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Abstract

Background: Humans and viruses have co-evolved for millennia resulting in a complex host genetic architecture.
Understanding the genetic mechanisms of immune response to viral infection provides insight into disease
etiology and therapeutic opportunities.

Methods: We conducted a comprehensive study including genome-wide and transcriptome-wide association
analyses to identify genetic loci associated with immunoglobulin G antibody response to 28 antigens for 16 viruses
using serological data from 7924 European ancestry participants in the UK Biobank cohort.

Results: Signals in human leukocyte antigen (HLA) class Il region dominated the landscape of viral antibody
response, with 40 independent loci and 14 independent classical alleles, 7 of which exhibited pleiotropic effects
across viral families. We identified specific amino acid (AA) residues that are associated with seroreactivity, the
strongest associations presented in a range of AA positions within DRB1 at positions 11, 13, 71, and 74 for Epstein-
Barr virus (EBV), Varicella zoster virus (VZV), human herpesvirus 7, (HHV7), and Merkel cell polyomavirus (MCV).
Genome-wide association analyses discovered 7 novel genetic loci outside the HLA associated with viral antibody
response (P < 5.0 X 1079, including FUT2 (19g13.33) for human polyomavirus BK (BKV), STINGT (5g31.2) for MCV, and
CXCR5 (11923.3) and TBKBPT (17921.32) for HHV7. Transcriptome-wide association analyses identified 114 genes
associated with response to viral infection, 12 outside of the HLA region, including ECSCR: P =5.0 X 1071° (MQV),
NTNS: P =1.1x 1077 (BKV), and P2RY13: P = 1.1 x 10~8 EBV nuclear antigen. We also demonstrated pleiotropy
between viral response genes and complex diseases, from autoimmune disorders to cancer to neurodegenerative
and psychiatric conditions.

Conclusions: Our study confirms the importance of the HLA region in host response to viral infection and
elucidates novel genetic determinants beyond the HLA that contribute to host-virus interaction.
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Background

Viruses have been infecting cells for a half a billion years
[1]. During our extensive co-evolution, viruses have exerted
significant selective pressure on humans and vice versa,
overtly during fatal outbreaks, and covertly through cryptic
immune interaction when a pathogen remains latent. The
recent pandemic of severe acute respiratory syndrome cor-
onavirus 2 (SARS-CoV-2) highlights the paramount public
health need to understand human genetic variation in re-
sponse to viral challenge. Clinical variation in COVID-19
severity and symptomatic presentation may be due to dif-
ferences host genetic factors relating to immune response
[2]. Furthermore, many common infections are cryptically
associated with a variety of complex illnesses, especially
those with an immunologic component, from cancer to
autoimmune and neurologic conditions [3-5]. Despite their
broad health relevance, few large-scale genome-wide associ-
ation studies (GWAS) have been conducted on serological
response phenotypes [6—10]. Understanding the genetic
architecture of immunologic response to viruses may there-
fore provide new insight into etiologic mechanisms of
diverse complex diseases.

Several common viruses exert a robust cell-mediated and
humoral immune response that bi-directionally modulates
the balance between latent and lytic infection. Studies have
demonstrated a strong heritable component (32-48%) of
antibody response [11] and identified associations between
host polymorphisms in genes relating to cell entry, cytokine
production, and immune response and a variety of viruses
[12]. The predominance of previously reported associations
has implicated genetic variants in human leucocyte antigen
(HLA) class I and II genes in the modulation of immune
response to diverse viral antigens [7, 13].

In this study, we utilize data from the UK Biobank
(UKB) cohort [14] to evaluate the relationship between
host genetics and immunoglobulin G antibody response
to 28 antigens for 16 viruses. Immunoglobulin G (IgQ)
antibody is the most common antibody in blood, which
serves as a stable biomarker of lifetime exposure to com-
mon viruses. High levels of specific IgG’s can be the result
of chronic infection, while low levels may indicate poor
immunity. Viruses assayed in the UKB multiplex serology
panel were previously chosen based on putative links to
chronic diseases including cancer, autoimmune, and neu-
rodegenerative conditions [15]. We conduct integrative
genome-wide and transcriptome-wide analyses of anti-
body response and positivity to viral antigens (Fig. 1),
which elucidate novel genetic underpinnings of viral infec-
tion and immune response.

Methods

Study population and phenotypes

The UK Biobank (UKB) is a population-based prospect-
ive cohort of over 500,000 individuals aged 40—-69 years
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at enrollment in 2006-2010 who completed extensive
questionnaires and physical assessments and provided
blood samples [14]. Analyses were restricted to individ-
uals of predominantly European ancestry based on self-
report and after excluding samples with any of the first
two genetic ancestry principal components (PCs) outside
of 5 standard deviations (SD) of the population mean
(Additional file 1: Figure S1). We removed samples with
discordant self-reported and genetic sex, samples with
call rates < 97% or heterozygosity > 5 SD from the mean,
and one sample from each pair of first-degree relatives
identified using KING [16].

Of the 413,810 European ancestry individuals available
for analysis, a total of 7948 had serological measures. A
multiplex serology panel (IgG) was performed over a 2-
week period using previously developed methods [17, 18]
that have been successfully applied in epidemiological
studies [7, 19]. Details of the serology methods and assay
validation performance are described in Mentzer et al.
[15] Briefly, multiplex serology was performed using a
bead-based glutathione S-transferase (GST) capture assay
with glutathione-casein coated fluorescence-labeled poly-
styrene beads and pathogen-specific GST-X-tag fusion
proteins as antigens [15]. Each antigen was loaded onto a
distinct bead set and the beads were simultaneously pre-
sented to primary serum antibodies at serum dilution 1:
1000 [15]. Immunocomplexes were quantified using a
Luminex 200 flow cytometer, which produced Median
Fluorescence Intensities (MFI) for each antigen. The ser-
ology assay showed adequate performance, with a median
coefficient of variation (CV) of 17% across all antigens and
3.5% among seropositive samples only [15].

Genome-wide association analysis
We evaluated the relationship between genetic variants
across the genome and serological phenotypes using
PLINK 2.0 (October 2017 version) [20]. Participants
were genotyped on the Affymetrix Axiom UK Biobank
array (89%) or the UK BIiLEVE array (11%) [14] with
genome-wide imputation performed using the Haplotype
Reference Consortium data and the merged UK10K and
1000 Genomes phase 3 reference panels [14]. We ex-
cluded variants out of Hardy-Weinberg equilibrium at
p <1x107° call rate<95% (alternate allele dosage
within 0.1 of the nearest hard call to be non-missing),
imputation quality INFO< 0.30, and MAF < 0.01.
Seropositivity for each antigen was determined using
established cut-offs based on prior validation work [15].
The primary GWAS focused on continuous phenotypes
(MFI values), which measure the magnitude of antibody
response, also referred to as seroreactivity. These ana-
lyses were conducted among seropositive individuals
only for antigens with seroprevalence of =20% (n =
1500) based on 80% power to detect only common
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Fig. 1 Flow chart describing the main serological phenotypes and association analyses
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variants with large effect sizes at this sample size
(Additional file 1: Figure S2). MFI values were trans-
formed to standardized, normally distributed z-scores
using ordered quantile normalization [21].
Seroreactivity GWAS was conducted using linear re-
gression with adjustment for age at enrollment, sex,

body mass index (BMI), socioeconomic status (Townsend
deprivation index), the presence of any autoimmune and/
or inflammatory conditions, genotyping array, serology
assay date, quality control flag indicating sample spillover
or an extra freeze/thaw cycle, and the top 10 genetic
ancestry principal components (PC’s). Autoimmune and
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chronic inflammatory conditions were identified using the
following primary and secondary diagnostic ICD-10 codes
(E10, M00-03, M05-M14, M32, L20-L30, L40, G35, K50-
52, K58, G61) in Hospital Episode Statistics. Individuals
diagnosed with any immunodeficiency (ICD-10 D80-89,
n = 24) were excluded from all analyses.

