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Abstract

Personalised dietary modulation of the gut microbiota may be key to disease management. Current investigations
provide a broad understanding of the impact of diet on the composition and activity of the gut microbiota, yet
detailed knowledge in applying diet as an actionable tool remains limited. Further to the relative novelty of the field,
approaches are yet to be standardised and extremely heterogeneous research outcomes have ensued. This may be
related to confounders associated with complexities in capturing an accurate representation of both diet and the gut
microbiota. This review discusses the intricacies and current methodologies of diet-microbial relations, the implications
and limitations of these investigative approaches, and future considerations that may assist in accelerating applications.
New investigations should consider improved collection of dietary data, further characterisation of mechanistic
interactions, and an increased focus on -omic technologies such as metabolomics to describe the bacterial and
metabolic activity of food degradation, together with its crosstalk with the host. Furthermore, clinical evidence with
health outcomes is required before therapeutic dietary strategies for microbial amelioration can be made. The potential
to reach detailed understanding of diet-microbiota relations may depend on re-evaluation, progression, and unification
of research methodologies, which consider the complexities of these interactions.
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Background
The field of microbiome research has progressed rapidly
in recent years, driven by technological advances and re-
duced costs of analysis [1]. Significant insights have been
made into the nature of microbial communities and
their impact on host health [1]. However, there are in-
herent challenges and complexities in defining the
boundary of a ‘healthy’ microbiome landscape [2]. Mi-
crobial signatures are highly individual and multi-
dimensional [3] with multiple landscapes likely to be
considered healthful depending on the context [4]. In a
study by Ghosh et al., researchers investigated the

impact of a 1-year Mediterranean diet intervention on
the gut microbiota and frailty [5]. The authors remind
us of the Anna Karenina principle which posits that
healthy individuals typically display microbiomes more
similar to one another, while those of unhealthy individ-
uals are each aberrant in their own way [5, 6]. The in-
volvement of the microbiome in an extensive number of
diseases suggests the need for its incorporation into con-
temporary medicine for an improved understanding of
disease pathogenesis and pathology [7]. A clear link ex-
ists between loss of keystone taxa that drive microbiome
structure and function (such as Faecalibacterium praus-
nitzii [8]), and various disease states [9]. However, one
of the biggest challenges in microbiome research is dis-
cerning association from causation [10]. To date, there is
limited evidence to support causation in humans, pre-
dominantly due to limitations in accurately manipulating

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: tim.spector@kcl.ac.uk; caroline.le_roy@kcl.ac.uk
†Emily R. Leeming and Panayiotis Louca contributed equally to this work.
1The Department of Twin Research, St Thomas’ Hospital, King’s College
London, 3-4th Floor South Wing Block D, Westminster Bridge Road, London
SE1 7EH, UK
Full list of author information is available at the end of the article

Leeming et al. Genome Medicine           (2021) 13:10 
https://doi.org/10.1186/s13073-020-00813-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-020-00813-7&domain=pdf
http://orcid.org/0000-0002-0341-751X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:tim.spector@kcl.ac.uk
mailto:caroline.le_roy@kcl.ac.uk


the human microbiome [11]. Methods such as faecal
microbiome transplants (FMT) have provided evidence
that the microbiome alone can causally alter the human
phenotype [12]. The ability of FMT from lean donors to
reorientate host glucose metabolism is influenced by the
recipient’s baseline microbial profile [13]. This could be
explained, in part, by species from both recipient and
donors remaining durably in the gut post-FMT, demon-
strating the difficulties in precisely manipulating the
composition of the microbiome [14].

Besides invasive solutions, therapeutic modulation of
the gut microbiota could be achieved through diet [15].
Human and animal models have highlighted the influence
of diet in shaping the gut microbial community through
the provision of substrates for the metabolic requirements
of individual or subsets of microbial taxa [16], in addition
to modulating host gut microbiota crosstalk [17]. Al-
though diet provides one of the most promising means of
selectively altering the microbiome [18], current descrip-
tions of human dietary habits and food compositions pro-
vide a simplistic insight into a complex world that is still
largely unmapped [19]. Homogenous outcomes within the
nutrition field are stymied by several factors. An accurate
description of dietary intake is fundamental to health and
nutrition research, yet capturing dietary exposure is chal-
lenging [20]. As per the microbiome, one’s diet is often
composed of a multitude of components that are poorly
characterised individually and rarely investigated in com-
bination or as a food matrix structure [15, 21]. While
current investigations into the diet-microbial relationship
have provided a broad understanding of some of these re-
lations [22], further progress has been restricted.

We propose this review as a readout of the current flaws
in diet-microbiome studies while proposing points of im-
provements that should enable the furthering of current
knowledge in this field. Together, this should pave the
way towards a global improvement of population health.
Firstly, we describe the gut microbiome as a complex eco-
system with multiple interactions, secondly, we discuss
the intricacies of dietary investigations, and thirdly, we
consider the importance of combining these two fields
when researching diet-microbe relations. For the scope of
this review, we refer to the microbiome as an ecosystem
which incorporates all microorganisms together with the
metabolites and other components of the gut environment
as defined by Marchesi and Ravel [23]. However, the pre-
dominant focus of the research within this field has been
towards investigating bacteria and their interactions.

