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Abstract

Background: One of the major challenges in obesity treatment is to explain the high variability in the individual’s
response to specific dietary and physical activity interventions. With this study, we tested the hypothesis that
specific DNA methylation changes reflect individual responsiveness to lifestyle intervention and may serve as
epigenetic predictors for a successful weight-loss.

Methods: We conducted an explorative genome-wide DNA methylation analysis in blood samples from 120
subjects (90% men, mean ± SD age = 49 ± 9 years, body mass-index (BMI) = 30.2 ± 3.3 kg/m2) from the 18-month
CENTRAL randomized controlled trial who underwent either Mediterranean/low-carbohydrate or low-fat diet with
or without physical activity.

Results: Analyses comparing male subjects with the most prominent body weight-loss (responders, mean weight
change − 16%) vs. non-responders (+ 2.4%) (N = 10 each) revealed significant variation in DNA methylation of
several genes including LRRC27, CRISP2, and SLFN12 (all adj. P < 1 × 10−5). Gene ontology analysis indicated that
biological processes such as cell adhesion and molecular functions such as calcium ion binding could have an
important role in determining the success of interventional therapies in obesity. Epigenome-wide association for
relative weight-loss (%) identified 15 CpGs being negatively correlated with weight change after intervention (all
combined P < 1 × 10− 4) including new and also known obesity candidates such as NUDT3 and NCOR2. A baseline
DNA methylation score better predicted successful weight-loss [area under the curve (AUC) receiver operating
characteristic (ROC) = 0.95–1.0] than predictors such as age and BMI (AUC ROC = 0.56).

Conclusions: Body weight-loss following 18-month lifestyle intervention is associated with specific methylation
signatures. Moreover, methylation differences in the identified genes could serve as prognostic biomarkers to
predict a successful weight-loss therapy and thus contribute to advances in patient-tailored obesity treatment.
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Background
Obesity represents a major health burden worldwide
[1]. Increasing energy expenditure and limiting caloric
intake are the major set points to control obesity;
however, only restricted long-term success could be
reached so far, potentially caused by hormonal, meta-
bolic, and neurochemical adaptations that stabilize
weight-loss and may lead to weight regain [2]. The
majority of individuals who experience weight-loss
will regain it over time [3, 4]. Thus, the effective
long-term treatment of obesity would require a sys-
tematic assessment and understanding of genetic, epi-
genetic, and lifestyle factors that potentially affect
energy intake, metabolism, and energy expenditure.
Therefore, a better understanding of this highly com-
plex interaction is required to explain the high vari-
ability in the individual’s response to specific dietary
and physical activity (PA) interventions. This would
allow to develop more successful preventive and
therapeutic strategies ultimately leading to personal-
ized lifestyle treatments in the battle against obesity
[5, 6].
Whereas poor adherence to different lifestyle inter-

ventions represents a strong factor in response to
weight-loss therapies [7], emerging evidence implies
that genetic and epigenetic predictors play a role in
inter-individual variability of metabolic response [8].
Further, this individual response in weight regain is
mainly driven by an unadjusted energy intake after
the intervention [9], since after successful weight-loss
less caloric intake is required to maintain the
achieved weight. Several recent findings directly link
obesity development to DNA methylation changes in
related target tissues such as adipose tissue (AT) [10,
11], skeletal muscle [12–14], and also in blood [15–
18]. DNA methylation marks in whole blood samples
have been reported to correlate with target tissue
changes [17] and would thereby represent an easy ac-
cessible proxy for the future development of personal-
ized treatment strategies and prediction of
therapeutical success. However, DNA methylation
changes upon long-term behavioral interventions (e.g.,
specific diets, exercise) are scarcely investigated so far.
In the present study, we conducted a genome-wide

DNA methylation analysis in blood samples from 120
subjects who underwent the 18-month randomized con-
trolled trial (RCT) CENTRAL [19]. The CENTRAL trial
has been conducted under strict monitoring conditions
in the Dimona Nuclear Research Center, Negev, located
in a desert in Israel, thus providing an almost
homogenous environment and a low drop off rate. In
this exploratory study, we tested the hypotheses that (i)
metabolic changes mediated by different types of lifestyle
intervention including diet and PA (Mediterranean low-

carb (MED/LC) vs. low-fat (LF) vs. MED/LC + PA vs.
LF + PA) correlate with variation in DNA methylation
and (ii) that specific DNA methylation signatures reflect
individual responsiveness to lifestyle intervention to
serve as epigenetic predictors for successful weight-loss.

Methods
Study population and design
The CENTRAL RCT was conducted between 2012 and
2014 in an isolated nuclear research center workplace in
Israel and primarily aimed to assess changes on visceral
fat depots after diet and exercise interventions. The cen-
ter provides a sophisticated infrastructure including an
internal clinic, a cafeteria, and a designated space for
lifestyle and PA sessions, thus allowing this well-
structured and precisely controlled lifestyle intervention
trial. Two hundred seventy-eight of the participants with
a mean age of 48 years and a mean body mass index
(BMI) of 30.8 kg/m2 fulfilled the pre-specified inclusion
criteria for the trial. Inclusion criteria for the exploratory
analyses were, first, either abdominal obesity (waist cir-
cumference (WC) > 102 cm for men and > 88 cm for
women) or dyslipidemia (serum triglycerides > 150mg/
dL and high-density-lipoprotein cholesterol (HDL-C) <
40mg/dL for men and < 50mg/dL for women); second,
the provision of signed and dated informed consent
form; and third, the stated willingness to comply with all
study procedures and availability for the duration of the
study. Exclusion criteria included pregnant or lactating
women, subjects with serum creatinine ≥2 mg/dL, with
disturbed liver function (≥ 3-fold level of ALT and AST
enzymes), active cancer, individuals who had any restric-
tions regarding physical activity, were highly physical ac-
tive (> 3 h/week) or were included in other nutritional
trials (https://clinicaltrials.gov/ct2/show/NCT01530724)
[19, 20].
The study was conducted in accordance with the Dec-

laration of Helsinki, and the protocol for the exploratory
analyses was approved by the Medical Ethics Board and
Institutional Review Board at Soroka University Medical
Center, Be’er Sheva, Israel (0239-11SOR). All partici-
pants provided written informed consent before taking
part in the study.
Subjects were randomly assigned to an either LF or