For all antigens with at least 100 seropositive (or sero-
negative for pathogens with ubiquitous exposure) indi-
viduals, GWAS of discrete seropositivity phenotypes was
undertaken using logistic regression, adjusting for the
same covariates listed above.

The functional relevance of the lead GWAS loci for
antibody response was assessed using in silico functional
annotation analyses based on Combined Annotation
Dependent Depletion (CADD) [22] scores and Regulo-
meDB 2.0 [23] and by leveraging external datasets, such as
GTEx v8, DICE (Database of Immune Cell Expression)
[24], and the Human Plasma Proteome Atlas [25, 26].

Cross-trait associations with disease

We explored pleiotropic associations between lead vari-
ants influencing antibody levels and several chronic dis-
eases with known or hypothesized viral risk factors.
Associations with selected cancers were obtained from a
cancer pleiotropy meta-analysis of the UK Biobank and
Genetic Epidemiology Research on Aging cohorts [27].
Summary statistics for the schizophrenia GWAS of 33,
640 cases and 43,456 controls by Lam et al. [28] were
downloaded from the Psychiatric Genomics Consortium.
Association p values were obtained from the National
Institute on Aging Genetics of Alzheimer’s Disease Data
Storage Site for the GWAS by Jun et al. [29], which in-
cluded 17,536 cases and 53,711 controls. Associations
with p <7.3 x10™* were considered statistically signifi-
cant after correction for the number of variants and phe-
notypes tested.

HLA regional analysis
For phenotypes displaying a genome-wide significant sig-
nal in the HLA region, independent association signals
were ascertained using two complementary approaches:
clumping and conditional analysis. Clumping is a post-
processing step applied to GWAS summary statistics to
identify independent association signals by grouping var-
iants based on LD within specific windows. Clumping
was performed on all variants with P <5 x 107® for each
phenotype, as well as across phenotypes. Clumps were
formed around index variants with the lowest p value,
and all other variants with LD 7* >0.05 within a + 500-
kb window were considered non-independent and
assigned to that variant’s clump.

Next, we conducted conditional analyses using a for-
ward stepwise strategy to identify statistically independ-
ent signals within each type of variant (SNP/indel or
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classical HLA allele). Unlike clumping, conditional ana-
lyses involve fitting a new model that includes specific
variants as covariates, thereby directly accounting for LD
and providing association estimates that are adjusted for
other relevant SNP effects. A total of 38,655 SNPs/indels
on chromosome 6 (29,600,000—33,200,000 bp) were
extracted to conduct regional analyses. Classical HLA
alleles were imputed for UKB participants at 4-digit
resolution using the HLA*IMP:02 algorithm [14], with
modified settings to accommodate the addition of
diverse samples from population reference panels de-
scribed by Motyer et al. [30]. Details of the HLA imput-
ation procedure are described in UKB Resource 182.
Imputed dosages were available for 362 classical alleles
in 11 genes: HLA-A, HLA-B, and HLA-C (class I); HLA-
DRBS, HLA-DRB4, HLA-DRB3, HLA-DRB1, HLA-DQAI,
HLA-DQBI, HLA-DPA1, and HLA-DPBI (class II). Allele
names with “99:01” for DRB3/4/5, which denote copy
number absence, were renamed as “00:00” to avoid con-
fusion with traditional HLA nomenclature. We also used
SNP2HLA [31] to impute HLA alleles and correspond-
ing amino acid sequences at a 4-digit resolution in HLA-
A, HLA-B, HLA-C, HLA-DRB1, HLA-DQA1, HLA-DQBI,
HLA-DPA1, and HLA-DPBI using the Type 1 Diabetes
Genetics Consortium (T1DGC) reference panel com-
prised of 2767 unrelated individuals of European des-
cent. TIDGC was also among several reference datasets
used by HLA*IMP:02. SNP2HLA imputation was con-
ducted using 100-kb windows.

Analyses were restricted to common HLA alleles and
amino acid sequences (frequency > 0.01) with imputation
quality scores > 0.30, for a total of 1081 markers (101 alleles
+980 amino acid residues). We performed uncertainty-
aware analyses using the imputed allele dosages, which is
preferred to hard-thresholding approaches [32]. Linear re-
gression models were adjusted for the same set of covari-
ates as the GWAS. Associations for each marker were
considered statistically significant if P < 4.6 x 10> based on
Bonferroni correction for 1081 tests.

For each antigen response phenotype, we identified
SNPs/indels or classical HLA alleles with the lowest p
value, among variants that achieved Bonferroni-
significant associations (P < 4.6 x 107°), and performed
forward iterative conditional regression to identify other
independent signals, until no associations with a condi-
tional p value (Pona)<5x107® remained. We also
assessed the independence of associations across differ-
ent types of genetic variants by including conditionally
independent HLA alleles as covariates in the SNP-based
analysis.

For amino acid positions with > 2 possible residues (al-
leles), we applied the haplotype omnibus test in PLINK
1.07 [33] to obtain an overall p value for jointly testing
all possible substitutions at that specific position. The
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omnibus test was applied to all amino acid residues at a
given position, even if not all substitutions achieved the
Bonferroni-corrected threshold (P <4.6 x 107™°) in the
single-marker analysis. The frequency of amino acid
substitutions at specific HLA alleles was determined
using European ancestry reference populations part of
the Allele Frequency Net Database (AFND 2020) [34].

Transcriptome-wide association analysis

Gene transcription levels were imputed and analyzed
using the MetaXcan approach [35] applied to GWAS
summary statistics. For imputation, we used biologically
informed MASHR-M prediction models [36] obtained
from the PredictDB repository [37]. These models are
based on GTEx v8 with effect sizes computed using
MASHR (Multivariate Adaptive Shrinkage in R) [38] for
variants fine-mapped with DAP-G (Deterministic Ap-
proximation of Posteriors) [39, 40]. An advantage of this
approach is that MASHR effect sizes are smoothed by
taking advantage of the correlation in cis-eQTL effects
across tissues. For each antigen, we performed a
transcriptome-wide association study (TWAS) using
gene expression levels in whole blood. Statistically sig-
nificant associations for each gene were determined
based on the Bonferroni correction for the number of
genes tested.