The gut microbiome a complex ecosystem
Multiple intricate interactions
While phyla and functional pathways are widespread
within the population (encountered in over 50% of indi-
viduals), species tend to be more subject-specific with,

on average, two unrelated individuals sharing approxi-
mately 43% of species [24–26]. Functional equivalence
can be explained by the notion of niches with multiple
species interacting in a competitive or synergistic nature
[27]. Hence, past work has shown that manipulation of a
single species can prove difficult [25], while the system-
wide influence of the microbial community can be
achieved [28, 29]. A number of studies reported the in-
volvement of microbes in an orchestrated maintenance
of host homeostasis. Microbial networks of species and
metabolic products, for example, act on both microbes
and host cell gene expression selectively dictating cellu-
lar productivity [7], emphasising the urgent development
of tools that can capture the full complexity of these in-
teractions [30, 31].

Microbial species observed within the modern gut
may have evolved through ecological adaptations of
host-microbe interactions to ensure microbial stability
in response to periods of limited nutritional availabil-
ity [7]. Even so, the gut microbiome is not a static
community. The complexity of studying the microbial
ecosystem is deepened by its temporal dynamics,
shifting diurnally, seasonally, and in constant flux [32,
33] requiring longitudinal investigations [34]. The
high rate of strain-level turnover may allow for mi-
crobial evolution to impact certain species’ long-term
persistence and colonisation in the gut [35]. In vitro
and model organisms have assisted our current un-
derstanding of these dynamics, however through the
lens of a reduced or simplified microbial ecosystem
[36]. Mathematical models should be developed com-
bining large human datasets together with in vitro
and in vivo modelling in order to incorporate these
dynamics (Fig. 1) [41]. Likewise, further emphasis
must be made to interpret temporal dynamics
through longitudinal sampling, with a limited number
of longitudinal microbiome studies to date [27].

Mechanistic studies are difficult to implement in
humans due to immense genetic and lifestyle heterogen-
eity together with ethical limitations [42]. Consequently,
the functional contribution of the gut microbiome to hu-
man physiology remains largely unexplored [43].
Current knowledge stems from animal models, in vitro
and in vivo assays, and is complemented by population-
based studies [42]. In this way, Suez et al. displayed that
non-caloric artificial sweeteners (NAS) induced glucose
intolerance in both mice and humans via modulation of
the gut microbial community [44]. Functional analysis of
the saccharin-associated metagenome suggests a number
of enriched pathways in heterocyclic compound metab-
olism, with a proliferation of certain taxa possibly linked
with their capacity to harness saccharin as an energy
source [44]. Several studies have explored mechanistic
modelling directly in humans. Sanna et al. used
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bidirectional Mendelian randomisation (MR) analyses to
assess causality in a cohort of 1539 individuals from the
LifeLines cohort [45]. An increase in microbial butyrate
production driven by host genetics was reported to be
associated with an ameliorated insulin response to an
oral glucose-tolerance challenge. Likewise, abnormal
production or absorption of propionate was shown to be
causally related with an increased risk of type II diabetes
[45]. Characterising the functional differences of the mi-
crobial taxa is fundamental in understanding their im-
pact on human physiology [43]. Functional -omics and
FMT [46] have demonstrated their potential in assisting
in the identification of functional gut microbial traits
[43], in conjunction with other more traditional mea-
sures. Detailed theoretical simulations to characterise
the functional difference of specific microbiological eco-
systems are also thought to be feasible, such as Larsen

and Claassen’s work which support the mechanistic link
between alpha-diversity and health [47].

The spatial organisation of microbial communities is
critical to understanding microbial signalling and meta-
bolic interactions at a micron-scale but is yet relatively
uncharted territory (Fig. 1) [48, 49]. Within this bio-
geography, microbial taxa tend to be localised according
to their functional niche, for example, anaerobic taxa
typically residing to the interior and consumers and pro-
ducers of a metabolite found to be within equidistance
of each other [50, 51]. The availability of relevant sub-
strates within the gut is also expected to drive this
spatial organisation. While multi-omic techniques such
as metagenomics, metabolomics, transcriptomics, and
proteomics provide key tools in investigating the intri-
cate crosstalk within the microbial community and be-
tween microbes and host, these techniques tend to be