MED/LC diet (N = 139 each). Both dietary interven-
tions were equal in calories and maintained over the
entire study period. After 6 months, each intervention
arm was re-randomized to a group with moderate,
mostly aerobic (80%) PA (LF + PA; MED/LC + PA) or
without PA (LF-PA; MED/LC-PA) for another year of
intervention. Details about the study environment, in-
terventions, endpoint measurements, and detailed
metabolic phenotyping can be obtained elsewhere [19,
20]. The overall study design is presented in Fig. 1a.
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Sample selection and preparation
Among all CENTRAL participants, a total number of
140 subjects with both baseline and 18 months available
blood samples gave additional consent to genetic ana-
lysis. Out of this subgroup 30 subjects per intervention
group showing the lowest relative weight after 18
months with respect to their initial weight were selected
and included in DNA methylation analysis. Details about
intervention group-specific phenotypes can be found in
Table 1, whereas individual weight-loss (%) is shown in
Fig. 1b.
Blood samples were taken after an overnight fast at

baseline (T0) and at 18 months (T18) after the individ-
uals completed their interventions. Samples were stored
at − 80 °C until DNA was extracted following a standard
protocol using proteinase K and 0.2% SDS. Samples were
integrity controlled using gel-electrophoresis and the
concentrations of double-stranded DNA was measured
using Quant-iT PicoGreen dsDNA (Invitrogen, Thermo-
Fisher Scientific, Germany) and Quantus (Promega,
Germany) technologies.

Genome-wide DNA methylation
Five hundred nanograms of genomic DNA from each
sample was bisulfite converted using EZ DNA Methyla-
tion Gold Kit (Zymo Research, Netherlands). Following
quality control, amplification, and hybridization on Illu-
mina HumanMethylation850 Bead Chips (Illumina, Inc.,
San Diego, CA, USA), the Illumina iScan array scanner
was used to quantify genome-wide DNA methylation

levels at 850 K CpG sites per sample on single-nucleotide
resolution (GenomeScan, Leiden, Netherlands).

Data analysis/statistics
Raw data was first quality controlled using the QC re-
port of the minfi R package [21–23] (Additional file 1).
Beta value densities as well as the control probes were
within predicted specifications. Probes that did not pass
detection P value (Pdetect = 0.01) in more than 1% of all
240 samples were excluded from the analysis. Cross-
reactive probes [24] as well as probes containing known
SNP positions (MASK_snp5_GMAF1p positions from
bioconductor’s Illumina EPIC manifest [25]) were per se
not excluded from our analysis but are flagged through-
out all result and supplementary tables (Additional file 2).
Prior to all further analysis steps aimed at identifying dif-
ferentially methylated regions (DMRs) and specific CpG
sites (comparison independent), beta values were com-
puted and quantile normalized using minfi R package
([26], pages 9–10) [21, 22].

Cell type composition
As dietary interventions such as western or high-fat diet
have been shown to induce systemic inflammation and
change the immune cell composition in adipose tissue of
mice [27, 28], we analyzed the cell type composition
using the Houseman approach [29] adapted to EPIC ar-
rays by Salas et al. [30]. Possible differences in cell-type
composition were plotted using ggplot2 and analyzed
using Wilcoxon tests in R. As shown in [26] (pages 4–9),
none of the cell type population changed significantly

Fig. 1 Study design—CENTRAL RCT. a shows the study design of the CENTRAL RCT over the three time points: baseline, 6 months, and 18
months; b shows the weight-loss at 18 months relative to the baseline weight as mean ± SD (%)
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after the intervention (comparing T0 vs T18 over all 120
subjects).
Nevertheless, we used the sva R package to correct

beta values for cell-type composition in an attempt to
reduce noise [31].

DNA methylation changes
To identify intervention specific differentially methyl-
ated regions (DMRs) between T0 vs. T18 or differ-
ences at T18 as a result of the individual
interventions, we used the DMR finder metilene [32].
Only DMRs were considered which carried a mini-
mum number of 3 CpGs per DMR with a maximum
distance of 1000 nt between the CpGs. Genes from
gencode v19 + 1500 nt upstream were intersected
using bedtools [33] with the DMRs to annotate the
genes. We compared T0 vs. T18, presence or absence
of physical activity (PA vs no), low-carb vs low-fat
diet, and PA vs no in the two dietary groups.
It has to be noted that methods used to interrogate

the data for DMRs can also result in distinctly different
findings. Therefore, we performed a single CpG analysis
using the dmpFinder function of the minfi package as
described in [26] (pages 18–21) [21].

Intervention independent changes (responders vs. non-
responders)
To investigate differences in DNA methylation levels be-
tween the top 10 responders and bottom 10 non-
responders (including only men matched for age; Fig. 1a)
according to their relative weight-loss after intervention,
computed DNA methylation differences at the individual
time points (T0; T18) as well as combined data sets (T0
and T18) using metilene were employed to uncover
DMRs using the metilene’s two-dimensional
Kolmogorov-Smirnov test (2D-KS) under the same cri-
teria mentioned above [32]. Metabolic differences be-
tween the groups were calculated in SPSS (V.24) using t-
statistics.