We also examined gene expression profiles in tissues
that represent known infection targets or related path-
ologies. Human herpesviruses and polyomaviruses are
neurotropic and have been implicated in several neuro-
logical conditions [41, 42]; therefore, we considered gene
expression in the frontal cortex. For Epstein-Barr virus
(EBV) antigens additional models included EBV-
transformed lymphocytes. Merkel cell polyomavirus
(MCYV) is a known cause of Merkel cell carcinoma [43],
a rare but aggressive type of skin cancer; therefore, we
examined transcriptomic profiles in skin tissues for
MCV only.

Pathways represented by genes associated with anti-
body response to viral antigens were summarized by
conducting enrichment analysis based on curated gene
sets using the R package clusterProfiler (version 3.12.0)
[44]. Significantly associated TWAS genes were grouped
by virus family (herpesviruses vs. polyomaviruses) and
specificity of association (multiple antigens vs. single
antigen).

Results

A random sample of the participants representative of
the full UKB cohort was assayed using a multiplex ser-
ology panel [15]. We analyzed data from 7924 partici-
pants of predominantly European ancestry, described in
(Additional file 2: Table S1). Approximately 90% of indi-
viduals were seropositive for herpes family viruses with
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ubiquitous exposure: EBV (EBV EA-D 86.2% to ZEBRA
91.2%), human herpesvirus 7 (HHV7 94.8%), and vari-
cella zoster virus (VZV 92.3%). Seroprevalence was
somewhat lower for cytomegalovirus (CMV), ranging be-
tween 56.5% (CMV pp28) and 63.3% (CMV pp52), and
herpes simplex virus-1 (HSV1 69.3%). Human polyoma-
virus BKV was more prevalent (95.3%) compared to
other polyomaviruses, Merkel cell polyomavirus (MCV
66.1%) and polyomavirus JC (JCV) (56.6%). Less com-
mon infections included HSV-2 (15.2%), HPV16 (E6 and
E7 oncoproteins: 4.7%), HPV18 (2.4%), human T-cell
lymphotropic virus type 1 (HTLV1, 1.6%), hepatitis B
(HBV, 1.6%), and hepatitis C (HCV, 0.3%).

Genetic determinants of response to viral infection
Results from our GWAS of antibody response pheno-
types were dominated by signals in the HLA region,
which were detected for all EBV antigens (EA-D, EBNA,
pl8, ZEBRA), CMV pp52, HSV1, HHV7, VZV, JCV, and
MCYV (Table 1; Additional file 1: Figure S3). Most of the
top-ranking HLA variants for each antigen were inde-
pendent of those for other antigens based on r* but not
D' (Additional file 1: Figure S4). Exceptions were mod-
erate LD between lead variants for EBV ZEBRA and
HSV1 (* =0.45), EBV EBNA and JCV (* =0.45), and
HHV7 and MCV (#* =0.44). However, based on the
complex LD structure and effect sizes, we cannot rule
out that these linked to rare haplotypes. Outside of the
HLA region, genome-wide significant associations with
seroreactivity were detected for MCV at 3p24.3
(rs776170649, LOC339862: P =17 x10™%) and 5q31.2
(rs7444313, TMEMI173 (also known as STINGI): P =
24 x107"%); BKV at 19q13.3 (rs681343, FUT2: P = 4.7 x
10% (Fig. 2); EBV EBNA at 3q25.1 (rs67886110,
MEDI2L: P =13 x107%); HHV-7 at 11q23.3 (rs75438046,
CXCR5: P=1.3x10"®) and 17q21.3 (rs1808192, TBKBPI:
P =9.8x107°); and HSV-1 at 10g23.3 (rs11203123: P =
3.9 x 107%). However, the loci outside of HLA identified
for HHV7 and HSV1 were not statistically significant con-
sidering a more stringent significance threshold corrected
for the number of seroreactivity phenotypes tested (P <
50x107%/16=3.1x107).

GWAS of discrete seropositivity phenotypes identified
associations in HLA for EBV EA-D (rs2395192: OR =
0.66, P =4.0 x 10""), EBV EBNA (rs9268848: OR = 1.60,
P =12x107"%), EBV ZEBRA (rs17211342: 0.63, P =
1.6 x107"), VZV (rs3096688: OR =0.70, P =3.7 x 10°),
JCV (rs9271147: OR=0.54, P =1.3 x 10™**), and MCV
(rs17613347: OR =061, P = 1.2 x 107*°) (Additional file 1:
Figure S3; Additional file 2: Table S2). An association with
susceptibility to MCV infection was also observed at
5q31.2 (5:138845045_TTATC_T, ECSCR: OR=1.26, P =
7.2 x 107%), with high LD (”* =0.95) between seroreactivity
and seropositivity lead variants.
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Table 1 Lead genome-wide significant variants (P < 5.0 x 10~®) for continuous antibody response phenotypes for antigens with at

least 20% seroprevalence

Antigen N Chr Position Variant Alleles EAF  Beta? (SE) P Function Nearest gene
Effect Other
CMV  pp52 5000 6 32301427 15115378818 C T 0978 0633 (0095 29x 107" intronic TSBP1
EBV EA-D 6806 6 32665840 rs34825357 T TC 0409 —0.114 (0017) 20x10" intergenic MTCO3PI1
EBV EBNA 7003 3 151114852  rs67886110% G T 059 0.103 (0017) 13x10°  intronic MEDI12L
6 32451762 rs9269233 A C 0249 0315 (00190 35x10°°" intergenic HLA-DRB9
EBV VCAp18 7492 6 31486158  6:31486158  GT G 0.245 0.197 0018) 7.1x10°% intergenic PPIAP9
EBV ZEBRA 7197 6 32637772 1s9274728 A G 0718 —0315 (0018) 47x10°% intergenic HLA-DQB1
HHVE  IETA 6077 7 139985625 152429218 T C 0615 0.106 (00190 14x10°®  downstream RP5-1136G2.1
HHV7 U114 7481 6 32602665 rs139299944 C cT 0655 0.114 0017) 15x10°"" intronic HLA-DQAT
1 118767564 1575438046 G A 0.970 0280 (0049) 13x107®  3-UTR CXCR5 / BCLIL
17 45794706  rs1808192 A G 0331 —0099 (0017) 98x1077 intergenic TBKBP1
HSV1 119G 5468 6 32627852 rs1130420 G A 0583 —0.122 (0019) 25x107'° 3-UTR HLA-DQB1
10 91189187 rs11203123* A C 0988 0512 (0093) 39x1078 intergenic SLCI6A12
VZv  gBAg' 7289 6 32623193 159273325 G A 0831 -0232 (0021) 82x107°® intergenic  HLA-DQOBI
BKV VP1 7523 19 49206462 rs681343 C T 0491 —0125 (0016) 47x10°"° synonymous  FUT2
v VP1 4471 6 32589842 rs9271525 G A 0163 -0318 (0031) 39x107* intergenic HLA-DQAT
MCV  VPT 5219 3 18238783 15776170649 CT C 0790 —0134 (0024) 17x10° intergenic LOC339862
5 138865423 157444313 G A 0263 0.169 0021) 24x107" intergenic TMEM173
6 32429277 rs9268847 A G 0750 —0.195 (0.022) 24x10°' intronic HLA-DRB9

