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Abstract

Background: It is well-established that cancer treatment substantially increases the risk of long-term adverse health
outcomes among childhood cancer survivors. However, there is limited research on the underlying mechanisms. To
elucidate the pathophysiology and a possible causal pathway from treatment exposures to cardiometabolic conditions, we
conducted epigenome-wide association studies (EWAS) to identify the DNA methylation (DNAm) sites associated with
cancer treatment exposures and examined whether treatment-associated DNAm sites mediate associations between specific
treatments and cardiometabolic conditions.

Methods:We included 2052 survivors (median age 33.7 years) of European ancestry from the St. Jude Lifetime Cohort Study,
a retrospective hospital-based study with prospective clinical follow-up. Cumulative doses of chemotherapy and region-
specific radiation were abstracted from medical records. Seven cardiometabolic conditions were clinically assessed. DNAm
profile was measured using MethylationEPIC BeadChip with blood-derived DNA.

(Continued on next page)

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: Zhaoming.Wang@stjude.org
1Department of Epidemiology and Cancer Control, St. Jude Children’s
Research Hospital, 262 Danny Thomas Place, MS 735, Memphis, TN 38105,
USA
5Department of Computational Biology, St. Jude Children’s Research Hospital,
Memphis, TN, USA
Full list of author information is available at the end of the article

Song et al. Genome Medicine           (2021) 13:53 
https://doi.org/10.1186/s13073-021-00875-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-021-00875-1&domain=pdf
http://orcid.org/0000-0001-7556-3869
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:Zhaoming.Wang@stjude.org


(Continued from previous page)

Results: By performing multiple treatment-specific EWAS, we identified 935 5′-cytosine-phosphate-guanine-3′ (CpG) sites
mapped to 538 genes/regions associated with one or more cancer treatments at the epigenome-wide significance level
(p< 9 × 10−8). Among the treatment-associated CpGs, 8 were associated with obesity, 63 with hypercholesterolemia, and 17
with hypertriglyceridemia (false discovery rate-adjusted p< 0.05). We observed substantial mediation by methylation at four
independent CpGs (cg06963130, cg21922478, cg22976567, cg07403981) for the association between abdominal field
radiotherapy (abdominal-RT) and risk of hypercholesterolemia (70.3%) and by methylation at three CpGs (cg19634849,
cg13552692, cg09853238) for the association between abdominal-RT and hypertriglyceridemia (54.6%). In addition, three
CpGs (cg26572901, cg12715065, cg21163477) partially mediated the association between brain-RT and obesity with a 32.9%
mediation effect, and two CpGs mediated the association between corticosteroids and obesity (cg22351187, 14.2%) and
between brain-RT and hypertriglyceridemia (cg13360224, 10.5%). Notably, several mediator CpGs reside in the proximity of
well-established dyslipidemia genes: cg21922478 (ITGA1) and cg22976567 (LMNA).

Conclusions: In childhood cancer survivors, cancer treatment exposures are associated with DNAm patterns present
decades following the exposure. Treatment-associated DNAm sites may mediate the causal pathway from specific treatment
exposures to certain cardiometabolic conditions, suggesting the utility of DNAm sites as risk predictors and potential
mechanistic targets for future intervention studies.

Keywords: Blood DNA methylation, Cancer treatment, Childhood cancer survivorship, Cardiometabolic conditions,
Epigenome-wide association study, Mediation analysis

Background
Progress in cancer treatment has dramatically improved the
5-year survival following a childhood cancer diagnosis to
more than 85% between 2010 and 2016 [1]. Thus, the popu-
lation of childhood cancer survivors has grown rapidly and is
estimated to exceed 500,000 persons in the USA [2]. Unfor-
tunately, the treatment of childhood malignancies is associ-
ated with long-term morbidity and mortality [3–7].
Mounting evidence suggests that reduced physical activity,
muscular weakness, metabolic derangements, and cognitive
declines are common problems among adults treated for
childhood malignancies [7–11]. Furthermore, premature cel-
lular senescence, sterile inflammation, and mitochondrial
dysfunction resulting from a primary cancer diagnosis or
treatment-related toxicity may contribute to adverse health
outcomes [12]. Accordingly, survivors of childhood cancer
often develop treatment-related late effects with 60% to more
than 90% of survivors experiencing one or more long-term
chronic health conditions (CHCs) [13], an approximately 2-
fold greater burden of CHCs than community controls [4].
Treatment-related adverse health outcomes encompass a
broad range of CHCs [4, 14, 15], hospitalizations [16], pre-
mature frailty [17], and early mortality [14]. Some of the
most commonly observed CHCs among survivors include
obesity [18, 19], diabetes mellitus [20], cardiovascular diseases
[21, 22], hypertension [9, 22, 23], and subsequent neoplasms
[24, 25].
While the substantially increased risk and total burden

of adverse health outcomes among childhood cancer
survivors have been extensively described, there is a
need to unravel the complex interplay between thera-
peutic exposures and genetic susceptibility in order to
elucidate the pathogenesis of specific health conditions