Predicting methylation marks
To detect individual CpG sites on a genome-wide basis
which are associated with the success of weight-loss by a
classical lifestyle intervention (independent of the inter-
vention type), Spearman and Pearson correlation ana-
lysis were performed individually and combined to take
linearity and monotony equally into account and to fur-
ther reduce potential background noise due to data
properties. An epigenome-wide association study
(EWAS) for the relative weight loss in % based on the
initial body weight (kg) was conducted and plotted using
CMplot in R [29]. A receiver operating characteristic
(ROC) curve model was used to further test a potential
predictive value of a baseline methylation score,

computed as mean of all ß values from CpG sites. We
used 4 methylation-based predictors, two based on CpGs
correlating negatively with intervention weight changes
with p < 0.001 and p < 0.0001 and two based on CpGs
correlating positively with weight changes: p < 0.001 and
p < 0.0001. We compared these 4 predictors to general
intervention predictors such as a linear combination of
individuals’ age and BMI (x*age + y*BMI). The analysis
was restricted to men’s data sets for all ROC analysis, as
there is only a limited number of women and the com-
bination of age and BMI showed different behavior for
men’s and women’s data sets. The maximum area under
the ROC curve (AUC) was achieved for the coefficients
x = − 1 for the age and y = 2.54 for the BMI in the linear
combination ([26], pages 14–17).

Statistics
P value adjustment was performed using the Benjamini-
Hochberg procedure with adj.P values < 0.05 considered
to be statistically significant. Phenotype correlation ana-
lysis at both time points was performed with baseline
methylation levels of the identified candidate DMRs and
CpGs using again Pearson and Spearman analysis and
included the computation of a combined P via geometric

mean (

ffiffiffiffiffiffiffiffiffiffi

Q

n

i¼1
χin

s

).

ChromHMM prediction
All identified DMRs, as well as the putative EWAS CpGs
described above, were aligned to chromatin segments
taken from the Epigenomic Roadmap [34] as well as
additional cancer cell lines generated as described else-
where [35] using bedtools [33]. Besides analyzing a back-
ground of all cell and tissue types, we focused on AT
(adipose tissue-derived mesenchymal stem cells, mesen-
chymal stem cell-derived adipocyte cultured cells, adipo-
cyte nuclei), intestinal tissue (fetal intestine large, fetal
intestines small, small intestines), skeletal muscle
(HSMM cell-derived skeletal muscle myotube cells,
HSMM skeletal muscle myoblasts cells, skeletal muscle
female, skeletal muscle male), and liver tissue.

Gene ontology analysis
Probes from the DMRs characterizing methylation dif-
ferences between responders and non-responders (P <
0.05) as well as correlating probes (P < 0.05) were taken
forward for gene ontology analyses corrected for probe
abundance of the EPIC array using R’s missMethyl pack-
age [36] and 0.05 as cutoff for the false discovery rate
([26], page 27).
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Results
All subjects included in the DNA methylation analysis
lost on average 3.65 ± 5.2 kg (mean ± SD; P < 1 × 10−11,
Table 1 and Fig. 1b) of body weight after 18 months
accounting for more than one BMI point. In line with
this, the area of visceral AT, deep and superficial
subcutaneous AT depots decreased significantly (all
P < 1 × 10−20, Table 1), and obesity-associated meta-
bolic features such as HbA1c and insulin levels clearly
improved (all P < 0.01, Table 1).

Specific signatures of DNA methylation between
responders and non-responders
First, we conducted analyses to uncover regions po-
tentially discriminating between success and failure of
a lifestyle intervention, and we selected 10 male sub-
jects who were referred to as non-responders since
they slightly gained weight after intervention and 10
male responders showing the most pronounced
weight-loss (Fig. 2a, b). The intervention group distri-
bution of responders and non-responders is provided
in Fig. 1a. Both, the top responders and the bottom
non-responders (matched with respect to age), lost
weight after the first 6 months of diet intervention
(Fig. 2a). However, during the following 12 months of
intervention, the non-responders regained or even ex-
celled their initial weight whereas the responders lost
about 16% of their initial body weight (Fig. 2a, b).
Consistently, differences in the area of adipose depots
were found between the subgroups of responders and
non-responders after 18 months of intervention, with
the strongest difference for visceral AT (P < 1 × 10−5,
Fig. 2c).
Between the two groups, we identified 293 DMRs

(2D-KS P value< 0.05; comprising 332 genes; 33
DMRs without genes) at baseline, i.e., prior to lifestyle
intervention, and 280 DMRs (331 genes; 43 DMRs
without genes) after completion of the intervention.
However, both before and after intervention, only two
DMRs (mapped genes: CRISP2 and LRRC27)
remained significant after correction for multiple test-
ing (Additional file 2: Table S1 and S2). Nevertheless,
between both time points 150 DMRs corresponding
to 168 genes intersected with consistent differences in
DNA methylation and were not much affected by
weight-loss intervention. Therefore, to minimize the
effect of potential outliers by increasing the sample
size and so the statistical power, we combined the
datasets of both time-points treating the different
time-points as biological replicates without any fur-
ther adjustments for the lack of independence and
thereby identified 669 DMRs (759 genes; 100 DMRs
without genes) between responders vs. non-
responders (Additional file 2: Table S3). After