'VZV antigens gE and gl were co-loaded onto the same Luminex bead set

2Regression coefficients were estimated per 1 standard deviation increase in normalized MFI value z-scores with adjustment for age at enrollment, sex, body mass
index, socioeconomic status (Townsend deprivation index), the presence of any autoimmune conditions, genotyping array, serology assay date, quality control

flag, and the top 10 genetic ancestry principal components
*Multi-allelic variants: rs67886110 (G/T and G/C) and rs11203123 (A/C and A/AC)

Several genome-wide significant associations were
observed for antigens with <20% seroprevalence, which
were not included in the GWAS of antibody response
due to inadequate sample size (Additional file 2: Table
S2). Infection susceptibility variants were identified for
HSV2 in 17p13.2 (rs2116443: OR=1.28, P =4.5x 10°%;
ITGAE); HPV16 E6 and E7 oncoproteins in 6p21.32
(rs601148: OR=0.60, P =3.3x10"% HLA-DRBI) and
19q12 (rs144341759: OR=0.383, P =4.0x 10" % CTC-
448F2.6); and HPV18 in 14q24.3 (rs4243652: OR =3.13,
P =7.0 x 107°). Associations were also detected for Kapo-
si’s sarcoma-associated herpesvirus (KSHV), HTLV],
HBYV, and HCV, including a variant in the MERTK onco-
gene (HCV Core rs199913364: OR = 0.25, P = 1.2 x 107%).
After correcting for 28 serostatus phenotypes tested (P <
1.8x107%), the only statistically significant associations
remained for EBV EA-D (rs2395192), EBV EBNA
(rs9268848), EBV ZEBRA (rs17211342), JCV (rs9271147),
MCYV (rs17613347), and HPV18 (rs4243652).

Functional characterization of GWAS findings

In silico functional analyses of the lead 17 GWAS vari-
ants identified enrichment for multiple regulatory ele-
ments (summarized in Additional file 2: Table S3).

Three variants were predicted to be in the top 10% of
deleterious substitutions in GRCh37 based on CADD
scores > 10: rs776170649 (MCV, CADD =15.61),
rs139299944 (HHV7, CADD =12.15), and rs9271525
(JCV, CADD =10.73). Another HHV7-associated vari-
ant, rs1808192 (RegulomeDB rank: 1f), an eQTL and
sQTL for TBKBP1, mapped to 44 functional elements
for multiple transcription factors, including IKZF1, a
critical regulator of lymphoid differentiation frequently
mutated in B cell malignancies.

Eleven sentinel variants were eQTLs and 8 were splicing
QTLs in GTEx, with significant (FDR < 0.05) effects across
multiple genes and tissues (Additional file 1: Figure S5).
The most common eQTL and sQTL targets included
HLA-DQA1, HLA-DQA2, HLA-DQBI1, HLA-DQB2, HLA-
DRB1, and HLA-DRB6. Outside of HLA, rs681343 (BKV),
a synonymous FUT2 variant was an eQTL for 8 genes, in-
cluding FUT2 and NTN5. MCV variant in 5q31.2,
rs7444313, was an eQTL for 7 genes, with concurrent
sQTL effects on TMEM173, also known as STINGI
(stimulator of interferon response cGAMP interactor 1)
and CXXC5. Gene expression profiles in immune cell
populations from DICE [24] identified several cell-type-
specific effects that were not observed in GTEx. An
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association with HLA-DQBI expression in CD4+ Ty2
cells was observed for rs9273325, 6:31486158_GT_G was
an eQTL for ATP6VIG2 in naive CD4+ T cells, and
rs1130420 influenced the expression of 8 HLA class II
genes in naive B cells and CD4+ Ty17 cells.

We identified 7 significant (p <5.0 x 10°®) protein
quantitative trait loci (pQTL) for 38 proteins (Additional
file 2: Table S4). Most of the pQTL targets were compo-
nents of the adaptive immune response, such as the
complement system (C4, CFB), chemokines (CCL15,
CCL25), and defensin processing (Beta-defensin 19,
Trypsin-3). The greatest number and diversity of pQTL
targets (n =16) was observed for rs681343, including
BPIFB1, which plays a role in antimicrobial response in
oral and nasal mucosa [45]; FUT3, which catalyzes the
last step of Lewis antigen biosynthesis; and FGF19, part
of the PI3BK/Akt/MAPK signaling cascade that is dysreg-
ulated in cancer and neurodegenerative diseases [46].

Cross-trait associations with disease outcomes
To contextualize the relevance of genetic loci involved
in infection response, we explored associations with

selected cancers, schizophrenia, and that have a known or
suspected viral etiology (Additional file 2: Table S5). The
strongest secondary signal was observed for rs9273325
(HLA-DQBI), which was negatively associated with VZV
antibody response and positively associated with schizo-
phrenia susceptibility (OR =1.13, P =4.3 x 107*°). Other
significant (Bonferroni P <7.4 x 10™*) associations with
schizophrenia were detected for HSV1 (rs1130420: OR =
106, P =1.8x107°), EBV EA-D (rs2647006: OR =0.96,
P=27x10"%),]JCV (rs9271525: OR = 1.06, P = 6.8 x 10™°),
and BKV (rs681343: OR =0.96, P =25 x 10™%), with the
latter being the only pleiotropic signal outside of HLA. In-
verse associations with hematologic cancers were observed
for HSV1 (rs1130420: OR=0.89, P =3.5x 10", VZV
(rs9273325: OR=0.88, P =4.4x107°), and EBV EBNA
(rs9269233: OR = 0.88, P = 2.7 x 10™*) variants. HSV1 anti-
body response was also linked to Alzheimer’s disease
(rs1130420: P =1.2 x 107%).

Regional HLA associations
Associations within the HLA region were refined by
identifying independent (LD #* <0.05 within + 500 kb)
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index variants with P <5.0 x 10°® for each antigen re-
sponse phenotype (Additional file 2: Table S6). Clump-
ing seropositivity associations with respect to lead
antibody response variants did not retain any loci, sug-
gesting non-independence in signals for infection and
reactivity for the same antigen. This was also confirmed
based on genetic correlations (rg) estimated using LD
score regression [47], which ranged from r, = 0.407 (p =
51x107°) for VZV to ry =0.896 (p =3.1x107") for
MCV. For this reason, all subsequent analyses focus on
seroreactivity phenotypes. Clumping across phenotypes
to assess the independence of HLA associations for dif-
ferent antigens identified 40 independent index variants:
EBV EBNA (12), VZV (11), EBV ZEBRA (8), EBV pl18
(5), MCV (3), and EBV EA-D (1) (Additional file 2:
Table S7). No LD clumps were anchored by variants de-
tected for CMV pp52, HHV7, HSV1, or JCV, suggesting
that the HLA signals for these antigens are captured by
lead loci for other phenotypes. The largest region with
the lowest p value was anchored by rs9274728 (P = 4.7 x
10°7) near HLA-DQBI, originally detected for EBV
ZEBRA. Of the 11 VZV-associated variants, the largest
clump was formed around rs4990036 (P = 4.5 x 107%°) in
HLA-B.