Fig. 1 Understanding interactions between microbes, the microbiome, and the host both locally and systemically to enable its manipulation in
order to improve human health. Suggested approaches for the characterisation of (1) intra-microbe interactions include in vitro mono- and co-
culture systems; (2) inter-microbe interactions include in vitro co-culture and mass culture systems alongside quorum sensors to detect
autoinducers that orchestrate collective behaviours [36, 37]; (3) communities include in vitro synthetic continuous communities with novel
microarray technologies [38]; (4) spatial organisation include confocal microscopy integrated with multi-dimension algorithms alongside multi-
omic technologies [39]; and (5) local host-microbe interactions include in vivo animal models accompanied by metabolomics providing a direct
functional output of the metabolite profile, a result of local-host-microbial interactions [40], whereby the simultaneous profiling and integration of
various -omic technologies is necessary to then identify (6) interactions at the molecular level systemically [40]. Image created with Biorender.com
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applied to homogenised samples [49] with spatial het-
erogeneity typically neglected. The use of confocal mi-
croscopy on biopsy samples enables the identification of
single cells, a specific challenge in the dense cellular en-
vironment within the lower intestine [49]. Several tools
have been developed to facilitate semi-automated cur-
ation of cell boundaries, which can be challenging due
to close bacterial contact, or pixel-based quantitative
measures for large-scale measurements [49]. Integration
of spatial organisation within multi-dimensional algo-
rithms, in conjunction with -omic technology, may assist
in advancing the study of the organisation and dynamics
of the microbial community and its relationship with
host health. Retention of the structure by dissecting and
spreading out the sample on a slide may aid in revealing
the spatial organisation. With this method, investigations
of the oral microbiome using dental plaque allowed for
characterisation of the microbiota as highly structured
with multi-genus consortia [50]. The gold standard ap-
proach is whole-stool homogenised sampling, although
implementation of this can be impractical. Whether to
collect complete or partial stool samples or biopsy speci-
mens should be considered by the investigators and is
dependent on feasibility, costs, patient cooperation, and
downstream analysis [52].

Finally, the typical faecal sample represents the final
point of a developing and maturing ecosystem through
the gastrointestinal tract [53]. With varying gut transit
times between individuals, the collection of dietary data
and its corresponding stool sample can be fraught with
inconsistencies [54]. Faecal consistency, a proxy for tran-
sit time, has been identified as a major co-variate of mi-
crobial structure. This suggests that transit time data
should be included in future microbiome investigations
and considered when capturing dietary information [55].
While there are several validated measures of transit
time, including scintigraphy and radiopaque markers,
many are expensive with high participant burden [56].
Other cheaper scalable measures include the blue dye
method, faecal consistency, and frequency [57].

Optimising microbial data collection, storage, and
analysis
Microbiome data processing pipeline, collection, storage,
and analysis of samples are particularly vulnerable to sig-
nificant error [54, 58] that contribute to high variability
in research outcomes [59]. Collection methods include
variable storage temperatures, freeze-thaw cycles, lysis
conditions, and physical perturbations [54]. While a de-
tailed approach is required, protocols that are perceived
as too arduous can induce attrition bias in and of them-
selves [54]. Numerous techniques and differing protocols
have been suggested with a verified gold standard ap-
proach yet to be established [52].

Traditional culture-based technologies that have been
used to investigate the microbial ecosystem have re-
cently regained attention with the development of new
methods enabling the culturing of an extended number
of bacteria from the human gut. Though bacterial taxa
including Ruminococcaceae and Faecalibacterium tend
to be overrepresented by these methods [60]. Besides,
only 50–60% of bacterial species present in the human
gut have been observed to produce spores resistance to
multiple environmental challenges [60], thereby facilitat-
ing transmission from host-to-host [61], consequently
limiting the scope for FMT studies. While this is an ex-
pensive, cumbersome approach with clear methodo-
logical limitations, the majority of current knowledge
within microbiome research originates from culture-
based studies and has been informative in steering future
directions with more progressive techniques [62].

Development of new methodologies should assist in
addressing sample processing bias. For example, whole
shotgun metagenomic sequencing has allowed investiga-
tors to bypass the PCR amplification used within 16s
rRNA sequencing related to an overestimation of certain
taxa [63]. Outside of the wet lab, a wide variety of bio-
informatics tools can be used to classify microbial taxa
from sequencing data [64]. A number of bioinformatic
tools are publicly available for quality control, sequence
assembly, operational taxonomic units, functional profil-
ing, and prediction and to determine diversity evenness
and richness [65]. Resources such as PICRUSt use evolu-
tionary modelling to predict metagenomes from 16S
data and a reference genome database [66] and have
shown correlations between inferred and metagenomi-
cally measured content of close to 0.9 [66]. Platforms
such as MGnify, a free-to-use platform for the assembly,
analysis and archiving of microbial data have allowed for
publicly available analysed datasets [67]; however, exten-
sive action is required to populate these platforms, and
differences between pipelines can also lead to variations
in outcomes.