correction for multiple testing 8 DMRs (9 genes) (P
adjusted < 0.05) remained significant (Table 2, Fig. 3a).
Among them, 4 DMRs showed significantly higher
(CRISP2, Cysteine Rich Secretory Protein 2; SLC6A12,
Solute Carrier Family 6 Member 12/RP11-283I3.2;
SLFN12, Schlafen Family Member 12; AURKC, Aurora
Kinase C; deltaM: 0.06–0.13) and 4 significant lower
methylations in responders (LRRC27, Leucine Rich Re-
peat Containing 27; RNF39, Ring Finger Protein 39;
LINC00539, Long Intergenic Non-Protein Coding RNA
539; and NTSR1, Neurotensin Receptor 1; deltaM: (−
0.08)-(− 0.11)) (Fig. 3a/b; Table 2) compared to non-
responders. Differences in DNA methylation (normal-
ized ß values) for all 8 DMRs are presented in Fig. 3b.
Among them, the SLC6A12 (-RP11-283I3.2) gene
locus revealed the strongest difference in DNA
methylation (deltaM: 0.126 = 12.6%; adjusted P =
0.008) (Table 2; Fig. 3b) for a DMR at chr12:312736-
312753 including 3 CpG sites.
Furthermore, among the DMRs which showed signifi-

cant P values in a combined analysis but did not withstand
adjustment for multiple testing (N = 661), we identified
mostly new candidate genes but also confirmed genetic
risk loci for BMI (N = 256), waist-to-hip ratio (N = 154),
waist-circumference (N = 55), and type 2 diabetes (N =
130), such as the Transcription Factor 7-Like 2 (TCF7L2)
(Additional file 2: Table S4, risk loci according to the
GWAS catalog data accessed 04/2020) [37]. Moreover, we
identified 280 genes for SAT and 267 for OVAT which
showed differential methylation between the obesity states
in a previous work by Keller et al. [10] and were overlap-
ping with genes potentially discriminating between re-
sponders and non-responders (Additional file 2: Table
S4). Among them, 19 genes in subcutaneous adipose tis-
sue (SAT) and 19 in omental visceral adipose tissue
(OVAT) further showed significant transcriptional
changes according to differences in metabolic state [10].
GO enrichment analysis unraveled differentially methyl-
ated genes between responders and non-responders which
annotate to biological processes mainly involved in differ-
ent types of cell-adhesion (e.g., GO:0007156; homophilic
cell adhesion via plasma membrane adhesion molecules;
FDR = 8.31 × 10−14, Additional file 2: Table S5).

In silico analyses of identified DMRs
Further, we employed a ChromHMM prediction model
to functionally annotate the top differentially methylated
DMRs to specific tissues most likely relevant for obesity
development (e.g., AT derived stem cells) or other meta-
bolically related processes (e.g., skeletal muscle or liver).
Data shows RNF39 and SLFN12 to be located in an ac-
tive TSS for AT derived mesenchymal stem cells. While
for the other DMRs this seems to be ubiquitous among
most tissues, for RNF39 it is limited to AT (Fig. 3c).
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Fig. 2 Phenotypic differences between responders and non-responders to a lifestyle intervention. a shows the absolute weight of the responders
(N = 10) and non-responders (N = 10) subgroups over the three time points: baseline (T0), 6 months (T6), and 18 months (T18). Data is shown as
mean ± SD; b shows the relative (%, rel. to T0) weight-loss at 18 months for both subgroups. Data is shown as scatter dot plots (mean ± SD); c
shows the absolute changes of fat areas (cm2; VAT-visceral AT, DSC-deep subcutaneous AT, SCC- superficial subcutaneous AT) at 18 months
compared to the baseline area as boxplots (line =median) with whiskers representing min and max values; **P < 0.001;
***P < 1 × 10–3; ****P < 1 × 10–4
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DNA methylation changes due to specific weight-loss
interventions
Based on the findings from responder vs. non-responder
analyses, we investigated whether different lifestyle inter-
vention (dietary MED/LC vs LF) and PA had a
recognizable impact on CpG methylation in human blood
in an expanded analysis including all samples from all in-
terventions together (N = 120; T0 vs T18; Additional file 2:

Table S6). Thereby we identified 1146 CpG mapping to
1459 genes (84 CpGs with no gene) with a significant
methylation change (q value, < 0.05). Interestingly, the in-
dividual interventions (LF + PA; MED/LC + PA; LF-PA;
MED/LC-PA) did not show significant changes on CpG
(all q value > 0.05) or DMR (all adj. P > 0.05) specific DNA
methylation levels (Additional file 2: Tables S6–7). Of
note, we identified two DMRs on chromosome 1 (2D-KS

Fig. 3 Candidate genes discriminating responders from non-responders. a Combined P values presented as Manhattan plot for differently
methylated DMRs between responders vs. non-responders on a genome-wide scale; blue dots indicate regions were responders showed
significantly lower, green dots significantly higher methylation levels compared to non-responders; genes marked with a star remained significant
after correction for multiple testing (adj. P < 0.05), b Methylation levels at the identified genes between responders and non-responders
presented as box plots (normalized ß values) with whiskers representing min and max values, **P < 0.001; ****P < 1 × 10−4. c ChromHMM
prediction for the significant DMRs (adj. P < 0.05). To identify putative target genes in the phenotype relevant target tissues: Intestine (Fetal-
Intestine-Large, Fetal-Intestine-Small, Small-Intestines), Adipos-Nuclei (Adipose-Nuclei), AdiposeTissue (Adipose-Nuclei, Adipose-Derived-
Mesenchymal-Stem-Cell-Cultured-Cells, Mesenchymal-Stem-Cell-Derived-Adipocyte-Cultured-Cells), Adipocytes (Mesenchymal-Stem-Cell-Derived-
Adipocyte-Cultured-Cells), Adipocytes2 (Adipose-Derived-Mesenchymal-Stem-Cell-Cultured-Cells) Liver (Liver), Muscle (HSMM-cell-derived-Skeletal-
Muscle-Myotubes-Cells, HSMM-Skeletal-Muscle-Myoblasts-Cells, Skeletal-Muscle-Female, Skeletal-Muscle-Male), and all (all 134 cells from Roadmap
Epigenome Gateway). ChromHMM coding for TssA-active TSS, TssBiv-Bivalent (Poised) TSS, BivFlnk-Bivalent Flanking, EnhBiv-Bivalent Enhancer,
ReprPC-Polycomb Repressed, ReprPCWk-Weakly Polycomb Repressed, Quies-Quiescent/low, TssAFlnk-Flanking TSS, TxFlnk-Flanking Transcribed, Tx-
Transcribed, TxWk-Weakly Transcribed, EnhG- Genetic Enhancer, Enh –Enhancer, ZNF/Rpts-ZNF Genes and Repeats, He-Heterochromatin
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P ≤ 0.015, methylation change between 3.1 and 4.2%)
when comparing the different intervention groups be-
tween pre- and post-intervention states (see legend to
Additional file 2: Table S7). Obviously, these DMRs were
also observed in baseline intergroup comparisons. Both
DMRs (chr1:564503-565170; chr1:567311-567358) are
overlapping and cis to the micro RNA 6723 (miR-6723)
and different pseudogenes such as MTND1P23 and
MTND1P28 (Mitochondrially Encoded NADH Ubiquin-
one Oxidoreductase Core Subunit 1 Pseudogene 23/28)
(Additional file 2: Table S7). They further contain the top
two differently methylated CpGs when comparing T0 vs.
T18 independent from the type of intervention (Add-
itional file 2: Table S6). It has to be acknowledged though
that the 2 DMRs include cross-reactive probes and there-
fore, although the observed differences are most likely
bona fide methylation differences, this has to been seen
with caution since other processes cannot be fully
excluded.