Iterative conditional analyses adjusting for the HLA
SNP/indel with the lowest p value were performed until
no variants remained with P_y,q < 5.0 x 10~%. Additional
independent variants were identified for EBV EBNA
(rs139299944,  rs6457711, 1s9273358,  rs28414666,
rs3097671), EBV ZEBRA (rs2904758, r1s35683320,
rs1383258), EBV p18 (rs6917363, rs9271325, rs66479476),
and MCV (rs148584120, rs4148874) (Fig. 3; Additional file
2: Table S8). For CMV pp52, HHV7, HSV1, JCV, and
VZV, the regional HLA signal was captured by the top
GWAS variant (Fig. 2; Additional file 2: Table S8).

Next, we tested 101 classical HLA alleles and per-
formed analogous iterative conditional analyses for sig-
nificantly associated variants (P <4.6 x 107°). To help
with the interpretation of our results, we depict the LD
structure for HLA alleles in class II genes in Additional
file 1: Figure S6. Significant associations across viruses
were predominantly observed for class II HLA alleles.
Five statistically independent signals were identified for
antibody response to EBV ZEBRA (DRB4*00:00: 5 = -
0.246, P = 1.4 x 10~*%; DQB1*04:02: Beona = 0.504, Peopng =
1.0x 107'% DRBI1*04:04: feona =0.376, Peong =1.1x
107'% DQA1%02:01: Beona =0.187, Peong =1.1x107%%
A*03:01: Beong =0.129, Peona = 1.9 x 107®) (Fig. 3; Add-
itional file 2: Table S9). DRB4*00:00 represents copy
number absence, which co-occurs with DRB1*04 and
DRB1*07 alleles [48]. This is consistent with the magni-
tude and direction of unconditional associations ob-
served for DRB1*07:01 (8 =0.251, P =1.3x1072°) and
DRB4*04:01 (8 =0293, P =79x10%). Five
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conditionally independent alleles were also identified for
EBV EBNA: DRB5*00:00:  =-0246, P =87 x 107>
DRB3*02:02: Beond = 0.276, Peona = 6.8 x 1072 DQB1*02:
01: Beond = — 0.164, Peopng = 3.6 x 107'% DRB4*00:00: 3 =
0.176, Peona =83 x107"7; and DPB1*03:01: Beonq = -
0.220, Peona = 4.7 x 107** (Fig. 3; Additional file 2: Table
S10). DRB5*00:00 denotes a copy number absence that
sits on a common haplotype comprised of DRB1*15:01,
DQB1*06:02, DQA1*01:02 [48], which may also include
DRB5*01:01 [49] (Additional file 1: Figure S6). The
presence of the DRB1*15:01-DQB1*06:02-DQA1*01:02
haplotype was associated with increased EBV EBNA
seroreactivity (8 =0.330, P =2.5x 107>%). Fewer inde-
pendent alleles were observed for EBV p18 (DRB5*00:
00: B =-0.210, P =1.7 x 10*% DRB1*04:04: B.ona =
0.357, Peona =1.3x107'%) (Fig. 3; Additional file 2:
Tables S11).

DQB1%*02:01 was the only independently associated
allele for EBV EA-D (8 =-0.154, P =84 x10'") and
HSV1 (B =0.145, P =2.8x107%), although its effects
were in opposite directions for each antigen (Additional
file 2: Table S12). For VZV, associations with 16 classical
alleles were accounted for by DRB1*03:01 (f =0.236,
P =7.3x107%%). JCV shared the same lead allele as EBV
EBNA and EBV pl18 (DRB5*00:00: 8 =0.350, P =1.2 x
1072 (Additional file 2: Table S12). Four conditionally
independent signals were identified for MCV (DQA1*01:
01: B =0.215, P =1.1x107"%; DRB1*04:04: Bconq = -
0.362, Peong = 3.0 x 1075 A*29:02: Bona = — 0.350, P =
1.0 x 1075 DRB1*15:01: feona = — 0.203, P = 3.7 x 1072)
(Fig. 3; Additional file 2: Table S13). Lastly, we inte-
grated associations across variant types by including
conditionally independent HLA alleles as covariates in
the SNP-based analysis. With the exception of EBV anti-
gens and HHV7, classical HLA alleles captured all
genome-wide significant SNP signals (Additional file 1:
Figure S7).

Finally, we tested 980 HLA amino acid substitutions
(Additional file 2: Tables S14-S23), followed by omnibus
haplotype tests at each position that had a significant
amino acid and more than two possible alleles. The
strongest allele-specific and haplotype associations were
found at different positions in the same protein for EBV
p18 (DRP1 Ala -17: g =-0.194, P =1.0 x 10>'; DRp1
(13): Poni =4.6 x 107%% Additional file 2: Table S14),
MCV (DQB1 Leu-26: 8 = - 0.173, P =7.0 x 1078, DQp1
(125): Pyni = 2.0 x 107'7; Additional file 2: Table S15),
HHV7 (DQP1 His-30: B = - 0.111, P = 1.2 x 105 DQB1
(57): Pomni = 5.6 x 10”°; Additional file 2: Table S16), and
HHV6 IE1B at (DRPL Ile-67: B =0.131, P = 1.6 x 105,
DRP1 (13): Pomn = 1.1 x 107 Additional file 2: Table
S17).

The strongest residue-specific and haplotype associa-
tions mapped to the same amino acid position for four
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phenotypes: EBV ZEBRA (Additional file 2: Table S18),
HHV®6 IE1A (Additional file 2: Table S17), HSV1 (Add-
itional file 2: Table S19), and JCV (Additional file 2:
Table S20). Amino acid residues at DQal (175) were as-
sociated with antibody response to EBV ZEBRA (Glu:
B =0279, P =1.1x 107 Py = 8.3 x 107%%). Glu-175 is
present in DQA1*02:01 (P =4.9 x 107%7), DQA1*03:01
(P =1.3 x107'%), and DQA1*04:01 (P =1.9 x 10"*?) and
seems to better summarize the EBV ZEBRA signal at
this locus. Substitutions in DRP1 (96) contained the
strongest predictors of JCV seroreactivity (His or Tyr:
B =0325 P =1.6x107%% Py =7.7 x107*). His-96/
Tyr-96 are in high LD (+* =0.92) with DRB5*00:00, the
top JCV-associated allele. However, this might mask the
signal for GIn-96 (8 = -0.310, P =9.0 x 10", which is
part of the DRB1*15:01 sequence (8 = -0.309, P =9.0 x

10725 LD r* =0.94). The lead signal for HSV1 mapped
to DQB1 (57) (Ala: B =0.123, P =2.2x 107" Pon; =
6.5 x 10~%), which aligns with the association for the lead
HSV1-allele DQB1*02:01.

For EBV EBNA, the strongest haplotype association
was in DRB1 (37) (Pomni = 1.1 x 107°°), while the residue
with the lowest p value was DQP1 Ala-57 (8 =-0.237,
P =14x10"*) (Additional file 2: Table S21). Ala-57
maps to multiple DQB1 alleles and achieved a stronger
signal for EBV EBNA than any classical HLA allele.
Asp-9 in HLA-B showed the strongest association with
antibody response to EBV EA-D (f =-0.146, P =
1.8 x 107%; Additional file 2: Table $S22) and VZV (8 =
0.237, P =9.7 x 107>*; Additional file 2: Table S$23).
This amino acid sequence is part of B*08:01, which
had analogous effects on both phenotypes (EBV EA-D:
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B =-0.144, P =2.7x107% VZV: B =0.238, P =4.7 x
107%°). Haplotypes with the lowest overall p values
were found in DQB1 (71) for VZV (Pomn;i = 9.8 x 1079)
and DRB1 (11) for EBV EA-D (Pomn; = 1.7 x 107'°).