Improved accuracy and throughput of DNA sequen-
cing techniques, together with multi-omic analysis and
mechanistic experiments in animal models, increased
our understanding on the structure and function of the
microbiome in health and disease [42]. Several method-
ologies are required to further characterise how micro-
bial functionality may relate to health and disease [68].
These include but are not limited to (i) the development
and application of molecular and cellular high-
throughput measurements; (ii) experimental models and
human studies of direct molecular effects [43], for ex-
ample, the use of germ-free mice can provide insights
into disease causality [69]; and (iii) the incorporation of
transcriptomics and epigenetic data into the gut metage-
nomic profile. These allow us to understand how a shift

Leeming et al. Genome Medicine           (2021) 13:10 Page 4 of 14



in microbiome composition can modify pathways in-
volved in disease pathogenesis. For instance, microbiota-
dependent histone modification has emerged as a mo-
lecular mechanism involved in tumour suppression, al-
though findings are currently non-conclusive [34]. These
steps will facilitate research in shifting away from infer-
ences and towards a more causative understanding of
the relationship between the microbiome and the patho-
genesis of disease states.

Capturing dietary diversity and food interactions
Food is rarely consumed on its own and contains
numerous compounds
The complexity of the human gut microbiome is largely
mirrored by that of diet [4]. While we have a broad un-
derstanding of the impact of diet on the gut microbiota,
formulating meaningful targeted dietary strategies re-
mains a key challenge [70]. Foods are rarely consumed
alone, and the number of available combinations is in-
calculable, although some may be more recurrent than
others [19]. Diet is a highly individualised, multifaceted
and changing measure, yet specifically linked to the geo-
graphical and cultural context, restraining research gen-
eralisation [71, 72]. Variable nutrition content within the
same food item related to climate, soil type, and season
also contribute confounding factors and limitations [73,
74]. Food composition values within food composition
databases are typically obtained from laboratory ana-
lyses; however, due to the high procedural costs, many
values are estimated based on conversion factors or as a
ratio of similar food types [75]. There is limited potential
to consider the biochemical digestibility, absorption and
subsequent bioavailability of substrates for microbial
communities as a time-dependent process and one
which is highly variable between individuals [76]. No
method of collecting dietary data is totally devoid of
error, and the efficacy of each is dependent on the sce-
nario. The guidance of research dietitians in diet investi-
gations is strongly recommended, with inconsistent
findings as a result of suboptimal use of dietary assess-
ments. While numerous significant or strong observa-
tions have been determined by epidemiological studies,
these have not always been supported by the outcomes
of randomised controlled trials [77]. Failure to confirm a
dietary effect may be due to a magnitude of cumulative
biases [78], in conjunction with a small effect size,
amongst others, rather than a lack of validity.

While a shift towards bigger datasets is undoubtedly
required, this cannot be considered a ‘catch-all’ solution.
With dietary bioactive compounds acting synergistically,
and present within a multitude of food sources, almost
all nutritional variables correlate between each other and
health outcomes, particularly evident in large datasets
[79]. Other factors such as eating behaviours, eating

times, nutrient provenance, habitual diet, and other so-
cial and behavioural factors are not currently addressed
within the majority of diet-microbiome investigations,
yet all play a role in mediating host health [15, 80]. A
move from simplistic reductionist strategies towards
multi-faceted approaches is required.

Advancing nutritional research techniques has not
progressed at the same pace as the rapid development of
microbial investigations in the last decade. To improve
understanding of diet-microbial relations, drastic pro-
gress is required to further our ability to characterise
diet beyond the established macro and micronutrients.
Emphasis on the importance of accurate dietary data
methodologies and application of techniques typically
applied within other scientific research fields, such as
machine learning, may assist. While the nutritional com-
munity includes outstanding scientists, a large number
of dietary research are undertaken by investigators in
other fields, without the input of dietitians, nutritionists,
or scientists trained in nutritional epidemiology. This
may limit the quality of dietary data collection, process-
ing, analysis, and reporting. For diet-microbial investiga-
tions, the involvement of a trained nutrition research
professional should undoubtedly improve research out-
comes and aid in the elucidation of some of the intrica-
cies within these relations.

Dietary data collection, processing, and analysis for
microbiome studies
Study design
In designing study protocols for diet-microbiome inves-
tigations, collaborations between dietitians and/or nutri-
tionists and microbiologists, epidemiologists, and
biostatisticians are essential in order to capture a broad
spectrum of accurate data. Establishing the cause and ef-
fect of diet has been acknowledged as challenging [81].
Nutritional epidemiology typically identifies dietary com-
ponents that modify health risk, which can then be
tested within a clinical trial [82]. Controlled feeding
studies are considered to be robust in determining
cause-and-effect relationships between diet and physio-
logical health outcomes, as they facilitate deep pheno-
typical analysis [81]. Nevertheless, only a small fraction
of studies are of an experimental study design within the
diet-microbial field. Interventions investigating diet and
health require a large amount of participant burden,
substantial time and financial costs, and a high level of
participant commitment [83]. Habitual diet is acknowl-
edged to play a strong role in shaping the microbial
ecology through the daily provision of substrates [15].
The collection of habitual dietary data may be essential
regardless of the investigative format and should be in-
corporated into experimental study designs (Fig. 2). Pre-
vious work suggested that gut microbial communities
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can be clustered into typical ‘enterotypes’, defined as
densely populated multi-dimensional areas in the gut
microbial community. These ‘enterotypes’ could be used
as a way to stratify samples to reduce complexity [84]
and previously have been linked to cardiometabolic risk
[85], and a differential response to T2D treatment [86].
Microbial and metabolic phenotypes exhibit enterotype-
specific links, emphasising the importance of enterotype
stratification in investigating metabolic responses to diet
[87]. Multi-centre studies allow for the investigation of
enterotypes in wider population groups. These acknow-
ledge the influence of geographical, ethnic, and cultural
influences on the microbiome and diet amongst others.
Investigations of diet-microbe relations, particularly
multi-centre randomised control trials, that stratify ac-
cording to enterotype profile and account for baseline
habitual diet, with longitudinal sampling and health
measures, may lead to increased homogeneity of out-
comes. In combination, these suggestions would
undoubtably assist in promoting general, and