Epigenome-wide association study uncovers DNA
methylation patterns associated with body weight-loss
We tested whether baseline DNA methylation marks
correlate with a successful weight-loss by a combined
diet and exercise intervention via conducting an
epigenome-wide association for the relative difference in
body weight after 18 months of the intervention (+/−,
relative to initial body weight) on a single base reso-
lution. Thereby, 47 CpG sites corresponding to 41 genes
(10 sites with no gene mapping) showed a significant
correlation (all combined P < 1 × 10−4; Table 3). Among
them, 15 CpGs correlated negatively and 32 positively
with weight change after intervention. The strongest ef-
fect, among the CpGs in cis to annotated genes, was
found for a CpG site (chr9:128330232) in close proxim-
ity to the MAPK Associated Protein 1 (MAPKAP1) gene
locus (P = 2.14 × 10−6; r = 0.42) followed by the Histo-
compatibility Minor 13gene (HM13; P = 3.65 × 10−6; r =
0.41) and an uncharacterized protein (KIAA0513; P =
9.60 × 10−6; r = − 0.39). A complete list of CpG loci (N =
7776; combined P ≤ 0.01) with a correlation of the
methylation status prior to intervention and individual’s
relative weight-change is given in Additional file 2: Table
S8. Among the 7776 CpG sites potentially predicting
weight-loss at baseline (combined P < 0.01), 506 sites are
annotated to genes that are also discriminating between
responders and non-responders including 5 genes out of
the top loci (RNF39, SLFN12, NTSR1, LRRC27, and
LINC00539).
ChromHMM analysis for the top annotated CpGs

showed that among the potentially weight-change pre-
dicting CpG marks 4 loci are consistent functionally an-
notated to an active TSS for AT, adipocytes, and adipose
nuclei (Fig. 4a) including the top-ranked CpGs for a

negative (KIAA0513) and positive weight-change (Histo-
compatibility Minor 13-HM13).

Baseline DNA methylation could predict a successful
treatment response
Next, we analyzed whether baseline CpG methylation
could also be used to predict intervention success. To do
so, we used the receiver operating characteristic (ROC)
curve model to potentially predict successful weight-loss.
We observed a clear additive value of a baseline DNA
methylation score (generated from ß values of all CpG
sites showing correlation at baseline with weight change)
(AUC = 0.95–1.0) compared to known predictors such
as baseline age and BMI (AUC = 0.564, Fig. 4b, [26]
pages 14–17). However, as we do not have sufficient
data to split our data into a training and a test set, this
has to be considered with caution and further validation
in an independent data set is clearly warranted.

Correlations between clinical phenotypes and baseline
DNA methylation
We further performed correlation analysis for DNA
methylation prior to intervention with different parame-
ters of fat distribution (deep subcutaneous (DSC), super-
ficial subcutaneous (SSC) and visceral AT (VAT) area,
waist-circumference), glucose homeostasis (plasma-glu-
cose levels, HOMA index), serum adiponectin and leptin
levels, BMI and C-reactive protein (CRP) serum levels
for all 47 (P < 1 × 10− 4) identified candidate individual
CpG sites coming from baseline EWAS (Additional file 2:
Table S9) and 72 CpG from candidate DMRs (P adj. <
0.05) (Additional file 2: Table S10). As proof of principle,
for the EWAS CpG, we identified mostly correlation to
changes in BMI, deep subcutaneous-, superficial sub-
cutaneous-, visceral- adipose tissue, and waist-
circumference (Additional file 2: Table S9). Although
none of the correlations remained significant after cor-
rection for multiple testing, DMR specific correlation
analysis revealed a genetic region (672 bp) on chromo-
some 6 spanning from intron 3 to exon 4 of the Ring
Finger Protein 39 (RNF39) which showed positive corre-
lations with HOMA index (all P < 0.05, at both time
points) and fasting plasma glucose levels (all P < 0.03, at
both time points) (Additional file 2: Table S10) for 17
overlapping CpGs. In line with this, 16 of those CpG
sites annotated to RNF39 were negatively correlated with
adiponectin serum levels and positively with BMI post-
intervention (Additional file 2: Table S10). These corre-
lations may warrant further investigation because of
their known biological role. Exemplarily, for this previ-
ously identified DMR at the RNF39 locus, which already
showed a lower methylation in responders, the
ChromHMM predicted underlying active TSS and a bi-
valent flanking region in adipose tissue-derived stem
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Table 3 Top EWAS hits for weight-change