TWAS of genes involved in antibody response

Based on known targets of infection or related patholo-
gies, we considered expression in the frontal cortex
(Additional file 2: Table S24), EBV-transformed lympho-
cytes for EBV antigens (Additional file 2: Table S25),
and skin for MCV (Additional file 2: Table S26).
Concordance across tissues was summarized using Venn
diagrams (Fig. 4; Additional file 1: Figure S8). TWAS
identified 114 genes significantly associated (Prwas <
4.2 x 10°°) with antibody response in at least one tissue,
54 of which were associated with a single phenotype,
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while 60 influenced seroreactivity to multiple antigens.
We also include results for 87 additional suggestively
(Prwas < 4.2 x 107°) associated genes.

The TWAS results included a predominance of associa-
tions in HLA class II genes. Some of the strongest overall
associations were observed for HLA-DRB5 (EBV ZEBRA:
Peortex =42 x 107*°) and HLA-DRBI (EBV EBNA: Py iex =
6.7 x 107>%; EBV ZEBRA: Peopiex = 3.3 x 107°% JCV: Peopiex =
65x 107" EBV pl8: Peonex =22x107"%). Increased
expression of HLA-DQB2 was positively associated with
antibody response to EBV ZEBRA (Pyjp0q =7.6 % 107),
JCV (Poiood = 9.9 x 107°), VZV (Pyjo0a = 7.0 x 10~%), HHV7
(Phiood =7:3x107%), and HSV1 (Pyjo0a =3.3x107), but
negatively associated with EBV EBNA (Ppjp0q = 3.6 x 10734
and EBV pl8 (Pyjooq = 2.1 x 107%), in a consistent manner
across tissues. The opposite was observed for HLA-DQBI,
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with positive effects on EBV EBNA and EBV pl8 and in-
verse associations with EBV ZEBRA, JCV, VZV, HHV7,
and HSV1.

The TWAS analyses also identified a number of sig-
nificant associations in the HLA class III region that
were not detected in other analyses. The top-ranking
VZV associated gene was APOM (Ppooq =7.5 x 1077,
Periex = 1.1 x1072). Interestingly, opposite directions of
effect were observed for C4A and C4B gene expression.
Increased C4A expression was positively associated with
all EBV antigens (Additional file 2: Table S25), but nega-
tively associated with VZV (Ppoq =2.3 x 10?%) and
HSV1 (Porex =1.8x107°) antibody levels (Additional
file 2: Table S24). On the other hand, increased C4B ex-
pression was inversely associated with EBV phenotypes,
but positively associated with VZV (Ppjp0q = 8.1 x 107%)
and HSV1 (Puigoq =1.1x107°). A similar pattern was
also observed for CYP21A2 and C2, with positive effects
on antibody response to VZV and HSV1, and negative
effects for all EBV antigens. Other novel TWAS findings
were detected for HHV7 in 22q13.2 (CTA-223H9.9:
Pryas =25x107% CSDC2: Prwas =3.0x107% TEF:
Prwas =3.1x107%) and 1q31.2 (RGSI: Prwas =3.3 x
107°).

The TWAS recapitulated several GWAS-identified
loci: 3¢25.1 for EBV EBNA (P2RY13: Pogriex = 1.1 x 1075
P2RY12: Pyooq =3.3x107%) and 19q13.33 for BKV
(FUT2: Prwas =8.1 x 1073 NTNS: Prywas = 1.1 x 107°).
Transcriptomic profiles in skin tissues provided support-
ing evidence for the role of multiple genes in 5q31.2 in
modulating MCV antibody response (Fig. 5; Additional
file 2: Table S26). The strongest signal was observed in
for ECSCR (skin sun unexposed: Pryas =5.0 x 10715
skin sun exposed: Pryas =4.2x 1071%), followed by
PROBI (sun unexposed: Prwas = 1.5x 107"). ECSCR
expression was also associated based on expression in
the frontal cortex, while PROBI exhibited a significant,
but attenuated effect in whole blood. VWA7 was the
only gene associated across all four tissues for MCV and
was also associated with antibody response to several
EBV antigens.

Comparison of results for seroreactivity and seroposi-
tivity revealed a number of genes implicated in both
steps of the infection process (Additional file 2: Table
S27). Associations with HLA DQA and DQB genes in
whole blood and HLA-DRB genes in the frontal cortex
were observed for EBV antigens, JCV, and MCV. For
MCYV, the strongest seropositivity signals were observed
for HLA class III genes AGER (Poptex = 9.0 x 107%") and
EHMT?2 (Ppiooq =5.8 x 107*®), which were also among
the top-ranking genes for seroreactivity. Increased ECSC
R expression conferred an increased susceptibility to
MCV infection (Peopex = 1.8 x 107%), mirroring its effect
on seroreactivity. In contrast to antibody response, no
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significant associations with any HLA genes were ob-
served for VZV seropositivity.

Analyses using the Reactome database identified signifi-
cant (gepr < 0.05) enrichment for TWAS-identified genes
in pathways involved in initiating antiviral responses, such
as MHC class II antigen presentation, TCR signaling, and
interferon (IFN) signaling (Additional file 1: Figure S9).
Pathways unique to herpesviruses included folding, assem-
bly, and peptide loading of class I MHC (g =3.2x107)
and initial triggering of complement (g = 9.8 x 107%). Poly-
omaviruses were associated with the non-canonical nu-
clear factor (NF)-kB pathway activated by tumor necrosis
factor (TNF) superfamily (g = 1.9 x 1079).

Discussion
We performed genome-wide and transcriptome-wide
association studies for serological phenotypes for 16
common viruses in a well-characterized, population-
based cohort. We discovered novel genetic determinants
of viral antibody response beyond the HLA region for
BKV, MCV, HHV7, and EBV EBNA. Consistent with
previous studies [7, 8], we detected strong signals for im-
mune response to diverse viral antigens in the HLA re-
gion, with a predominance of associations observed for
alleles and amino acids in HLA-DRBI and HLA-DQBI,
as well as transcriptome-level associations for multiple
class II and III HLA genes. Taken together, the findings
of this work provide a resource for further understand-
ing the complex interplay between viruses and the
human genome, as well as a first step towards under-
standing genetic determinants of reactivity to common
infections.

