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Abstract

Background: The ongoing COVID-19 pandemic has created an urgency to identify novel vaccine targets for
protective immunity against SARS-CoV-2. Early reports identify protective roles for both humoral and cell-mediated
immunity for SARS-CoV-2.

Methods: We leveraged our bioinformatics binding prediction tools for human leukocyte antigen (HLA)-I and HLA-
II alleles that were developed using mass spectrometry-based profiling of individual HLA-I and HLA-II alleles to
predict peptide binding to diverse allele sets. We applied these binding predictors to viral genomes from the
Coronaviridae family and specifically focused on T cell epitopes from SARS-CoV-2 proteins. We assayed a subset of
these epitopes in a T cell induction assay for their ability to elicit CD8+ T cell responses.

Results: We first validated HLA-I and HLA-II predictions on Coronaviridae family epitopes deposited in the Virus
Pathogen Database and Analysis Resource (ViPR) database. We then utilized our HLA-I and HLA-II predictors to
identify 11,897 HLA-I and 8046 HLA-II candidate peptides which were highly ranked for binding across 13 open
reading frames (ORFs) of SARS-CoV-2. These peptides are predicted to provide over 99% allele coverage for the US,
European, and Asian populations. From our SARS-CoV-2-predicted peptide-HLA-I allele pairs, 374 pairs identically
matched what was previously reported in the ViPR database, originating from other coronaviruses with identical
sequences. Of these pairs, 333 (89%) had a positive HLA binding assay result, reinforcing the validity of our
predictions. We then demonstrated that a subset of these highly predicted epitopes were immunogenic based on
their recognition by specific CD8+ T cells in healthy human donor peripheral blood mononuclear cells (PBMCs).
Finally, we characterized the expression of SARS-CoV-2 proteins in virally infected cells to prioritize those which
could be potential targets for T cell immunity.
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Conclusions: Using our bioinformatics platform, we identify multiple putative epitopes that are potential targets for
CD4+ and CD8+ T cells, whose HLA binding properties cover nearly the entire population. We also confirm that our
binding predictors can predict epitopes eliciting CD8+ T cell responses from multiple SARS-CoV-2 proteins. Protein
expression and population HLA allele coverage, combined with the ability to identify T cell epitopes, should be
considered in SARS-CoV-2 vaccine design strategies and immune monitoring.

Keywords: COVID-19, SARS-CoV-2 T cell epitopes, Computational biology, HLA-I binding prediction, HLA-II binding
prediction, T cell assay, Vaccine design

Background
Coronaviruses are positive-sense single-stranded RNA
viruses that have occasionally emerged from zoonotic
sources to infect human populations [1]. Most corona-
virus infections cause mild respiratory symptoms. How-
ever, some recent coronavirus infections have resulted in
serious morbidity and mortality, including the severe
acute respiratory syndrome coronavirus (SARS-CoV)
[2–4], Middle East respiratory syndrome coronavirus
(MERS-CoV) [5, 6], and SARS-CoV-2, which are respon-
sible for the current worldwide pandemic, COVID-19.
These three viruses belong to the genus Betacoronaviri-
dae [1]. SARS-CoV was identified in South China in
2002, and its global spread led to 8096 cases and 774
deaths [7]. The first case of MERS-CoV emerged in 2012
in Saudi Arabia, and since then, a total of 2494 cases
and 858 associated deaths have been reported [6]. In
contrast to the more limited scope of these other cor-
onavirus infections, SARS-CoV-2, which emerged in
Wuhan, China, at the end of December 2019, has re-
sulted in 9,129,146 cases, including 473,797 deaths glo-
bally as of June 24, 2020 [8]. The rapid spread of SARS-
CoV-2 has resulted in the World Health Organization
declaring a global pandemic. Thus, there is an urgent
need for effective vaccines and antiviral treatments
against SARS-CoV-2 to reduce the spread of this highly
infectious agent.
The genome of SARS-CoV-2 spans 30 kb in length

and encodes for 13 open reading frames (ORFs), includ-
ing four structural proteins. These structural proteins
are the spike protein (S), the membrane protein (M), the
envelope protein (E), and the nucleocapsid protein (N).
In addition, there are over 20 non-structural proteins
that account for all the proteins involved in the tran-
scription and replication of the virus [9]. All encoded
proteins of the virus are potential candidates for devel-
oping vaccines to induce robust T cell immunity.
SARS-CoV and SARS-CoV-2 share 76% amino acid

identity across the genome [10, 11]. This high degree of
sequence similarity allows us to leverage the previous re-
search on protective immune responses to SARS-CoV to
aid in vaccine development for SARS-CoV-2 [12–15].
Both humoral and cellular immune responses have been

shown to be important in host responses to SARS-CoV
[16]. Antibody responses generated against the S and the
N proteins have shown to protect from SARS-CoV in-
fection in mice and have been detected in SARS-CoV
and SARS-CoV-2-infected patients [17–20]. However,
the antibody responses detected against the S protein
were undetectable in patients 6 years post-recovery [21].
In addition, higher titers of antibodies have been found
in more severe clinical cases of viral infection suggesting
that a robust antibody response alone may be insuffi-
cient for controlling SARS-CoV [22] and SARS-CoV-2
[23–25] infection.
Together with B cell immunity, T cell responses seem

important in the immune response’s control of SARS-
CoV and are also likely important for the control of
SARS-CoV-2. In mice, studies have shown that adoptive
transfer of SARS-CoV-specific memory CD8+ T cells
provided protection against a lethal SARS-CoV infection
in aged mice and that adoptive transfer of effector CD4+

and CD8+ T cells to immunodeficient or young mice ex-
pedited virus clearance and improved survival [26]. Both
CD4+ and CD8+ T cell responses have also been de-
tected in SARS-CoV [16, 27] and SARS-CoV-2-infected
patients [28–30]. Additionally, SARS-CoV specific mem-
ory CD8+ T cells have been found to persist for up to
11 years post-infection in patients who recovered from
SARS [31]. These viral specific CD8+ T cells can be cyto-
toxic and can kill virally infected cells to reduce disease
severity [16]. In addition to having effector functions,
CD4+ T cells can promote the production of virus-
specific antibodies by activating T-dependent B cells.
Given the wealth of data from SARS-CoV, the homology
between the SARS-CoV-2 and SARS-CoV, as well as
emerging data from SARS-CoV-2 [28, 32], T cell im-
munity likely plays a critical role in providing protection
against SARS-CoV-2.
Here, we utilized mass spectrometry (MS)-based HLA-