Location Combined_p value Combined_correl SNPprobes Croscorr_probes Genes Probes/gene

chr9:128330232-128330233 2.13894E−06 0.415656804 0 0 RP11-12A16.3, MAPKAP1 4.87

chr20:48681452-48681453 2.89151E−06 0.410278561 0 0 .

chr20:30102074-30102075 3.64554E−06 0.40785049 0 0 HM13 51

chr8:47108510-47108511 7.25868E−06 0.396511089 0 0 .

chr16:85061578-85061579 9.60171E−06 − 0.390429782 0 0 KIAA0513 85

chr4:2860776-2860777 1.03553E−05 0.390219534 0 0 ADD1 60

chr1:10676746-10676747 1.10438E−05 0.38897137 1 0 RN7SL614P, PEX14 6.97

chr21:43995264-43995265 1.53041E-05 0.381354803 0 0 SLC37A1 92

chr1:155224863-155224864 1.65133E−05 0.382167212 0 0 FAM189B 22

chr14:24611228-24611229 1.66638E−05 0.381131462 0 0 EMC9 20

chr6:34312254-34312255 1.85412E−05 − 0.379666826 0 0 NUDT3, RPS10-NUDT3 40.55

chr3:39766166-39766167 2.68388E−05 − 0.369598821 1 0 .

chr16:32599433-32599434 2.95334E−05 0.36329876 1 1 .

chr14:23832577-23832578 3.0238E−05 − 0.370665738 0 0 EFS 19

chr2:43285304-43285305 3.60853E−05 − 0.367590736 0 0 .

chr5:74614787-74614788 3.80965E−05 0.365526726 0 0 .

chr14:19109264-19109265 3.95428E−05 0.365892373 1 1 RP11-754I20.1 6

chr10:35027638-35027639 3.97516E−05 0.36532732 0 0 PARD3 211

chr6:30009242-30009243 4.04387E−05 0.364775077 0 1 ZNRD1-AS1 223

chr1:151941392-151941393 4.22465E−05 0.363467421 1 0 .

chr7:30741951-30741952 4.41082E−05 0.362463879 0 0 INMT 39

chr20:58637969-58637970 4.4336E−05 0.362478499 0 0 C20orf197 16

chr8:25937278-25937279 4.62614E−05 0.362791545 0 0 .

chr18:76148676-76148677 4.88724E−05 0.361851294 1 0 .

chr12:96710026-96710027 4.89494E−05 0.360939508 0 1 CDK17 44

chr20:30947335-30947336 5.34863E−05 − 0.358758835 1 0 ASXL1 36

chr11:93884806-93884807 5.40302E−05 0.359319982 0 0 PANX1 38

chr12:69982015-69982016 5.77386E−05 0.35850731 0 0 CCT2 27

chr12:56837403-56837404 5.92256E−05 0.357960025 1 1 TIMELESS 21

chr22:31488064-31488065 5.93091E−05 0.357833796 0 0 SMTN 59

chr4:48508755-48508756 5.95427E−05 − 0.357497447 0 0 FRYL 74

chr4:186092824-186092825 6.24725E−05 −0.354276473 0 0 KIAA1430 40

chr2:232456125-232456126 6.63359E−05 0.354055051 0 0 C2orf57 7

chr19:51497512-51497513 6.73546E−05 0.355569746 0 0 CTB-147C22.9 59

chr2:202507599-202507600 7.31631E−05 0.35259332 0 0 TMEM237 27

chr16:66914802-66914803 8.20107E−05 − 0.351288405 0 0 PDP2 27

chr13:114201583-114201584 8.30031E−05 0.350644678 0 0 TMCO3 108

chr7:1694822-1694823 8.61102E−05 0.350667814 0 0 .

chr1:84763932-84763933 8.75277E−05 − 0.35001248 0 0 SAMD13 37

chr5:86563580-86563581 8.79946E-05 − 0.346433913 0 0 RASA1 46

chr11:1220228-1220229 8.93413E−05 − 0.349897083 0 0 MUC5AC 49

chr8:117864506-117864507 9.16977E−05 − 0.349138937 0 0 RAD21 39

chr5:52929435-52929436 9.18704E−05 0.348561794 0 0 NDUFS4 31

chr12:124808992-124808993 9.7238E−05 − 0.348213686 1 0 NCOR2 334
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cells as well as a bivalent flanking and enhancer region
for adipose nuclei (Fig. 3c).
Another potentially functional relevant DMR might be

the one annotating for the Long Intergenic Non-Protein
Coding RNA 539 (LINC00539) which is positively corre-
lated with the change of the deep subcutaneous adipose
tissue area as well as the HOMA index change after
intervention (all P < 0.05, Additional file 2: Table S10).
However, this result has to be seen with caution since all
three probes among this DMR could be affected by a
cross-hybridization to the intergenic region chr6:
5831672-5831936.

