister R. Cyclic AMP signaling in cardiac
myocytes. Curr Opin Physiol. 2018;1:161-71.

Lim J, Thiery JP. Epithelial-mesenchymal transitions: insights from
development. Development. 2012;139(19):3471-86.

Thiery JP, et al. Epithelial-mesenchymal transitions in development and
disease. Cell. 2009;139(5):871-90.

Farah C, Michel LYM, Balligand J-L. Nitric oxide signalling in cardiovascular
health and disease. Nat Rev Cardiol. 2018;15:292.

Rawal H, Patel BM. Opioids in cardiovascular disease: therapeutic options. J
Cardiovasc Pharmacol Ther. 2018:23(4):279-91.

Odiete O, Hill MF, Sawyer DB. Neuregulin in cardiovascular development
and disease. Circ Res. 2012;111(10):1376-85.

Severs NJ, et al. Gap junction alterations in human cardiac disease.
Cardiovasc Res. 2004,62(2):368-77.

Taimeh Z, et al. Vascular endothelial growth factor in heart failure. Nat Rev
Cardiol. 2013;10(9):519-30.

Jones WK, et al. NF-kappaB in cardiovascular disease: diverse and
specific effects of a “general” transcription factor? Cardiovasc Toxicol.
2005;5(2):183-202.

Samarel AM. Focal adhesion signaling in heart failure. Pflugers Arch. 2014;
466(6):1101-11.

Zhou XL, Liu JC. Role of Notch signaling in the mammalian heart. Braz J
Med Biol Res. 2014;47(1):1-10.

Hakim ZS, et al. Conditional deletion of focal adhesion kinase leads to
defects in ventricular septation and outflow tract alignment. Mol Cell Biol.
2007;27(15):5352-64.

Hakim ZS, et al. FAK regulates cardiomyocyte survival following ischemia/
reperfusion. J Mol Cell Cardiol. 2009;46(2):241-8.

Blockus H, Chedotal A. Slit-Robo signaling. Development. 2016;143(17):3037-44.
Zhao J, Mommersteeg MTM. Slit-Robo signalling in heart development.
Cardiovasc Res. 2018;114(6):794-804.

Layne K, Ferro A, Passacquale G. Netrin-1 as a novel therapeutic target in
cardiovascular disease: to activate or inhibit? Cardiovasc Res. 2015;107(4):410-9.
Bongo JB, Peng DQ. The neuroimmune guidance cue netrin-1: a new
therapeutic target in cardiovascular disease. J Cardiol. 2014;63(2):95-8.


https://doi.org/10.1101/531210

Sevim Bayrak et al. Genome Medicine

64.

65.

66.

67.

68.

69.
70.
71.

72.

73.

74.

75.

76.

77.

78.

79.
80.

81.

82.

83.

84.

85.
86.

87.

88.

(2020) 12:9

Gillette TG, Hill JA. Readers, writers, and erasers: chromatin as the
whiteboard of heart disease. Circ Res. 2015;116(7):1245-53.

Pierpont ME, et al. Genetic basis for congenital heart disease: revisited: a
scientific statement from the American Heart Association. Circulation. 2018;
138(21):e653-711.

Maffucci P, et al. Blacklisting variants common in private cohorts but not in
public databases optimizes human exome analysis. Proc Natl Acad Sci. 2019;
116(3):950-9.

Kramer A, et al. Causal analysis approaches in Ingenuity Pathway Analysis.
Bioinformatics. 2014;30(4):523-30.

Zhou G, et al. NetworkAnalyst 3.0: a visual analytics platform for
comprehensive gene expression profiling and meta-analysis. Nucleic Acids
Res. 201947(W1):W234-41.

Liu Y, Chance MR. Pathway analyses and understanding disease
associations. Curr Genet Med Rep. 2013;1(4):230-8.

Jin L, et al. Pathway-based analysis tools for complex diseases: a review.
Genomics Proteomics Bioinformatics. 2014;12(5):210-20.

Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based
approach to human disease. Nat Rev Genet. 2011;12(1):56-68.

Requena D, et al. CDG: an online server for detecting biologically closest
disease-causing genes and its application to primary immunodeficiency.
Front Immunol. 2018;9:1340.

Krzywinski M, et al. Circos: an information aesthetic for comparative
genomics. Genome Res. 2009;19(9):1639-45.

Consortium GT. Human genomics. The Genotype-Tissue Expression (GTEX)
pilot analysis: multitissue gene regulation in humans. Science. 2015;
348(6235):648-60.

Uhlen M, et al. Proteomics. Tissue-based map of the human proteome.
Science. 2015;347(6220):1260419.

Itan Y, et al. HGCS: an online tool for prioritizing disease-causing gene
variants by biological distance. BMC Genomics. 2014;15(1):256.

Stenson PD, et al. The Human Gene Mutation Database: towards a
comprehensive repository of inherited mutation data for medical research,
genetic diagnosis and next-generation sequencing studies. Hum Genet.
2017;136(6):665-77.

Zhang P, et al. PopViz: a webserver for visualizing minor allele frequencies
and damage prediction scores of human genetic variations. Bioinformatics.
2018;34(24):4307-9.

Surma M, Wei L, Shi J. Rho kinase as a therapeutic target in cardiovascular
disease. Futur Cardiol. 2011;7(5):657-71.

Singh RM, et al. Protein kinase C and cardiac dysfunction: a review. Heart
Fail Rev. 2017;22(6):843-59.

Ji'F, et al. Genetic association between 1425G/A SNP in PRKCH and
hypertrophic cardiomyopathy in a Chinese population. Oncotarget. 2017;
8(70):114839-44.

Bostwick BL, et al. Phenotypic and molecular characterisation of CDK13-
related congenital heart defects, dysmorphic facial features and intellectual
developmental disorders. Genome Med. 2017,9(1):73.

Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the
heart: angels versus demons in a heart-breaking tale. Physiol Rev. 2010;90(4):
1507-46.

Hamilton MJ, et al. Heterozygous mutations affecting the protein kinase
domain of CDK13 cause a syndromic form of developmental delay and
intellectual disability. J Med Genet. 2018;55(1):28-38.

Jagadeesh KA, et al. S-CAP extends pathogenicity prediction to genetic
variants that affect RNA splicing. Nat Genet. 2019;51(4):755-63.

Ootaki Y, et al. Vascular endothelial growth factor in children with
congenital heart disease. Ann Thorac Surg. 2003;75(5):1523-6.

Baghdady Y, Hussein Y, Shehata M. Vascular endothelial growth factor in
children with cyanotic and acyanotic and congenital heart disease. Arch
Med Sci. 2010,6(2):221-5.

Reuter MS, et al. Haploinsufficiency of vascular endothelial growth factor
related signaling genes is associated with tetralogy of Fallot. Genet Med.
2019;21(4):1001-7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 18 of 18

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Patient subjects
	Identification of de novo variants
	The gene sets
	Statistical analysis
	Function, pathway, and network analysis
	Biological distance calculations
	Candidate gene prioritization
	Prediction of functional effects on proteins
	Prediction of exonic splicing enhancers
	Optimizing case-control ratio

	Results
	Selection of de novo variants for analyses
	Gene enrichment and pathway analyses
	CHD DNVs are enriched in signaling pathways
	No enrichment was detected in the extended control set
	Enrichment in cardiovascular disease categories
	A high-confidence subnetwork associated with cardiovascular disease
	Validation of the enrichment results in cases

	Candidate novel CHD-causing genes
	Gene prioritization
	Tissue enrichment in candidate genes
	Association of candidate genes with known CHD-causing genes
	Assessing candidate genes with ToppGene
	Candidate genes in isolated and syndromic CHD
	Candidate genes in patients with conotruncal defects and left ventricular obstruction

	Function-affecting genetic variants in candidate CHD-causing genes
	Synonymous DNVs in exonic splicing enhancers


	Discussion
	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