individualised or enterotype-based, diet-microbe thera-
peutic recommendations for the prevention or amelior-
ation of relevant disease states (Fig. 2).

Measurement
Investigators of diet-microbiome relations often rely on
food frequency questionnaires and self-reported food
diaries [88]. Yet, multiple weighed 24-h dietary recalls,
involving a retrospective assessment held by a trained
nutrition professional or dietitian, are generally acknowl-
edged to provide the highest accuracy in capturing diet-
ary intake [72]. Resources such as the DIETary
Assessment Tools NETwork (DIET@NET), who devel-
oped the Nutritools website [89], facilitate researchers’
awareness of the strengths and weaknesses of dietary as-
sessment methods [90, 91], summarised in Table 1. High
participant burden and costs, such as interview time and
data entry, limit the utility of dietary recalls for large co-
horts [72], though recent progress in technological appli-
cations, such as web-, app-, and computer-based 24-h

Fig. 2 Current approaches vs. ideal approaches (image modified from Leeming et al. [15]). Current microbiome-diet-host approaches carry a
number of caveats which may contribute to highly heterogeneous responses, such as the individualised microbiome [15]. A new ideal approach
that may allow for further elucidation of diet-microbial-host relations includes stratification by microbial signature, collection of habitual diet data,
longitudinal sampling and big data, machine learning, and AI approaches in order to enhance the predictability of outcomes in response to the
dietary intervention. Image created with Biorender.com
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Table 1 Advantages and disadvantage of dietary assessment methods

Dietary assessment tool Strengths Weaknesses

Retrospective

Dietary recalls—short-term method, where
foods and drinks consumed are recalled.

- Self-reported manually or electronically.
- Can be interview led, face-to-face, by phone,

or online.
- Typically, recall past 24 h but can be employed

to recall longer durations/instances.
- Multiple 24-h recalls can estimate habitual

intakes.
- Facilitates collection of extra information (meal

timing, frequency, and location).
- Flexibility of collected data is applicable to

diverse research questions and analytical
methods.

- Limited literacy skills and cultural differences
can be overcome using an interviewer.

- Moderate participant burden and high
compliance rates.

- A skilled interviewer using multi-pass methods
can prompt information, increasing accuracy.

- Habitual intake can change during the recall
period. Overcome if participants are not
forewarned.

- Limited accuracy when recalling distant
periods.

- Unsuitable for subjects with memory
disorders or elderly.

- Items often omitted and incorrect items can
be recalled.

- One 24-h recall has limited accuracy, typic-
ally underestimating intake and overlooks
day-to-day variation.

- Moderate-to-high burden when analysing,
requiring standardised protocols.

- Expensive to employ face-to-face interviews
in studies with large samples.

- Reliance on subjects’ ability to remember
portion size.

Food frequency questionnaire—retrospective
methods recording frequencies of common
foods over a period of time (weeks, months,
years). Can be qualitative (frequency only), semi-
qualitative (estimated portion size), or quantita-
tive (portion size queried).

- Self-reported manually or electronically or
interviewer led.

- Useful for estimating long-term intakes
retrospectively.

- Low cost and participant burden, higher
completion rate, applicable to large population
studies.

- Comprehensive questionnaires can estimate
total nutrient intake if the portion size is
prompted.

- Can utilise short questionnaires specific to
foods or nutrients pertinent to the research
question.

- Analysis is typically less burdensome on
researchers.

- Arduous for participants if > 100 food items
are queried.

- Limits comparisons across cultures/countries
unless comparable diets.

- Typically, shorter questionnaires have less
reliability and accuracy of intake.

- Relies on participants’ memory, literacy, and
numeracy skills. Longer periods of time
reduces the accuracy of intakes.

- Requires a proxy for accurate reporting in
children.

- Prone to misreporting, particularly with
longer questionnaires.

- Finite list of items included in the
questionnaire.

- Expensive software required to convert
frequencies to nutrients.

Prospective

Food diaries—prospective methods where
details of everything consumed is logged over
several days. Portions can be either estimated by
the subject or via photographical evidence or
weighed by the subject or research assistant at
the time of consumption.