One of our main findings is the discovery of 5q31.2 as
a susceptibility locus for MCV infection and MCV antibody
response, implicating two main genes: TMEM173 (or STIN
GI) and ECSCR. The former encodes STING (stimulator of
interferon genes), an endoplasmic reticulum (ER) protein
that controls the transcription of host defense genes and
plays a critical role in response to DNA and RNA viruses
[50]. STING is activated by cyclic GMP-AMP synthase
(cGAS), a cytosolic DNA sensor that mounts a response to
invading pathogens by inducing IFN1 and NF-«B signaling
[51, 52]. Polyomaviruses penetrate the ER membrane
during cell entry, a process that may be unique to this viral
family [53], which may trigger STING signaling in a distinct
manner from other viruses [53]. Multiple cancer-causing
viruses, such as KSHV, HBV, and HPV18, encode oncopro-
teins that disrupt cGAS-STING activity, which illustrates
the evolutionary pressure on DNA tumor viruses to de-
velop functions against this pathway and its importance in
carcinogenesis [51]. Furthermore, cGAS-STING activation
has been shown to trigger antitumor T cell responses, a
mechanism that can be leveraged by targeted immunother-
apies [54—56]. Several studies suggest STING agonists may
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be effective against tumors resistant to PD-1 blockade, as
well as promising adjuvants in cancer vaccines [57-59].

ECSCR expression in skin and brain tissues was associ-
ated with MCV antibody response and infection. This
gene encodes an endothelial cell-specific chemotaxis
regulator, which plays a role in angiogenesis and apop-
tosis [60]. ECSCR is a negative regulator of PI3K/Akt
signaling by enhancing membrane localization of PTEN
and operates in tandem with VEGFR-2 and other recep-
tor tyrosine kinases [61]. In addition to 5q31.2, another
novel MCV seroreactivity associated region was identi-
fied in 3p24.3, anchored by rs776170649, which has been
linked to platelet phenotypes [62]. These findings align
with a role of platelet activation in defense against infec-
tions via degranulation-mediated release of chemokines
and B-defensin [63].

Genetic variation within Fucosyltransferase 2 (FUT2)
has been studied extensively in the context of human in-
fections; however, its effect on BKV seroreactivity is novel.
Homozygotes for the nonsense mutation (rs601338 G>A)
that inactivates the FUT2 enzyme are unable to secrete
ABO(H) histo-blood group antigens or express them on
mucosal surfaces [64, 65]. The allele which confers in-
creased BKV antibody response (rs681343-T) is in LD
(”* = 1.00) with rs601338-A, the non-secretor allele, which
confers resistance to norovirus [66, 67], rotavirus [68],
Helicobacter pylori [69], childhood ear infection, mumps,
and common colds [13]. However, increased susceptibility
to other pathogens, such as meningococcus and pneumo-
coccus [70], has also been observed in non-secretors. Iso-
lating the underlying mechanisms for BKV response is
challenging because FUT?2 is a pleiotropic locus associated
with diverse phenotypes, including autoimmune and in-
flammatory conditions [71, 72], serum lipids [73], B vita-
mins [65, 74], alcohol consumption [75], and even certain
cancers [76]. In addition to FUT2 in 19q13.33, NTNS5
(netrin 5) suggests a possible link between BKV and
neurological conditions. NTN5 is primarily expressed in
neuroproliferative areas, suggesting a role in adult neuro-
genesis, which is dysregulated in glioblastoma and Alzhei-
mer’s disease [77, 78].

We also report the first GWAS of serological pheno-
types for HHV7. Genetic determinants of HHV7 anti-
body response in 6p21.32 were predominantly localized
in HLA-DQA1I and HLA-DQBI, with associations similar
to other herpesviruses. In 11q23.3, rs75438046 maps to
the 3" UTR of CXCRS, which controls viral infection in
B cell follicles [79], and BCL9YL, a translocation target in
acute lymphoblastic leukemia [80] and transcriptional
activator of the Wnt/B-catenin cancer signaling pathway
[81]. In 17q21.32, TBKBP1 encodes an adaptor protein
that binds to TBK1 and is part of the TNF/NF-«B inter-
action network, where it regulates immune responses to
infectious triggers, such as IFN1 signaling [82].
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Interestingly, a protein interactome map recently re-
vealed that SARS-CoV-2 nonstructural protein 13
(Nsp13) includes TBK1-TBKBP1 among its targets [83].
Other functions of the TBK1-TBKBP1 axis relate to
tumor growth and immunosuppression through induc-
tion of PD-L1 [84].

Several additional genes involved in HHV7 immune
response were identified in TWAS. TEF in 22q13.2 is an
apoptotic regulator of hematopoietic progenitors with
tumor promoting effects mediated by inhibition of G1/S
cell cycle transition and Akt/FOXO signaling [85]. RGS1
in 1q31.2 has been linked to multiple autoimmune dis-
eases, including multiple sclerosis [86], as well as poor
prognosis in melanoma and diffuse large B cell lymph-
oma mediated by inactivation of Akt/ERK [87, 88].

Other genes outside of the HLA region associated with
viral infection response were detected for EBV EBNA in
3q25.1. The lead variant (rs67886110) is an eQTL for
MEDI2L and P2RY12 genes, which have been linked to
neurodegenerative conditions [89, 90]. P2RYI2 and
P2RY13, identified in TWAS, are purinergic receptor
genes that regulate microglia homeostasis and have been
implicated in Alzheimer’s susceptibility via inflammatory
and neurotrophic mechanisms [90].

Considering genetic variation within the HLA region,
our results confirm its pivotal role at the interface of
host pathogen interactions and highlight the extensive
sharing of HLA variants that mediate these interactions
across virus families and antigens. Genes in this region
code for cell-surface proteins that facilitate antigenic
peptide presentation to immune cells that regulate re-
sponses to invading pathogens. This region is critical for
adaptive immune response but also has significant over-
lap with susceptibility alleles for autoimmune diseases.
We identified 40 independent SNPs/indels associated
with EBV (EBNA, EA-D, VCA pl18, and ZEBRA), VZV,
and MCV antibody response that accounted for all sig-
nificant HLA associations for other phenotypes. How-
ever, compared to conditional analyses, clumping may
overestimate the number of independent variants due to
the complex long-range LD structure in HLA and viola-
tion of the assumption that 500-kb windows are suffi-
cient to exclude correlated variants in this region. Of the
14 conditionally independent, genome-wide significant
classical alleles identified for 10 antigens, 7 were associ-
ated with multiple phenotypes. The most commonly
shared HLA alleles were DRB5*00:00, DRB1*04:04, an
known rheumatoid arthritis risk allele [91], and
DQB1*02:01, associated with celiac disease risk [92].
Although allele absence represented by DRB5*00:00 may
have a functional role in altering antigen response, a
more likely explanation for the observed signal is that
DRB5*00:00 acts as a biomarker for a specific class II
haplotype. Rather than having a direct causal effect on
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antigen presentation, this “null allele” summarizes sig-
nals from multiple HLA loci, including the extended
DRB5*01:01-DRB1*15:01-DQB1*06:02-DQA1*01:02
haplotype that has been implicated in the etiology of
multiple autoimmune diseases and EBV EBNA IgG
levels. DRB1*15:01-DQB1*06:02-DQA1*01:02 is protect-
ive for type 1 diabetes [93], while DRB5*01:01-DRB15:01
confers the strongest risk for developing multiple scler-
osis [86]. Amino acid residues in DRB1 at positions 11,
13, 71, and 74 and in DQp1 codon 57 represent estab-
lished susceptibility loci for rheumatoid arthritis [94],
type 1 diabetes [95], and multiple sclerosis [96] that ex-
hibited strong associations with IgG levels for EBV,
HHV7, VZV, JCV, and MCV antigens, and in some cases
harbored the top signal of all HLA variants. Further re-
search is needed to delineate shared genetic pathways
that invoke autoimmunity and influence viral response.