I and HLA-II epitope binding prediction tools [33, 34] to
identify SARS-CoV-2 epitopes recognized by CD4+ and
CD8+ T cells. These binding predictors were trained on
high-quality mono-allelic HLA immunopeptidome data
generated via MS. The use of MS for the identification
of MHC peptide ligandome yields an extensive and
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relatively unbiased population of naturally processed and
presented MHC binding peptides in vivo. Unlike trad-
itional binding assays which rely on chemical synthesis
and a priori knowledge of peptides and ligands to be
assayed, MS uses natural peptide-MHC complexes
which are subject to the endogenous processing and
presentation pathways within the cell. Additionally, the
use of engineered mono-allelic cell lines avoids depend-
ence on in silico deconvolution techniques and allows
for allele coverage to be expanded in a targeted manner.
In Abelin et al. [34], we demonstrated that improved
HLA-II binding prediction led to improved immunogen-
icity prediction by validating this approach on a data set
of immune responses to a diverse collection of patho-
gens and allergens [35, 36].
With this approach, we generated binding predic-

tors for 74 HLA-I and 83 HLA-II alleles (Add-
itional file 1: Table S1 and Additional file 2: Table
S2). Alleles selected for data collection were priori-
tized to maximize population coverage. Here, we spe-
cifically validated the binding predictors utilizing
Coronaviridae family peptides that had been assayed
for T cell reactivity or MHC binding from the Virus
Pathogen Resource (ViPR) database [34]. The ViPR
database integrates viral pathogen data from internally
curated data, researcher submissions, and data from
various external sources. Specifically, experimentally
determined epitopes were derived from the Immune
Epitope Database (IEDB) [37]. Compared with a re-
cent study with a similar aim [38], our approach pro-
vides epitope predictions to a wider set of alleles,
which were characterized using high-quality mono-
allelic MS data. These include high-frequency alleles
from diverse populations as well as lower frequency
alleles, leading to an expansive set of bioinformatically
predicted SARS-CoV-2 epitopes.
We used our HLA-I and HLA-II binding predictors to

predict the binding potential of peptide sequences from
across the entire SARS-CoV-2 genome for a broad set of
HLA-I and HLA-II alleles, covering the vast majority of
USA, European, and Asian populations (Additional file 3:
Table S3). We additionally confirm that a subset of these
epitopes can raise specific CD8+ T cell responses in T
cell induction assays using donor PBMCs. Furthermore,
we interrogate publicly available proteomic data and
demonstrate that the relative expression of SARS-CoV-2
proteins in virally infected cells vary significantly, point-
ing to another parameter that should be considered in
vaccine design to induce cellular immunity. Epitopes
predicted to have a high likelihood of binding to mul-
tiple HLA-I and HLA-II alleles and exhibit high ex-
pression in infected human cells are promising
vaccine candidates to elicit T cell responses against
SARS-CoV-2.

Methods
Analysis of Coronaviridae family T cell epitopes from ViPR
Experimentally determined epitopes for the Coronaviri-
dae family for human hosts were retrieved from the
ViPR database (https://www.viprbrc.org/; accessed
March 5, 2020) [39]. To build a validation dataset, both
positives and negatives for T cell assays and MHC bind-
ing assays were obtained. Only assays associated with al-
leles identified with at least four-digit resolution and
supported by our predictors (Additional file 1: Table S1)
were included in this analysis. Positive calls were priori-
tized: peptide-allele pairs were classified as positive if a
given peptide-allele pair was assayed multiple times by a
specific assay type and was determined to be positive in
any single one of the assays. Specifically, the priority was
given by the following order: Positive-High > Positive-
Intermediate > Positive-Low > Positive > Negative (e.g.,
a peptide allele pairing that was assayed three times with
the results Positive-High, Positive, and Negative were
assigned a Positive-High result). Of note, alternative ap-
proaches such as prioritizing negative assay results, or
random choice in cases of multiple results, yielded very
similar results.

Binding prediction for ViPR Coronaviridae family T cell
epitopes
Peptide-HLA-I allele pairs in the ViPR validation dataset
were scored using our HLA-I binding predictor, a neural
network trained on mono-allelic MS data [33]. Similarly,
peptide-HLA-II allele pairs in the ViPR validation data-
set were scored using our HLA-II binding predictor, a
recently published convolutional neural network-based
model also trained on mono-allelic MS data [34]. We
scored all 12–20mers contained within a given assay
peptide with the HLA-II binding predictor and took the
maximum score as the representative binding score for
the assay peptide. In vitro MHC binding assays, which
represent the vast majority of the ViPR dataset, do not
require endogenous processing and presentation for a
positive binding result. Since our binding predictor,
which is trained on naturally processed and presented li-
gands observed via MS, is also implicitly learning these
endogenous processing rules, we score all potential
ligands within an assayed peptide (rather than just the
full-length assay peptide itself) to account for this
distinction.

Retrieval of SARS-CoV-2 sequence
The GenBank reference sequence for SARS-CoV-2 (ac-
cession: NC_045512.2, https://www.ncbi.nlm.nih.gov/
nuccore/NC_045512) was used for this study. All twelve
annotated open reading frames (ORF1a, ORF1b, S,
ORF3a, E, M, ORF6, ORF7a, ORF7b, ORF8, N, and
ORF10) were considered as sources of potential epitopes.
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In addition, due to its high expression level in recently
published proteomic datasets [40–42], ORF9b, as anno-
tated by UniProt (P0DTD2, https://www.uniprot.org/
proteomes/UP000464024), was also used for epitope
predictions.