Discussion
In the present study, we conducted a genome-wide
DNA methylation analysis in blood samples from 120
subjects who underwent the 18-month CENTRAL ran-
domized controlled trial. We demonstrate that the suc-
cess of lifestyle interventions aimed at reducing weight
and improving metabolic health by different dietary (ei-
ther MED/LC or LF) and exercise (PA+/−) strategies are
strongly reflected by specific DNA methylation signature
in human blood.
By comparing the genome-wide DNA methylation

profiles of 10 top responders and 10 non-responders, we
identified 9 DMRs corresponding to 10 individual genes
which remained significant even after correction for
multiple testing. We further demonstrated that specific
DNA methylation patterns prior to intervention are as-
sociated with a successful therapy outcome and could
thereby along with classical predictors such as age and
BMI [7] potentially be used in the future to further spe-
cify individuals’ response to lifestyle treatment. We are
aware that our prediction analyses were strongly biased
by pre-selection of the corresponding sites; thus, the
strength of the AUC was not surprising. Also, a valid-
ation of our prediction model in vivo would be highly
desirable from a statistical point of view, as we lack an
independent test set. Unfortunately, given the unique-
ness of our cohort and dataset, it is currently not pos-
sible. Yet, our data appear robust, even though we could
not replicate previously reported findings by Moleres
et al. [38], who followed a similar approach in human
blood and found 5 CpG sites being differentially

methylated between responders and non-responders of a
multidisciplinary weight-loss intervention. It has to be
acknowledged though that the published data by
Moleres et al. was performed in males and females and
did not withstand correction for multiple testing, there-
fore, require further replication and validation [38].
Moreover, whereas 27 k Illumina arrays have been used
by Moleres et al., we included 850 k arrays in our study
to reach higher genomic coverage. Also, the type of
intervention differs between the studies, as only a 10
weeks intervention trial has been conducted by Moleres
et al. [38]. Another study performed by Bouchard
et al. [39] in human SAT samples, identified 35 CpG
sites before a 6-month caloric restriction and 3 CpG
sites afterwards being differently methylated between
responders and non-responders which correspond to
22 genes. Three out of the 22 genes also light up to be dif-
ferentially methylated in blood between responders and
non-responders of our CENTRAL trial, e.g., the PRDM8
gene locus (PR/SET Domain 8) showing directionally con-
sistent differential methylation. This lack of overlap could
be driven by the fact that Bouchard et al. detected individ-
ual CpG sites to be differentially methylated between
women and our study highlights larger regions being dif-
ferentially methylated in men. The small overlap indicates
that at least for some sites blood DNA methylation might
represent a surrogate parameter for changes in obesity
relevant target tissues [39]. Furthermore, Bollepalli and
colleagues, who studied short-and long-term mRNA ex-
pression and DNA methylation changes in SAT using a
similar 1-year lifestyle intervention in 19 obese subjects,
identified a very similar separation between responders
and non-responders after 5months of intervention. In line
with this, our group of responders and non-responders
starts to separate in their weight-loss behavior at 6months
of intervention [40]. Additionally, the group identified and
replicated mRNA expression changes of FAM129A (Fam-
ily With Sequence Similarity 129 Member A) locus correl-
ating with CpG methylation changes after long-term
intervention. Since the study design is comparable with
our cohort, we could confirm CpG methylation changes
(P < 1 × 10−4, Additional file 2: Table S6, T0 vs T18) in hu-
man blood among the LC+/−PA intervention group [40].
Along this line, we proved the overlap with previously

Table 3 Top EWAS hits for weight-change (Continued)

Location Combined_p value Combined_correl SNPprobes Croscorr_probes Genes Probes/gene

chr6:100483904-100483905 9.74908E−05 0.348082518 0 0 MCHR2-AS1 23

chr1:110753895-110753896 9.93168E−05 0.343588975 0 0 KCNC4-AS1, KCNC4 19.47

chr11:117054853-117054854 9.94225E−05 − 0.347463234 0 0 SIDT2 34

The table presents the top CpG sites (P ≤ 1 × 10−4) from combined Spearman and Pearson correlation analysis of genome-wide DNA methylation at baseline with
relative changes (+/−) in body weight after intervention. Combined P value represents geometric mean of Spearman and Pearson correlation P values. SNPprobes
represent probes containing a SNP with a frequency > 0.01. Cross-reactive probes indicate potential off-target probe binding. Genes is a comma-separated list of
the genes cis to the CpG. Chromosomal location was annotated to genome assembly GRCh37 (hg19)
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Fig. 4 (See legend on next page.)
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published data analyzing methylation differences in hu-
man SAT and OVAT between subjects with and without
obesity [10]. Although we could not directly compare
these gene sets due to the different nature of the
studies, we identified 280 genes for SAT and 267 for
OVAT which showed differential methylation between
the obesity states and were also among our four list
of genes potentially discriminating between re-
sponders and non-responders (Additional file 2: Table
S4). Further, 19 of those genes in SAT and 19 in
OVAT also showed a significant mRNA expression
change in the data from Keller et al. [10]. This included
the SORBS2 locus manifesting higher methylation and
lower expression in OVAT of subjects with obesity, in
agreement with our results showing a significantly lower
methylation in responders compared to non-responders
(data not shown). Furthermore, we have recently shown
that an in vitro hyper-methylation of the SORBS2 pro-
moter which overlaps with the here identified DMR leads
to a reduced mRNA expression [10].
Among the identified candidate genes RNF39 seems to

be one of the most promising regions. Besides the clear
differences in methylation between responders and non-
responders of a lifestyle therapy, the DMR is further as-
sociated with parameters of glucose metabolism in our
study. This is reasonable since RNF39 is located in close
proximity to the HLA-J (Major Histocompatibility Com-
plex, Class I, J) locus on chromosome 6p22, a pseudo-
gene of HLA-A (Major Histocompatibility Complex,
Class I, A), and genetic variants in this region have been
shown to be associated with insulin resistance in child-
hood obesity [41] as well as non-obstructive coronary ar-
tery disease in women [42]. Furthermore, our results go
in line with data from Meeks et al. showing that a DMR
of 13 CpG sites in close proximity to RNF39 is associ-
ated with obesity in human blood samples among 547
Ghanaians subjects [43]. The DMR described by Meeks
et al. is exactly located within our identified DMR [43].
As recently elaborated by Aronica et al. [44],