- Provides detailed depiction of foods and drinks
consumed, including portions.

- Generates good estimates of short-term dietary
intake, if conducted thoroughly.

- Facilitates collection of contextual data (meal
timing, location, satiety levels).

- Not influenced by subjects’ memory if
recorded prospectively.

- Weighed provides more accurate quantitative
intake, can also include ingredients and food
waste.

- Can be conducted via digitally or manually.
- Prompts can promote the inclusion of specific

foods, nutrients or occasions, pertinent to the
research question and limit misreporting.

- Reasonably cost-effective.
- Accuracy increases with standardised protocols

and analysis.

- Not applicable to retrospective studies.
- High participant burden, particularly over

longer durations, adding to the high
participant burden of microbiome research.

- Costly in time and resources for coding and
analysis.

- Compliance rate reduces as the duration of
recording increases.

- Requires sufficient literacy and numeracy
skills of subject/proxy.

- Heavy reliance on subjects’ perception of
portions (can be improved with
photographs).

- Relies on trust that the diary is complete at
the time of consumption and not as a
recall.

Dietary checklist—prospective short-term
method where specified foodstuffs are ticked
from a checklist over a number of days. Can in-
clude frequencies or portion sizes. Typically used
as a screening tool. Shares many strengths and
weaknesses of FFQs.

- Useful for estimating dietary patterns over
short periods.

- Low cost.
- Low participant and researcher burden.
- Relatively simple coding.

- Generally, very short, cannot determine
total intakes. This is of concern for microbial
research as determination of effects are
limited.

- Cross-cultural/cross-country comparisons are
limited unless diets are comparable.

- Restricted to items that are listed in the
instrument.
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dietary recall tools, may mitigate some of these limita-
tions [93]. A minimum of four to eight repeated 24-h
dietary recalls have been previously recommended to ac-
curately characterise habitual dietary intake [94, 95].
Typically, food frequency questionnaires (FFQs) are
employed in nutrition research for large population
studies as a cost-effective tool for assessing habitual diet
[88].

Bias, error, and further limitations
Besides collection methodology, the majority of nutrition
research investigates diet as a limited series of macro
and micronutrients [96] covered by food composition
databases [19]. Dietary mediators of gut microbial action
may not be described, overlooking the impact of > 26,
000 biochemicals encapsulated within the food matrix,
as well as the production, preparation, and consumption
of foods with the potential passage of environmental and
food-borne microbial communities [16, 19]. Zhang and
Li recently demonstrated that consuming cooked foods
drastically reduced microbial diversity in comparison
with consuming non-thermally processed foods in an
animal model [97]. Moving towards detailed descriptions
of foods is required, including food processing, cooking
methods, and mealtime [76, 98] together with rhythmi-
city of nutritional responses of nutrient sensing and cel-
lular decision-making [71]. Certain biochemicals have
been observed to mitigate or exacerbate the health ef-
fects of others present in other foods [19]. For instance,
trimethylamine N-oxide (TMAO), a product of tri-
methylamine (TMA) transformation by the liver, has
been extensively associated with the negative health

effects linked to red meat consumption [99]. Yet, allicin, a
biochemical in garlic, blocks the microbial generation of
TMA in the gut, preventing the potential adverse effects
of TMAO [19]. Many other bioactive compounds found
in food are separately documented elsewhere within the
literature; however, extensive systematic collaboration is
required for a unified database. Barabasi et al. displayed
that an advanced library for garlic and cocoa can be devel-
oped by integrating machine learning into study searches
for aggregation despite numerous diverse sources [19,
100]. Future efforts could utilise this technology to effi-
ciently analyse large datasets to develop global databases
for the benefit of researchers and institutes in the food do-
main [101]. For example, the FiberTAG project is tagging
fibre types, including soluble and insoluble dietary fibre
and prebiotic oligosaccharides, by measuring biomarkers
related to the gut microbiota in order to aid progression
in future diet-microbiome research [102].

Although epidemiological research has succeeded in
identifying a link between the gut microbiome and nutri-
ents derived from food composition databases [103], the
association with specific food sources remains underex-
plored. Johnson et al. recently highlighted that measur-
ing food intakes may provide increased insight into day-
to-day variations in microbiota than a traditional nutri-
ent model [55]. For example, red wine has been shown
to be associated with increased microbial alpha-diversity
that was not observed with other alcohols hypothesised
to be related to the high polyphenol content of red wine
[104]. However, the investigators were unable to confirm
due to the restricted descriptions of bioactive com-
pounds available.

Table 1 Advantages and disadvantage of dietary assessment methods (Continued)

Dietary assessment tool Strengths Weaknesses

Retrospective and prospective

Diet histories—combination of multiple
methods, typically 24-h recalls, food frequency
questionnaires, and food diaries. More applicable
in clinical settings by experienced dieticians to
generate an in-depth analysis at an individual
level.

- Long periods > 1 month can determine
habitual intake.

- Combinations of methods is ideally suited to
capture accurate dietary intake during a period
of interest surrounding faecal matter collection.