Identification of HLA-I epitopes and prioritization by
population coverage
To identify candidate HLA-I epitopes, we exhaustively
scored all possible 8–12mer peptide sequences from
SARS-CoV-2 with our HLA-I binding predictor [33] for
74 alleles, including 21 HLA-A alleles, 35 HLA-B alleles,
and 18 HLA-C alleles. Peptide-allele pairs were assigned
a percent rank by comparing their binding scores to
those of 1,000,000 reference peptides (selected from a
partition of the human proteome that had not been used
for model training) for the same respective allele.
Peptide-allele pairs that scored in the top 1% of the
scores of these reference peptides were considered
strong potential binders.
Since a vaccine should ideally benefit a large fraction

of the population, these top-ranking peptides were then
prioritized based on expected population coverage (allele
frequencies obtained from [43]), given all the alleles each
peptide was expected to bind to (i.e., all the alleles for
which the peptide scored in the top 1%). The estimate of
population coverage for each peptide was calculated as:

Coverage ¼ 1 −Πloci 1 − Σlocus alleles f allele;avg
� �2

where fallele,avg is the (unweighted) average allele fre-
quency across the US, European, and Asian-Pacific Is-
lander (API) populations (which is intended to represent
an approximation of a global population average, focus-
ing on the populations most affected by the pandemic,
and the cumulative product is taken across the three
HLA-I loci: HLA-A, HLA-B, and HLA-C). The cumula-
tive product itself represents the chance that an individ-
ual in the population does not express any one of the
contained alleles; hence, the complement describes the
probability that at least one is present.
The USA population allele frequency is calculated as

the following weighted average of a few subpopulations:
0.623*EUR + 0.133*AFA + 0.068*API + 0.176*HIS, where
EUR = European, AFA = African American, API = Asian-
Pacific Islander, and HIS = Hispanic populations. These
subpopulation frequencies are based on data from the
US Census Bureau [44], accommodating for slight varia-
tions in different tables and information of mixed races.
For alleles where AFA, HIS, or API population frequen-
cies were not available, the US population allele fre-
quency values were set to match EUR. Missing API
allele frequency values were conservatively imputed with
0 for our analyses.

We then constructed two types of ranked lists of
HLA-I epitopes by coverage. The first ranks all SARS-
CoV-2 epitopes by their absolute coverage, such that
peptides predicted to bind similar collections of alleles
would be ranked similarly (Additional file 4: Table S4).
This approach provides the full list of predicted class I
epitopes sorted by the expected coverage for each pep-
tide, with the generous assumption that every binding
prediction is correct.
The second type of list, referred to as a “disjoint” list, is

constructed in an iterative fashion where the peptide with
the greatest coverage is selected first, and then, the cover-
age for the remaining epitopes is updated to nullify contri-
butions from any alleles that have already been selected
(Additional file 5: Table S5). Disjoint lists were generated
for M, N, and S proteins (the most highly expressed struc-
tural proteins) individually, instead of across the entire
SARS-CoV-2 genome, to provide protein-level prioritiza-
tions. This approach produces a parsimonious list of pep-
tides that is designed to maximize cumulative population
coverage with the fewest number of selections.

Identification of HLA-II epitopes and prioritization by
population coverage
To identify HLA-II epitopes, we used our HLA-II binding
predictor [34] to score all 12–20mer sequences in the
SARS-CoV-2 proteome to predict both binding potential
and the likely binding core within each 12–20mer. Scoring
was performed across all supported HLA-II alleles, con-
sisting of 46 HLA-DR alleles, 17 HLA-DP alleles, and 20
HLA-DQ alleles (Additional file 2: Table S2).
Peptide-allele pairs were assigned a percent rank by

comparing their binding scores to those of 100,000 ref-
erence peptides (as before, sampled from a partition of
the human proteome that was held out from training).
Pairs scoring in the top 1% were deemed likely to bind.
Additionally, we define the “epitope” of 12–20mers to be
the predicted binding core within the sequence. As such,
overlapping 12–20mers with the same predicted binding
core for a given allele would constitute a single epitope.
Additionally, we prioritized predicted HLA-II binding

25mers in SARS-CoV-2 by population coverage, given
the desire to design vaccines that are effective broadly
across the global population. To do this, we associated
each 25mer with all subsequences that were likely
binders and calculated the population coverage of the
corresponding HLA-II alleles. Given a collection of
alleles, we calculated the coverage as described in the
previous section, the only difference being the cumula-
tive product is taken across the following four HLA-II
loci: HLA-DRB1, HLA-DRB3/4/5, HLA-DP, and HLA-
DQ. HLA-II allele frequencies were obtained from [43]
and Allele Frequency Net Database [45].
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As with HLA-I, two types of sorted lists of predicted
binding sequences were generated. The first type ranks
every predicted SARS-CoV-2 25mers by absolute coverage
provided by the HLA-II alleles to which a constituent sub-
sequence is expected to bind (Additional file 6: Table S6).
The second type of ranking was again performed for pre-
dicted binders in M, N, and S proteins individually, using
disjoint coverage, to maximize cumulative population
coverage with a parsimonious list of peptides (Add-
itional file 7: Table S7).

Comparison of predicted epitopes to the human
proteome
Eight to 12mer sequences (corresponding to predicted HLA-
I epitopes), 9mer sequences (corresponding to predicted
HLA-II binding cores), and 25mer sequences (corresponding
to predicted HLA-II sequences that bound multiple alleles)
from SARS-CoV-2 were compared against all subsequences
of the same length from the human proteome, using UCSC
Genome Browser genes with hg19 annotation of the human
genome and its protein coding transcripts (63,691 entries)
[46]. Exact matches were identified, flagged in Additional file
4: Table S4, and omitted from the disjoint coverage ranking
analysis to avoid prioritizing peptides that may inadvertently
induce an autoimmune response. No exact matches were
found for the predicted HLA-II binding cores or 25mer
sequences.

T cell inductions and assessment of peptide-MHC-positive
T cell responses
Human PBMCs from HLA-A02:01-positive human do-
nors were isolated using Ficoll separation from apheresis
material (AllCells, USA). Twenty-three SARS-CoV-2
peptides predicted to be strong binders to HLA-A02:01
were pooled by similar binding potential, with up to 6
peptides per pool. The selected peptides represent high
ranking peptides predicted to bind HLA-A02:01 from
across the S, N, M, E, and ORF1ab proteins, avoiding se-
quences also prioritized by Grifoni et al. [38]. Specific-
ally, three of the 23 peptide sequences were chosen from
ViPR and also scored highly in our predictions; the
remaining 20 were the top-ranking peptides by our pre-
diction for the abovementioned proteins. When compar-
ing our 20 SARS-CoV-2-predicted epitopes with the
ViPR dataset, 8 epitopes were previously assayed and
confirmed as HLA-A02:01 binders. Of these 8, two were
reported positive in a T cell assay in ViPR and two were
negative. PBMCs were incubated with peptide pools,
matured, and cultured in the presence of IL-7 and IL-15
(CellGenix GmbH, Germany) to promote T cell growth.
Cells were then harvested, and the frequency of CD8+ T
cells specific to peptide-MHC (pMHC) was assayed
using combinatorial coding of pMHC multimers [43].

pMHC multimers were prepared as described previ-
ously [47, 48]. Briefly, biotinylated HLA-A02:01 mono-
mers loaded with UV cleavable peptides were exchanged
under UV light with SARS-CoV-2-predicted peptides.
The streptavidin-labeled fluorophores PE, APC, BV421
(Biolegend, Inc., USA), BV650, and BUV395 (BD Biosci-
ences, USA) were added to UV-exchanged monomers to
create fluorescently labeled multimer reagents.
Harvested cells were then stained with LIVE/DEAD

Fixable Near-IR Dead Cell Stain Kit for 633 or 635 nm
excitation (Life Technologies Corporation, USA); anti-
CD4 FITC, anti-CD14 FITC, anti-CD16 FITC, and anti-
CD19 FITC (BD Biosciences, USA); and anti-CD8
AF700 (Biolegend Inc., USA). Only live CD8+ T cells
staining for both fluorochromes of the relevant pMHC
multimers were considered positive [47]. Samples were
analyzed on FACS LSR Fortessa X20 cytometers (BD
Biosciences), and data was analyzed using FlowJo
(TreeStar).