Despite the predominance of association in HLA class
II, several notable associations in HLA class I were de-
tected. A*29:02 conferred reduced MCV seroreactivity
and its sequence overlaps with amino acid residues in
the A ol domain (Thr-9, Leu-62, GIn-63, Asn-77, and
Met-97) that were also significantly associated with de-
creased MCV antibody response. This is consistent with
downregulation of MHC I as a potential mechanism
through which Merkel cell tumors evade immune sur-
veillance [97]. The strongest residue-specific signal for
EBV EA-D and VZV mapped to B-Asp-9, which is lo-
cated in the peptide binding groove and tags the B*08:01
allele, part of the HLA 8.1 ancestral haplotype. There is
extensive evidence linking HLA 8.1, and B*08:01 specif-
ically, with autoimmune diseases [98] and certain
cancers [99, 100], which may be attributed to its high
cell-surface stability and increased probability of CD8+
T cell activation.

Comparison with other studies of host genetics and
viral infection susceptibility shows that our results align
with previously reported findings [7-9, 101] (Additional
file 2: Table S28). We replicated most associations from
two of the largest GWAS of humoral immune response
in European ancestry subjects by Hammer et al. [7] (n =
2363) and Scepanovic et al. [8] (n =1000), including
HLA SNPs, alleles, amino acids, and haplotypes linked
to EBV EBNA IgG, MCV IgG and serostatus, and JCV
serostatus. We also replicated two HLA-DRBI variants
(rs477515, rs2854275) associated with EBV EBNA anti-
body levels in a Mexican American population [9].
GWAS of HPV16 L1 replicated a variant previously
linked to HPV8 seropositivity (rs9357152, P =0.008, 6).
Some of our findings contrast with Tian et al. [13], al-
though we confirmed selected associations, such as
A*02:01 (shingles) with VZV (P =4.1x10"%) and
rs2596465 (mononucleosis) with EBV EBNA (P =3.3 x
10°) and EBV p18 (P =1.0x 107'?). These differences
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may be partly accounted for by self-reported disease sta-
tus in Tian et al. which is likely to reflect symptom se-
verity and may be an imprecise indicator of infection
with certain viruses or the magnitude of antibody re-
sponse to infection.

One of the most striking findings in SNP-based HLA
analyses was the genome-wide significant association be-
tween rs9273325, index VZV antibody response variant,
and risk of schizophrenia. Previous epidemiologic and
serologic studies have linked infections to schizophrenia,
although the underlying mechanisms remain to be eluci-
dated [102]. Viruses are plausible etiologic candidates
for schizophrenia due to their ability to invade the cen-
tral nervous system and disrupt neurodevelopmental
processes by targeting specific neurons, as well as the
potential for latent infection to negatively impact plasti-
city and neurogenesis via pro-inflammatory and aberrant
immune signaling [102, 103]. These observations are
consistent with the established role the HLA region,
including HLA-DQBI, in schizophrenia etiology [104,
105], and is further supported by previously reported
associations for rs9273325 with blood cell traits [62]
and immunoglobulin A deficiency [106], as well as its
role as an eQTL for HLA-DQBI1 in CD4+ T,h cells.
Schizophrenia susceptibility alleles DRB1*03:01 [104],
DQB1*02:01, and B*08:01 were also the top three alleles
associated with VZV antibody response in the uncondi-
tional analysis. Enhanced complement activity has been
proposed as the mechanism mediating the synaptic loss
and excessive pruning which is a hallmark of schizo-
phrenia pathophysiology [107]. Complement compo-
nent 4 (C4) alleles were found to increase risk of
schizophrenia proportionally to their effect on increas-
ing C4A expression in brain tissue [107]. Using gene
expression models in whole blood and the frontal cor-
tex we demonstrated that increased C4A expression is
negatively associated with VZV antibody response. We
also observed associations with C44 and C4B in EBV
and HSV-1, but not other viruses. Taken together,
these findings delineate a potential mechanism through
which aberrant immune response to VZV infection,
and potentially HSV-1 and EBV, may increase suscepti-
bility to schizophrenia. However, cautious interpret-
ation is warranted due to significant pleiotropy between
HLA loci associated with viral infection and broad im-
mune function.

Several limitations of this work should be noted. First,
the UK Biobank is unrepresentative of the general UK
population due to low participation resulting in healthy
volunteer bias [108]. However, since the observed
pattern of seroprevalence is consistent with previously
published estimates [15], we believe the impact of this
bias is likely to be minimal on genetic associations with
serological phenotypes. Second, our analyses were
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restricted to participants of European ancestry due to
limited serology data for other ancestries, which limits
the generalizability of our findings to diverse popula-
tions. Third, we were unable to conduct formal statis-
tical replication of novel GWAS and TWAS signals in
an independent sample due to the lack of such a popula-
tion. Nevertheless, our successful replication of multiple
previously reported variants and, combined with the ob-
servation that newly discovered genes and variants are
part of essential adaptive and innate immunity pathways,
support the credibility of our findings. Lastly, we also
stress caution in the interpretation of GWAS results for
non-ubiquitous pathogens, such as HBV, HCV, and
HPV, due to a lack of information on exposure, as well
as low numbers of seropositive individuals.

Our study also has distinct advantages. The large sam-
ple size of the UK Biobank facilitated more powerful
genetic association analyses than previous studies, par-
ticularly in a population-based cohort unselected for
disease status. Our detailed HLA analysis shows inde-
pendent effects of specific HLA alleles and pleiotropic
effects across multiple viruses. Analyses of genetic asso-
ciations in external datasets further demonstrate a
connection between host genetic factors influencing im-
mune response to infection and susceptibility to cancers
and neurological conditions.

The results of this work highlight widespread genetic
pleiotropy between pathways involved in regulating
humoral immune response to novel and common vi-
ruses, as well as complex diseases. The complex evolu-
tionary relationship between viruses and humans is not
dictated simply by infection and acute sickness, it is a
complex nuanced architecture of initial challenge tem-
pered with tolerance of viral latency over time. Yet it is
that architecture that is evolutionarily optimized to
maximize fitness early in life, the result of which may be
increased risk for complex diseases later in life. Under-
standing this complex interplay through both targeted
association studies and functional investigations between
host genetic factors and immune response has implica-
tions for complex disease etiology and may facilitate the
discovery of novel therapeutics in a wide range of
diseases.

Conclusions

We present a genome-wide investigation host genetic
factors influencing antibody response to common viral
antigens. Our study confirms the importance of HLA
class II genes in modulating IgG levels for human herpes
and polyomaviruses and illustrates the complexity of
genetic effects in this region represented by single vari-
ants, classical alleles, and amino acid substitutions. We
also uncovered novel genetic loci beyond HLA that con-
tribute to host-virus interaction, including signals in

Page 15 of 18

3q25.1, 5q31.2, and 19q13.33, which may operate via
direct effects on gene expression. Taken together, the
findings presented here provide a resource of genetic
determinants of immune response to common viruses,
which may be leveraged in future studies of complex dis-
ease etiology and personalized therapeutics or vaccines.
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