- Facilitates assessment of meal patterns and
food preparation.

- Typically uses automated tools that have been
adapted for self-administration.

- No standardised protocols available.
- Meal based approaches is not suitable for

individuals with irregular eating patterns.
- High participant and researcher burden.
- Requires complex analytical methods.
- Expensive, as requires experienced

interviewer and researcher to code data.

Novel technologies—collect and process
dietary data using wearable hardware (such as
sensors) and software (such as web-based pro-
grammes and mobile apps based on traditional
dietary assessment tools). Many have close
agreement to traditional methods, yet notice-
able differences persist when comparing against
the gold standard, doubly labelled water tech-
niques [92].

- Facilitates real-time data entry and results irre-
spective of location.

- Enhanced portion size quantitation and food
waste estimating using digitally captured
photos.

- Reduces participant burden and increases
motivation (dependent on participants’
technological ability).

- Facilitates easier prompting to reduce mis-
recording.

- Automation of web-based recording reduces
the burden on researchers and interviewers.

- Due to novelty, no validation performed to
determine the quality of the technology.

- Prone to similar measurement errors as
traditional assessment tools.

- Potential security risk using a web-based
computer or mobile-technologies.

- Requires participant education/training if
the tool is not intuitive.

- Potential high initial costs of specialist
equipment and software.

This table is adapted from Nutritools [89]
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While many further limitations and biases are worthy
of discussion, the final note on this subject should high-
light the importance of rigorous reporting to allow for
scientific reproducibility. Standardised reporting guide-
lines of all future research efforts should be developed
following a consultative process [105]. Extensions to
current guidelines, such as the STROBE-nut, have been
successfully implanted [105]. While these are currently
only specified within a number of nutrition journals, in-
vestigators are encouraged to incorporate the guidance
offered despite this.

Investigating diet-microbiome interactions
The pliable nature of the gut microbiota composition fa-
cilitates its modulation via environmental factors, the
most important of which is diet [106]. Yet, to date, un-
scrambling the effects of diet and the gut microbiota on
host health has proved challenging; particularly consid-
ering the two are closely aligned [103]. Moreover, the
presence of highly complex crosstalk between diet,
microbiota, and the host has proven a major confounder

[4] with full characterisations of the complex interac-
tions between dietary substrates and metabolites, and
the crosstalk between host and microbes not yet fully ex-
plored [107].

Diet influences not only the microbial composition,
but also regulates the activity of the ecosystem (and its
effects on the host) without noticeable compositional al-
terations [108] (Fig. 3). Further investigations to identify
factors that influence these three-way interactions be-
tween the host, diet and the microbiota are required.
These complex and intricate relations demands the em-
ployment of a holistic approach moving beyond simple
association studies [110]. While diet may at times have
minimal impact on the microbial community structure,
the production of dietary metabolites may differ [111].
Thousands of dietary biomolecules are present within a
food matrix, many of which are unknown [19]. Identifi-
cation of strains implicated in the metabolism of dietary
substrates remains unclear with multiple others per-
forming similar or the same pathways, some of which
work synergistically [16]. To date, the wealth of

Fig. 3 Diet contributes to the intertwined mechanisms between the microbiota and host that have yet to be fully elucidated [107]. The physical
structure and chemical composition of dietary intake is a large effector of health; moreover, dietary nutrients that bypass host absorption and
secretion support the activity of the gut microbiome [109], yet there remains a complex inter-change between multiple other components
outside of these. Image created with Biorender.com
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metabolic functionality studies has demonstrated the ex-
tensive reach of the gut microbiota throughout the
metabolic system of gnotobiotic [112], antibiotic-treated
animals [113, 114], and also some human studies [115].
Recent advances in mathematical models to capture key
aspects of the gut microbiome and its hosts’ physio-
logical response facilitate the generation of hypotheses
that can later be experimentally validated [115]. The fu-
ture inclusion of data points in artificial intelligence (AI)
models beyond the typical may also further assist in
expanding our understanding of diet-microbiome rela-
tions, for example, the functional genomic analyses of
carbohydrate utilisation of strains and species and the
cross-feeding of fermentation products and vitamins
unidirectionally or bidirectionally [116, 117]. For in-
stance, the growth of many butyrate-producing gut bac-
teria, such as F. prausnitzii, S. variabile, and Roseburia,
has been shown to be auxotrophic for B vitamins, and
therefore rely on exogenous sources [117], with links be-
tween increased consumption of B vitamins and abun-
dance of taxa [118]. By including such data, a greater
understanding of diet-based approaches to modulate
beneficial microbes and improve health may be modelled
[117, 119].