Analysis of publicly available SARS-CoV-2 proteomic
datasets
SARS-CoV-2 proteomic datasets were downloaded from
the PRIDE repository (Bojkova et al. [40]: PXD017710,
https://www.ebi.ac.uk/pride/archive/projects/PXD01771
0; Bezstarosti et al. [41]: PXD018760, https://www.ebi.ac.
uk/pride/archive/projects/PXD018760; Davidson et al.
[42]: PXD018241, https://www.ebi.ac.uk/pride/archive/
projects/PXD018241). In these studies, either Caco-2
human colorectal adenocarcinoma cells [40] or Vero E6
African green monkey kidney epithelial cells [41, 42]
were subject to infection with SARS-CoV-2. Tandem
mass spectra (MS/MS) acquired with data-dependent ac-
quisition (DDA) were interpreted using Spectrum Mill
MS Proteomics software package v7.0 pre-release (Agi-
lent Technologies). Cysteine carbamidomethylation was
selected as a fixed modification. Methionine oxidation,
asparagine deamidation, protein N-termini acetylation,
peptide N-terminal glutamine to pyroglutamic acid, and
peptide N-terminal cysteine pyro-carbamidomethylation
were selected as variable modifications. For the dataset
from Bojkova et al. [40] which employed isobaric mass
tags, TMT11 was added as a fixed modification to pep-
tide N-termini and lysines, and 13C6-

15N2-TMT11-lysine
and 13C6-

15N4-arginine were added as variable modifica-
tions. All datasets were searched against the SARS-CoV-
2 proteome (UniProtKB, 28 April 2020, 14 entries)
concatenated to databases containing either the Homo
sapiens proteome ([40], UCSC Genome Browser hg19
annotation, 63,691 entries) or the Chlorocebus sabaeus
proteome ([41, 42] UniProtKB, 9229 entries). Precursor
and fragment mass tolerances were set as described in
each manuscript, or as 20 ppm when not specified. Data-
base search results were exported as a list of peptide-
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spectrum matches (PSMs) with a target-decoy-based
false discovery rate (FDR) estimation of 1%. Individual
fractions from each study were combined into a single
list. To perform spectral counting, PSMs assigned to a
single SARS-CoV-2 protein were counted, with ORF1a
and ORF1ab treated as a single protein group. Peptides
matched to both a host and SARS-CoV-2 protein were
discarded. Spectral counts were normalized to the length
of each protein, and the maximum value within each
dataset was set to 100%.

Results
Bioinformatics predictor validation for viral epitopes
using ViPR
We first sought to validate the ability of our predictors
to identify epitopes from genomes of the Coronaviridae
family. Since SARS-CoV-2 only emerged recently, spe-
cific data on SARS-CoV-2 peptide MHC binding and
immunogenic epitopes are currently limited. However,
other viruses from the Coronaviridae family have been
studied thoroughly, specifically MERS-CoV and SARS-
CoV. The latter has significant sequence homology to
SARS-CoV-2 [12]. We therefore sought to leverage pre-
viously tested epitopes from across the Coronaviridae
family to validate our predictions of viral peptides, with
special interest in peptide sequences that exactly
matched protein sequences of the novel SARS-CoV-2
virus. To that end, we used the ViPR database [39],
which lists the results of T cell immunogenicity and
MHC-peptide binding assays for both HLA-I and HLA-
II alleles for viral pathogen epitopes. We used all assays
of Coronaviridae family viruses with human hosts from
ViPR as our validation dataset. Assays that did not have
an associated four-digit HLA allele or were associated
with an allele our models did not support were omitted
(see Additional file 1: Table S1 and Additional file 2:
Table S2 for a list of supported alleles).
For HLA-I, within the validation dataset, there were a

total of 4445 unique peptide-HLA allele pairs that were
assayed for MHC binding, using variations of (1) cellular
MHC or purified MHC, (2) a direct or competitive assay,
and (3) measurement by fluorescence or radioactivity.
Two additional peptide-MHC allele pairs were con-
firmed via X-ray crystallography. Depending on the
study from which the data was collected, peptide-MHC
allele pairs were either defined in ViPR simply as “Nega-
tive” and “Positive” for binding, or with a more granular
scale of positivity: low, intermediate, and high. We
assigned peptide-MHC allele pairs with multiple mea-
surements with the highest MHC binding detected
across the replicates (see the “Methods” section).
We then applied our HLA-I binding predictor to the

peptide-MHC allele pairs in the validation dataset and
compared the computed HLA-I percent ranks of these

pairs with the reported MHC binding assay results
(Additional file 8: Table S8). A low percent rank value
corresponds to high likelihood of binding (e.g., a peptide
with a percent rank of 1% scores among the top 1% in a
reference set of random peptides). The percent ranks of
peptide-MHC allele pairs that had a binary “Positive” re-
sult in the MHC binding assay were significantly lower
than pairs with a “Negative” result. Further, in the more
granular positive results, stronger assay results (low <
intermediate < high) were associated with increasingly
lower percent ranks (Fig. 1a). In addition, the two
peptide-MHC alleles that were confirmed by X-ray crys-
tallography were predicted as very likely binders, with
low percent rank scores of 0.07% and 0.30%. Although
our HLA-I binding predictor was initially built with the
purpose of supporting neoantigen prediction in cancer,
this analysis shows that it can be successfully applied to
coronavirus proteomes. We evaluated our predictor by
performing a Precision-Recall analysis, demonstrating
the tradeoff between accurate calling of positive binders
and the fraction of true binders that are detected (Fig.
1b).
Assays of T cell reactivity (e.g., interferon-gamma ELI-