epigenome-wide association studies of weight are rather
rare compared to candidate gene approaches. In particu-
lar, changes in body weight following diet and/or
exercise-driven interventions are sparsely considered in

epigenetic studies. Even the few studies available so far
are strongly limited by short intervention times, small
sample sizes, or, e.g., restricted to women only [44–47].
Further, it has to be acknowledged that many of the
prior studies published on similar subjects did not
analyze immune cell subtypes; thus, it cannot be ex-
cluded that some of the differences they found are a
function of immune cell differences. Therefore, incon-
sistencies in reported findings might be expected making
a comparison of the different studies quite problematic.
It is of note, however, that according to the Houseman
method in our study, none of the cell type populations/
cell compositions changed significantly after the inter-
vention. In general, it is noteworthy that our data is in
line with other studies on DNA methylation changes
which overall reported only small changes (≤ 5%) on
genome-wide DNA methylation when comparing pre-
and post-interventional DNA methylation status [44].
We are aware of several limitations of our investiga-

tion. First, given the specific nature of the intervention
workplace, the number of women in our study is
strongly limited. Further, tissue-specificity of the epige-
nome is one of the major concerns in epigenetic epi-
demiology. Whole blood is the most frequently used
biological material in genetic and epigenetic studies,
since for the majority of studies, it is often the only
source available. Since we were lacking a cohort to valid-
ate our identified candidate genes in relevant target tis-
sues such as adipose tissue, we used previously
published data [10] to indirectly check the potential role
of these genes in the pathophysiology of obesity. We
have to note that blood and adipose datasets were com-
pletely independent (i.e., not the same individuals), and
therefore, any conclusions drawn in terms of validation
of the original observations are treated with caution.
Nevertheless, the observed overlaps with previously pub-
lished data in AT [10, 39] may indicate that blood
methylation marks indeed may have the potential in
reflecting changes in corresponding target tissues. We
have to acknowledge, though, that similar results in
methylation studies of adipose and blood may also sim-
ply reflect the leukocyte differential invasion and activa-
tion in these organs. Regrettably, we did not have access

(See figure on previous page.)
Fig. 4 EWAS candidate genes for weight-loss prediction. a ChromHMM prediction for all CpG sites which are significantly associated with weight
changes during lifestyle intervention (P < 1 × 10–4).To identify putative target genes in the phenotype relevant target tissues: Intestine (Fetal-
Intestine-Large, Fetal-Intestine-Small, Small-Intestines), Adipos-Nuclei (Adipose-Nuclei), Adipose Tissue (Adipose-Nuclei, Adipose-Derived-
Mesenchymal-Stem-Cell-Cultured-Cells, Mesenchymal-Stem-Cell-Derived-Adipocyte-Cultured-Cells), Adipocytes (Mesenchymal-Stem-Cell-Derived-
Adipocyte-Cultured-Cells), Adipocytes2 (Adipose-Derived-Mesenchymal-Stem-Cell-Cultured-Cells), Liver (Liver), Muscle (HSMM-cell-derived-Skeletal-
Muscle-Myotubes-Cells, HSMM-Skeletal-Muscle-Myoblasts-Cells, Skeletal-Muscle-Female, Skeletal-Muscle-Male), and all (all 134 cells from Roadmap
Epigenome Gateway). ChromHMM coding for TssA-active TSS, TssBiv-Bivalent (Poised) TSS, BivFlnk-Bivalent Flanking, EnhBiv-Bivalent Enhancer,
ReprPC-Polycomb Repressed, ReprPCWk-Weakly Polycomb Repressed, Quies-Quiescent/low, TssAFlnk-Flanking TSS, TxFlnk-Flanking Transcribed, Tx-
Transcribed, TxWk-Weakly Transcribed, EnhG- Genetic Enhancer, Enh –Enhancer, ZNF/Rpts-ZNF Genes and Repeats, He-Heterochromatin. b
Receiver operating characteristic (ROC) curve for successful weight-loss under lifestyle intervention (for all males)
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to the respective biological material allowing to prove
whether the subtypes of immune cells that are reflected
in the results from the EWAS conducted in blood hap-
pened to be the subtype infiltrating the adipose tissue in
different obesity subtypes. Moreover, we have to ac-
knowledge that although cell type composition was not
significantly changed by the individual lifestyle interven-
tions in our study, this may have been driven by the lim-
ited statistical power due to our relatively small sample
size.
However, these findings are of relevance, since they

further support similar studies [17] suggesting that as-
sessment of DNA methylation in blood samples might
be a powerful tool to identify variation in DNA methyla-
tion related to obesity and/or particularly to body weight
change. Despite the huge potential of whole blood as a
source of biomaterial, its cellular heterogeneity is a big
challenge in epigenetic analyses. The variation in DNA
methylation patterns caused by the different cell type
compositions may represent a strong confounding fac-
tor, which has to be accounted for. In our study, we used
a statistical approach to infer cellular distribution from
epigenomic data. Finally, an important concern for any
association study is to clarify the causative chains behind
the recorded statistical relationships. Given the lack of
additional data such as genome-wide genotypes (e.g.,
SNPs), we were not able to address the causality by
employing Mendelian randomization or similar medi-
ation analyses. Nevertheless, our findings are sufficiently
robust and informative for identified genes to be consid-
ered as prognostic biomarkers, e.g., DNA methylation
RNF39 might contribute to the prediction of a successful
weight-loss therapy.

Conclusion
In conclusion, our findings suggest that biological pro-
cesses such as cell adhesion or molecular functions such
as calcium ion binding could have an important role in
determining the success of interventional therapies in
obesity. Moreover, methylation differences in the identi-
fied genes could serve as prognostic biomarkers to pre-
dict a successful weight-loss therapy and thus contribute
to advances in patient-tailored obesity treatment.
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