Reconceptualization of the current approaches towards
big data technical methodologies and improved study
design may assist in further characterisation of the diet-
microbial landscape [120]. Technological advances in
high-throughput -omic technologies have greatly im-
proved the accessibility to functional information sur-
rounding the microbiome [49]. Such studies are
indispensable for the progression of the field alongside
the increased focus on developing comprehensive and
reproducible workflows and improved choice of methods
and scientific rigour in the conduct of the study [59]. In-
tegrating the fields of microbiology, genetics, epigenetics,
metabolomics, proteomics, and nutrition, we can con-
solidate our understanding of techniques, thereby de-
velop investigations which may capture a richer and
more coherent picture [121]. For example, in a 2019
study, investigators explored diet-microbiome relations
and their individual impact on visceral fat mass (VFM).
The pair-wise association and conditional analyses, to-
gether with machine learning approaches, enabled to
both estimate and separate the effects of diet and the gut
microbial community on host VFM [103]. Additionally,
the integration of multiple fields assists in overcoming
some of the limitations of individual technologies by
looking at a broader picture of disease networks rather
than, for example, compounds in isolation [122]. Fur-
thermore, the emergence of novel visualisation tools
such as bio-orthogonal click chemistry labelling [123]
and optical windows for real-time tracking has shown
potential but has yet to be fully applied [49].

Consideration must be made as to how to best integrate
quantitative imaging techniques with the quantitative
pipeline to advance diagnostics, improve population
health through disease prevention and management [49].

Longitudinal large multi-centre studies are required
which employ standardised protocols for the collection
of validated biomarkers of health for phenotyping, sub-
ject demographics, dietary information, biological sam-
ples, laboratory processing, genetic analyses, and data
analysis and manipulation [3]. Generation of substantial
data pools could be overcome by integration of the
mechanistic, hypothesis-driven approach with machine
learning AI [124]. Machine learning methods to identify
microbiota characteristics associated with host pheno-
types of interest can be categorised into two types, su-
pervised and unsupervised learning [125]. Supervised
learning can be useful when aiming to predict a health
outcome or a phenotype based on microbiome profiles.
It also enables the formation of a prediction model based
on the multitudes of microbial taxa, enabling a view of
the ecosystem rather than organisms in isolation. Un-
supervised learning can also assist in identifying patterns
within the ecosystem as well as within a population, as
demonstrated by the concept of enterotypes [125]. Al-
though currently in its infancy within the microbiome
field, AI-based recommendation systems (RS) have
shown promise [126]. By integrating blood parameters,
dietary patterns, anthropometrics, physical activity, and
gut microbiota into a RS, Zeevi et al. were able to pre-
dict glycaemic response to meals [127]. The researchers
successfully manipulated dietary intake to alter the gut
microbiome, enabling them to reduce host postprandial
glucose response [127]. However, RS are limited by our
current incomplete understanding of microbial meta-
bolic pathways, microbial community, and definition of
a healthy microbiome.

Large databanks typically include limited phenotypes
to limit researcher burden and cost, whereas typically
small finite samples facilitate more in-depth phenotyping
[128]. Maximising phenotypic trait data within a sub-
stantial sample size allows for cohorts to be sufficiently
powered to discover and replicate associations [129].
Meta-analysis techniques can then be used to pool sam-
ples or to combine with clinical trial results in order to
detect ‘true’ signals and to reduce false-positive rates,
strengthening the findings by demonstrating reproduci-
bility [130]. By providing data from varying perspectives,
researchers are able to answer a diverse array of scien-
tific questions, whereby findings are more generalisable
[128]. For example, AI technologies, such as those men-
tioned above, have been shown to outperform humans
in predicting patient re-admission following congestive
heart failure [131], though these technologies alone can-
not provide translatable information for human health,
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requiring integration of AI, interventions, and mechanis-
tic studies.

Conclusions and outlook
To advance our understanding of the role of diet-
microbiota interactions on human health and disease, it
is crucial to step back and re-evaluate current ap-
proaches. Standardisation and optimisation of method-
ologies may assist in capturing the complex spectrum of
these relations. To inform dietary strategies for the pre-
vention and amelioration of chronic metabolic disease
states, we first need to ensure intrinsic data is sufficient
and relevant, in a manner that considers the deeply indi-
vidual aspects of both diet and microbiome. Character-
isation of the natural intricacies of the ecosystem and
the interactions existing between its multiple members
at various levels of complexity remains critical. Both mi-
cro- and macro-scale influences that drive microbial
variation should be considered, from spatial organisation
to transmission amongst hosts and between the host and
the environment. A comprehensive, multidisciplinary re-
search agenda is required to accurately describe the gut
microbial composition and function. Individual and
combined complexities of both microbial research and
nutrition research demand reconsideration of standard
approaches, with a push towards gold standard proto-
cols, further emphasis on the use of randomised control
trials, and mechanistic studies, and analysis techniques
that include big data, multi-omics, and machine learning
approaches. Without multifactorial approaches towards
investigations of the diverse aspects of the microbiome,
diet, and diet-microbiome relations, we will be limited in
our progression towards therapeutic interventions on a
personalised or population level. While the path ahead
may be unclear in how we may reach these targeted
strategies to improve host health, the approaches out-
lined within this review may assist in a collaborative
move forward.
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