Spots, tetramers), which are stricter measures for T cell
immunogenicity to epitopes, were performed in signifi-
cantly lower numbers compared with MHC binding as-
says. For HLA-I, the overlap between peptide-MHC
allele pairs for which we had a prediction (supported al-
leles) and pairs with a reported T cell assay consisted of
only 32 pairs, of which 23 had a positive result. We did
not detect differences in the percent ranks across the
positive and negative groups; however, sample sizes are
extremely small. In addition, for HLA-I epitopes, the val-
idation dataset only contained T cell assay results for
peptide-MHC allele pairs that had a positive result in a
binding assay, suggesting a highly biased pool of epitopes
selected for testing, as also reflected in the high rate of
positive T cell assay results. Indeed, the high rate of
positive MHC binding assays compared to what would
be expected for completely randomly selected peptides
also implies that peptides expected to bind based on pre-
diction or prior data were prioritized for testing (or
negative results were under-reported). This underlying
bias in peptides assayed is important to keep in mind in
evaluating the binding predictor performance on this
validation dataset. An even more dramatic difference in
scores for positives versus negatives could be expected
had random peptides been selected for testing.
In addition to the identification of targets for CD8+ T

cells, we have recently demonstrated the ability to predict
HLA-II binders [34], allowing us to target CD4+ T cell re-
sponses which could be harnessed for SARS-CoV-2 vac-
cines. These CD4+ responses can potentially bolster both
T cell immunity and enhance humoral immunity [49].
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In a similar fashion to the HLA-I analysis, we scored
all Coronaviridae family peptide-MHC allele pairs with
supported HLA-II alleles in ViPR using our HLA-II
binding predictor [34] (Additional file 9: Table S9).
There were 259 unique peptide-MHC allele pairs
assayed by MHC binding assays in the ViPR validation
dataset for HLA-II. As before, we compared their per-
cent rank with their reported “best” (in the case of

multiple measurements) MHC binding assay result. This
comparison could not be performed with the “Negative”
pairs as an independent group since there was only one
negative result in the validation dataset for HLA-II. The
low negative counts may be due to under-reporting of
negative assay results or biased selection of the peptides
to be assayed. Therefore, we merged the “Negative” and
“Positive-Low” groups into one group and compared

Fig. 1 Binding predictions for both peptide-HLA-I and HLA-II pairs from ViPR correlate with their reported assay results. a The log10(percent rank)
of scored peptide-HLA-I allele pairs, versus their ViPR reported MHC binding assay result (either binary Negative/Positive or the scaled Negative/
Positive-Low/Positive-Intermediate/Positive-High, based on the reported value). In total, there were 4445 peptide-HLA-I allele pairs in the ViPR
dataset we obtained (see the “Methods” section). Black lines indicate median values. b A modified precision-recall analysis for the HLA-I binding
prediction of ViPR data, in which we demonstrate the fraction of the true positives out of all called positives (precision, indicated by color) and
the fraction of detected true positives out of all true positives (recall, indicated x-axis value) as a fraction of the log10(percent-rank) threshold (y-
axis value). Red dashed line indicates an example of log10(percent-rank) threshold of − 1, corresponding to the line in a. Area under the
precision-recall curve is indicated. c The log10(percent rank) of scored peptide-HLA-II allele pairs, versus their ViPR reported MHC binding assay
result (Negative+Positive-Low/Positive-Intermediate/Positive-High, based on the reported value). In total, there were 259 peptide-HLA-II allele
pairs. Black lines indicate median values. d A modified precision-recall analysis for the HLA-II binding prediction of ViPR data, in which we
demonstrate the fraction of the true positives out of all called positives (precision, indicated by color) and the fraction of detected true positives
out of all true positives (recall, indicated x-axis value) as a fraction of the log10(percent-rank) threshold (y-axis value). Red dashed line indicates an
example of log10(percent-rank) threshold of − 1, corresponding to the line in c. Area under the precision-recall curve is indicated
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their percent ranks with either the “Positive-Intermedi-
ate” or the “Positive-High” groups (Fig. 1c). This analysis
revealed a trend similar to that observed with HLA-I
predictions, indicating that stronger MHC binding assay
results are associated with a lower predicted percent
rank for HLA-II binders, as we expect for a robust pre-
dictor. We also evaluated our HLA-II binding predictor
by performing a precision-recall analysis (Fig. 1d). The
area under the precision-recall curve (AUC) indicated
only a small advantage to our predictor over a random
guess, which is explained by the heavy bias towards pep-
tides with positive HLA-II binding assay results. Similar
to the HLA-I T cell assays, there were too few recorded
HLA-II T cell assays in our validation dataset to deter-
mine percent rank differences between peptide-HLA II
allele pairs testing positive and negative. Together, these
findings further corroborate the validity of our epitope
predictors, as peptide-MHC allele pairs with positive re-
sults in binding assays consistently have lower percent
ranks (better scores) by both our HLA-I and HLA-II
MHC binding predictors.

Epitope prediction for SARS-CoV-2
We harnessed our HLA binding prediction ability to iden-
tify the peptides most relevant to the generation of SARS-
CoV-2 T cell responses. We first performed the analysis for
HLA-I peptide binding and computed the likelihood of
each peptide of lengths 8–12 amino acids from the 13
SARS-CoV-2 ORFs to bind to any HLA-I allele in our data-
base. We then calculated the percent rank of each peptide-
MHC allele pair by comparing their binding scores to those
of a set of reference peptides; putative binders were

identified as sequences predicted to bind to a given allele
with a percent rank of 1% or lower (Fig. 2 a–c).
By this metric, we detected a total of 11,897 unique

SARS-CoV-2 peptides that were predicted to bind at
least one HLA-I allele (Additional file 4: Table S4). Six-
teen of these peptides overlapped with a subsequence of
the human proteome and were marked for consider-
ations of potential autoimmunity (see the “Methods”
section, Additional file 4: Table S4).
Unlike HLA-I, which has a closed binding groove that

constrains bound peptide lengths to approximately 8 to
12 amino acids, peptides binding HLA-II have a wider
length distribution (up to 30 amino acids or even longer)
since the HLA-II binding groove is open at both ends.
Peptides bind with a 9-amino acid subsequence (termed
the binding core) occupying the HLA-II binding groove,
with any flanking sequence overhanging the edges of the
molecule. We consider a group of peptides that differ in
the flanking regions but share a common binding core
as a single epitope. Using the HLA-II predictor, we iden-
tified 3372 unique binding cores that are predicted to
bind at least one HLA-II allele with a percent rank score
of 1% or lower (Table 1). The majority of predicted
peptide-MHC allele pairs are from ORF1a and ORF1ab,
primarily driven by the length of these ORFs. In
addition, ORF1a and ORF1ab have very similar
sequences, with over 18,000 identical binding peptide-
HLA-I allele pairs predicted for both ORFs. We there-
fore opted to exclude redundant predictions and only
reported unique pairs (see * in Table 1). Similarly, all
HLA-II predicted epitopes from ORF1a were covered by
those reported for ORF1ab.

Fig. 2 A schematic demonstrating our approach to identify SARS-CoV-2 T cell epitopes and their validation. (a) A diagram of the SARS-CoV-2
virus, listing example proteins. (b) Applying our HLA-I and HLA-II binding predictors to the 13 annotated ORFs of SARS-CoV-2 (including ORF9b).
(c) Both HLA-I and HLA-II epitopes are ranked by their likelihood to bind a particular HLA allele. (d) Epitopes shared between SARS-CoV-2 and
other coronaviruses which were previously assayed are used for validation. (e) A description of a T cell induction assay to assess immunogenicity
of select epitopes
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To test the validity of the SARS-CoV-2-predicted
peptide-HLA pairs, we looked for peptide sequences in the
Coronaviridae portion of the ViPR database which exactly
matched SARS-CoV-2 peptide sequences (Fig. 2d). A total
of 374 HLA-I peptide-MHC allele pairs from SARS-CoV-2
had both a percent rank lower than 1% by our predictor
and were found in the HLA-I MHC binding validation
dataset. Strikingly, of these HLA-I peptide-MHC allele
pairs, 333 (89%) had a positive assay result. As a compari-
son, we also tested for overlap between epitopes predicted
to have low likelihood of MHC binding (percent rank 50%
or higher) and the validation dataset. Thirty-seven peptide-
MHC allele pairs overlapped between these sets, of which
36 (97.2%) had a negative assay result, as predicted. Further,
we sought to determine whether our highly predicted
SARS-CoV-2 peptide-HLA-I allele pairs (percent rank
lower than 1%) would be validated by reported T cell assay
results. Despite the significantly smaller number of peptide-
MHC allele pairs that were tested for T cell reactivity in the
validation dataset, 10 assayed pairs were also highly pre-
dicted by our HLA-I binding predictor. Nine out of these
10 (90%) predicted pairs had a positive result to the T cell
assay. No low-scoring pairs (percent rank of 50% or above)
were reported in the validation dataset. These findings
demonstrate the validity of our prediction for peptide-
HLA-I allele pairs for SARS-CoV-2 epitopes. Notably, while
our algorithms are not trained on T cell reactivity data and
are aimed at peptide-MHC binding, for the few examples
in ViPR for which T cell reactivity assay results were re-
ported, we were able to show our highly scoring peptide-
MHC allele pairs are indeed immunogenic in the vast ma-
jority of cases.

For HLA-II peptide-MHC allele pairs, only a single
HLA-II peptide-MHC allele pair had both a percent rank
lower than 1% and was reported in the validation data-
set; this single pair (from the envelope protein) had a
“Positive-High” assay result.

Immunogenicity of HLA-A02:01-predicted SARS-CoV-2
epitopes
Our binding prediction algorithms predict the likelihood
of an epitope to be presented by a specific HLA allele,
but do not directly predict the ability of a T cell receptor
to recognize the epitope presented by the MHC mol-
ecule. Due to the process of central tolerance, which de-
letes T cells that could cross-react with peptides from
self-antigens, not every epitope that is a strong MHC
binder will elicit a T cell response [50]. Therefore, there
is a need to further validate high affinity MHC binding
peptides in T cell assays as previously described (Fig. 2e)
[51–54]. To address the immunogenicity of a subset of
highly predicted MHC binding peptides, we synthesized
23 highly predicted HLA-A02:01 binding epitopes from
each of the following SARS-CoV-2 proteins: S, M, N, E,
and ORF1ab (Fig. 3a). Of these, 20 were selected solely
due to being highly predicted SARS-CoV-2 epitopes
while the additional three are also highly predicted but
were chosen from ViPR. Pools of these peptides were
cultured with PBMCs from three human donors, and
the predicted epitopes were considered immunogenic if
they elicited a T cell response as detected by binding to
pMHC multimers for HLA-A02:01 in at least one of
three donors.

Table 1 Summary of the HLA-I and HLA-II epitopes predicted across the 13 SARS-CoV-2 ORFs and their validation

ORFs Length
(AA)

Peptide HLA-I pair
count

Reported in
ViPR

Assay:
Negative

Assay:
Positive

Percent—
positive

Binding-core and HLA-II pair
count

Envelope protein (E) 75 556 34 3 31 91.2 29

Membrane glycoprotein (M) 222 1236 41 0 41 100.0 68

Nucleocapsid
phosphoprotein (N)

419 1054 40 9 31 77.5 107

ORF1a polyprotein* 4405 14* 0 0 0 NA 0*

ORF1ab polyprotein 7096 28,965 0 0 0 NA 2516

ORF3a protein 275 1408 127 11 116 91.3 94

ORF6 protein 61 322 0 0 0 NA 23

ORF7a protein 121 642 3 0 3 100.0 28

ORF7b 43 327 8 1 7 87.5 2

ORF8 protein 121 449 20 2 18 90.0 27

ORF9b protein** 97 453 6 1 5 83.3 37

ORF10 protein 38 258 0 0 0 NA 4

Spike protein (S) 1273 4686 95 14 81 85.3 437

*Peptides unique to ORF1a (not found in ORF1ab)
**Annotated in UniProt
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Overall, we detected CD8+ T cell responses in at least
one donor for 11 of the 23 highly predicted epitopes in
our assay (Fig. 3a, b). Fifteen of the 20 epitopes (75%) se-
lected solely based on the prediction score were either
reported positive in ViPR for MHC binding (n = 8) or
had T cell reactivity in our assay (n = 8) in association
with HLA-A02:01. Importantly, 10 of these 20 predicted
epitopes (50%) tested positive for T cell reactivity, either
in our assay (n = 8) or in previous reports of SARS-CoV
(n = 2), confirming that our binding predictor can iden-
tify epitopes that are immunogenic. We were thus able
to identify eight novel epitopes not previously reported
in ViPR that were recognized by specific CD8+ T cells in
donor PBMCs. The responses were generally robust,
with nine of the 11 epitopes positive in our assay being
recognized by specific CD8+ T cell responses in at least
two donors (Fig. 3a), and encouragingly, every ORF from
SARS-CoV-2 that was assayed had at least one peptide
that led to a T cell response (Fig. 3a). Taken together,
these data show that many novel SARS-CoV-2 epitopes
that were predicted to be strong binders from our HLA-
I binding predictor were found to be immunogenic.

Population coverage of peptides predicted to bind
multiple HLA-I and HLA-II alleles
We sought to prioritize peptides from the M, N, and S
proteins that are predicted to provide broad coverage for
the US, European, and Asian-Pacific Islander popula-
tions based on the prevalence of MHC alleles in these
populations [43]. We found that a subset of the peptides
was predicted to bind a broad set of either HLA-I or

HLA-II alleles. For each protein, we determined that a
small number of peptide sequences provide saturating
coverage for the US, European, and Asian-Pacific Is-
lander populations, with > 99% population coverage
achieved with selected 8–12mer epitopes for HLA-I, and
> 95% population coverage achieved with selected 25mer
sequences for HLA-II, respectively (Fig. 4a, b). Even if
the generous assumption that all peptide-MHC allele
pairs for which a given peptide scores in the top 1% are
indeed immunogenic is not fully upheld, this finding
could facilitate the design of a parsimonious, broadly ef-
fective vaccine to induce broad T cell immunity.

Leveraging proteomic data to infer relative viral protein
abundance
In addition to peptide-MHC binding, another important
consideration in the design of a potential SARS-CoV-2
vaccine is the degree of viral protein expression in in-
fected host cells. In order to determine the relative
abundance of SARS-CoV-2 proteins, we analyzed three
publicly available proteomic datasets that acquired un-
biased LC-MS/MS on tryptic digestions of SARS-CoV-2-
infected host cells [40–42]. Relative abundance of the
viral proteins was estimated by spectral counting, a
semi-quantitative approach whereby peptide-spectrum
matches are counted, and totals are compared across
proteins (Additional file 10: Table S10) [55, 56]. This
analysis demonstrated the significantly wide range of ex-
pression levels of the SARS-CoV-2 proteins. Specifically,
it confirmed that the N protein is the most abundant
viral protein across all three datasets following SARS-

Fig. 3 Experimental Validation of HLA-A02:01 predicted epitopes from SARS-CoV-2 in human T cell induction assays. a 23 peptides that were
predicted to be high binders to HLA-A02:01 were synthesized and assayed in T cell inductions using PBMCs from three human donors. Three
epitopes marked with asterisk were chosen based on ViPR, while the remaining 20 were chosen solely based on the predictor score. For our
assay, epitopes were considered to be immunogenic if at least one donor raised a T cell response to the peptide as determined by pMHC
multimer technology. ViPR confirmation refers to identical sequences from SARS-CoV confirmed via either MHC binding or T cell assays. b Flow
cytometry plots of pMHC multimer staining from representative immunogenic SARS-CoV-2 epitopes. Multimer positive populations are circled in
red, with the frequency of multimer positive CD8+ T cells shown in the upper right-hand corner of each plot
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CoV-2 infection (Fig. 5). This finding is corroborated by
reports of N-derived peptides being detected in gargle
solution samples from COVID-19 patients [57]. Further-
more, the N protein has been used as a biomarker for
diagnosing patients infected with the SARS-CoV virus
[58]. On the other hand, based solely on genomic infor-
mation, ORF10 might be considered a potential target
for vaccine development. However, there is very little
proteomic and transcriptomic evidence that ORF10 is
actually expressed in SARS-CoV-2-infected cells [42,
59]. These findings emphasize the value of considering
SARS-CoV-2 protein expression levels in addition to
HLA binding predictions and the immunogenicity of
these epitopes in vaccine design strategies.

Discussion
In this work, we demonstrated the utility and validity of
our HLA-I and HLA-II binding prediction algorithms to
the Coronaviridae virus family, and specifically to SARS-
CoV-2. We use our validated predictors trained on
mono-allelic MS data for both HLA-I and HLA-II

binders, which potentially could be leveraged to induce
both long-term CD4+ and CD8+ T cell immunity against
the virus. Specifically, our HLA-II predictor, which has
been trained on a large set of mono-allelic MS data and
has been shown to identify immunogenic epitopes, is
used here to identify high-quality SARS-CoV-2 CD4+

epitopes that may contribute to both cellular and
humoral immunity [34] (Additional file 6: Table S6).
Our database of supported HLA-I and HLA-II alleles
provides us with the ability to not only identify many
peptide-MHC allele pairs, but to generate a narrow list
of peptides with many potential HLA pairings that could
be presented by the entire US, European, and Asian-
Pacific Islander populations. By applying these algo-
rithms to previously assayed peptide-MHC allele pairs in
ViPR, we were able to demonstrate excellent concord-
ance between our binding predictions and the results of
the binding assays for both HLA-I and HLA-II epitopes.
We leveraged the homology within the Coronaviridae
family to demonstrate that an exceedingly high portion
(~ 90%) of our high-ranking SARS-CoV-2 peptide-MHC

Fig. 4 Few predicted multi-allele binding epitopes from individual SARS-CoV-2 proteins can achieve broad population coverage. a Cumulative
HLA-I coverage for USA, EUR, and API populations versus the number of included prioritized HLA-I epitopes for M, N, and S proteins, respectively.
See Additional file 5: Table S5 for the peptide sequences corresponding to each panel. b Cumulative HLA-II coverage for each population versus
the number of included prioritized HLA-II 25mers for M, N, and S proteins, respectively. See Additional file 7: Table S7 for the peptide sequences
corresponding to each panel
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allele pairs for which validation was available was indeed
confirmed to bind the predicted MHC allele.
We also experimentally confirmed that our binding

predictors can identify epitopes that are immunogenic
and can lead to CD8+ T cell responses to multiple
SARS-CoV-2 proteins in donor PBMCs. It is plausible
that the significant fraction of epitopes we experimen-
tally confirmed (50% of highly predicted, tested epitopes)
is only an underestimate for overall immunogenicity,
since PBMCs from only three donors were used in this
initial experiment. While an immunogenicity rate of 50%
for epitopes predicted based on HLA binding is encour-
aging, it is challenging to compare with previous studies
due to differences in T cell induction protocols, predic-
tion algorithms and their prediction thresholds, and epi-
tope etiology [53, 60, 61]. Pre-prints released during the
revision of this manuscript [60, 61] studied CD8+ T cell
responses to a small set of epitopes from the S protein
in COVID-19 patient or healthy donor PBMCs. The
study by Shomuradova et al. [60] showed that in their
cohort, following stimulation, two HLA-A02:01 epitopes
(YLQPRTFLL and RLQSLQTYV) distinguished CD8+ T
cell responses in COVID-19 patients from healthy donor
samples collected before or during the pandemic. Their
data also show that 10 additional peptides sporadically
induce responses in 2–3 individuals from either the
healthy donor or the COVID-19 patient cohorts (total of
31 individuals). We found that 11 of the 12 peptides are
highly ranked by our predictor (percent rank < 1%), with
the two peptides specifically immunogenic in patients
scoring at 0.1 and 0.17% rank, respectively. Interestingly,
in our T cell assay, the HLA-A02:01 epitope RLQSLQ
TYV elicited a CD8+ T cell response in all three healthy
donors.

While focusing on a small set of two COVID-19
patients and one healthy donor, Chour et al. [61] demon-
strate that five HLA-A02:01-restricted epitopes from the
S protein elicited a CD8+ T cell response in all three in-
dividuals. Although these epitopes were not tested in
our immunogenicity assay, all five (100%) were predicted
highly by our HLA-I binding predictor (percent rank <
1%). These studies provide independent confirmation to
our algorithm’s ability to not only predict HLA-I bind-
ing, but also identify immunogenic peptides.
Though we did not perform T cell assays to evaluate

the immunogenicity of the HLA-II predicted epitopes,
such analysis would be valuable, especially given the im-
portance of CD4+ T cells in both the cellular and
humoral anti-viral response. We thus propose that a
combination of B and T cell epitopes could provide
long-lasting immunity from SARS-CoV-2 or mitigate the
severity of disease when protection is partial.
We therefore concluded that using our HLA bind-

ing predictors to predict T cell epitopes from the
ORFs of SARS-CoV-2 provides a novel and large set
of high-quality T cell vaccine targets for the virus. In
comparison to the recent publication by Grifoni et al.
[38], we provide a large number of predicted epitopes,
which we attribute to two differences in our ap-
proaches: (a) we opted to use a less stringent predic-
tion cutoff based on the concordance of our 1% rank
cutoff with the previously reported epitopes in ViPR
and (b) we provide predictions for alleles from a
wider range of population frequencies. This approach
better covers non-white populations and provides pre-
dictions for rare alleles based on models trained on
mono-allelic MS data as opposed to the extrapolation
required by pan-allele predictors for alleles lacking

Fig. 5 Analysis of publicly available proteomic datasets demonstrates relative SARS-CoV-2 protein expression levels. Three datasets examining the
proteomic response to SARS-CoV-2 infection were re-analyzed, and protein abundance was estimated by spectral counts normalized to protein
length. Any annotated ORF not shown in the figure was not detected in these proteomic studies. Across all three studies, the nucleocapsid
protein (N) is the most abundant SARS-CoV-2 protein in infected cells
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sufficient data. This approach allows us to better
prioritize vaccine candidates, as well as provide re-
searchers with predictions to investigate materials
from individuals with less frequent alleles. The differ-
ences in training data lead to algorithms that
prioritize substantially different epitope sets, even for
well-studied alleles. For instance, of the 91 HLA-A02:
01 epitopes nominated by Grifoni et al., only 48 over-
lap with the top 91 from our predictor. In addition,
we provide not only bioinformatics validation based
on previously reported T cell epitopes and MHC
binding peptides from other viruses from the Corona-
viridae family in ViPR, but also experimentally vali-
dated, novel SARS-CoV-2 T cell epitopes.
The selection of target sequences can be further guided

by levels of protein expression, predicted population
coverage, and degree of sequence conservation. First, de-
signing therapeutics against predicted epitopes is only ef-
fective if the proteins containing those epitopes are
expressed at high enough levels for efficient antigen pro-
cessing and presentation to take place. Therefore, it is cru-
cial that protein expression be considered when selecting
therapeutic targets. Second, prioritization of epitopes that
are predicted to bind multiple alleles could provide cover-
age to significant fractions of the population, while includ-
ing few epitopes in the vaccine. Lastly, during the viral
spread and expansion through the population, genomic
modifications are acquired, generating sequence diversity
among the SARS-CoV-2 variants. This diversity may allow
evasion of immune pressure, and therefore, it is important
to prioritize epitopes that are conserved across the SARS-
CoV-2 variants [62]. Novel tools which enable restricting
peptides to conserved regions have recently become avail-
able: https://covidep.ust.hk [63] and http://cov-glue.cvr.
gla.ac.uk/#/home [64].
Limiting epitope selection to highly expressed pro-

teins, epitopes predicted to bind multiple high-frequency
HLA alleles, and conserved viral sequences restricts the
number of potential epitopes. However, the breadth of
the list we provide increases the likelihood of identifying
many high-quality, highly expressed epitopes. The epi-
topes characterized here, combined with insights on
SARS-CoV-2 protein expression along with further ef-
forts to confirm immunogenicity, can provide pre-
clinical validation of epitopes that may be vaccine candi-
dates to induce strong cellular immunity.

Conclusions
In summary, our work provides the most extensive set
of both CD4+ and CD8+ T cell epitopes that are span-
ning the entire SARS-CoV-2 genome and binding a wide
set of HLA-I and HLA-II alleles. Combining this epitope
list with consideration of protein expression levels,
population coverage and viral sequence conservation will

lead to generation of a short list of vaccine epitope can-
didates that are likely immunogenic in the majority of
the population. Our predicted list of CD4+ and CD8+ T
cell epitopes will complement B cell epitopes and serve
as a resource for the scientific community to generate
potent SARS-CoV-2 vaccine epitopes and generate long-
lasting T cell immunity.
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2019 [34]. SARS-CoV-2 proteomic datasets were downloaded from the PRIDE
repository (Bojkova et al. [40]: PXD017710, https://www.ebi.ac.uk/pride/arch-
ive/projects/PXD017710; Bezstarosti et al. [41]: PXD018760, https://www.ebi.
ac.uk/pride/archive/projects/PXD018760; Davidson et al. [42]: PXD018241,
https://www.ebi.ac.uk/pride/archive/projects/PXD018241). Custom R and Py-
thon scripts used in generation of supplementary tables and figures are in-
cluded (Additional files 11, 12 and 13).
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