[6]. Pathogenic germline mutations in DNA repair genes
contribute to the subsequent neoplasm risk in childhood
cancer survivors, especially among those who received
high cumulative doses of specific agents and modalities
[26]. Unlike germline genetics (DNA sequence), which is
largely static throughout the life course, epigenetic pat-
terns are plastic and can be modified in response to in-
ternal and external insults including medical treatments
[27]. Population-based studies among breast cancer [28]
and gastric cancer [29] patients have provided evidence
supporting that chemotherapy, radiotherapy, or a com-
bination of anticancer treatments have a profound im-
pact on epigenetic alterations, primarily in the form of
CpG methylation. The processes leading to aberrant
DNA methylation (DNAm) are poorly understood. How
epigenetic alterations resulting from cancer therapy
interact with downstream gene regulation machineries
and ultimately lead to the development of CHCs in indi-
vidual survivors is still largely unknown. Possible bio-
logical mechanisms have been suggested; for instance,
cellular oxidative stress and DNA damage can induce
aberrant DNAm by recruiting DNA methyltransferase
complex [30]. Emerging evidence suggests that alter-
ations in DNAm in the blood can at least influence im-
mune regulation [31] or blood lipids and metabolites
[32]. Several population-based studies of adult-onset
cancers have identified treatment-induced blood DNAm
changes and associated these changes with health out-
comes, specifically cognitive decline in breast cancer pa-
tients [28] and poor survival for colorectal cancer [33],
lung cancer [34, 35], and ovarian cancer patients [36,
37]. Thus, epigenetic alterations due to cancer thera-
peutic agents may mediate or modify gene regulation
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potentially resulting in systemic changes contributing to
the development of CHCs.
It is biologically plausible that treatments used during

active childhood cancer could leave an epigenetic mark.
Hence, we hypothesized that cancer treatment modalities
cause aberrant hypo- or hyper-DNAm, which may affect
the long-term risk of CHC among childhood cancer survi-
vors. In this study, epigenome-wide association studies
(EWAS) were conducted among adult survivors of child-
hood cancer participating in the St. Jude Lifetime Cohort
Study (SJLIFE) to identify differentially methylated DNA
CpG sites between survivors exposed or unexposed to a
certain treatment and their associations with CHCs. We
specifically focused on seven common cardiometabolic
conditions including obesity, hypertension, hypercholes-
terolemia, hypertriglyceridemia, abnormal glucose metab-
olism, cardiomyopathy, and myocardial infarction, given
that blood DNAm plays a role in the regulation of blood
lipids and other metabolites [32].

Methods
Study population
SJLIFE is a retrospective cohort study with prospective
follow-up of survivors diagnosed with childhood cancer
and treated at St. Jude Children’s Research Hospital, de-
scribed elsewhere [38, 39]. Participants complete ques-
tionnaires assessing demographic and epidemiological
factors and receive comprehensive medical and labora-
tory assessments at each follow-up to characterize their
health conditions. Genome-wide EPIC methylation pro-
filing (Illumina, San Diego, CA, USA) was performed
using blood-derived DNA from 2689 SJLIFE survivors.
Subsequent sample exclusion criteria included the fol-
lowing: (1) low total intensity of DNAm (n = 3), (2) no
whole-genome sequencing data (n = 46), (3) age at blood
draw under 18 years old (n = 218), and (4) population
admixture coefficient for CEU population < 80% (n =
370) based on the STRUCTURE analysis [40] with three
continental references (JPT+CHB, CEU, YRI) from 1000
Genomes Project. Accordingly, we included 2052 child-
hood cancer survivors of European ancestry in statistical
analyses (Additional file 1: Fig. S1).

Treatment exposures
Treatment exposure information was extracted from
medical records using a structured protocol [38]. Briefly,
using radiation oncology treatment records, region-
specific radiotherapy (RT) dosimetry, including brain-
RT, chest-RT, abdominal-RT, and pelvic-RT, was esti-
mated [41]. Cumulative doses and exposure status of in-
dividual chemotherapeutic agents were abstracted from
medical records. The number of exposed survivors pro-
vided sufficient statistical power to analyze alkylating
agents, anthracyclines, antimetabolites, asparaginase

enzymes, epipodophyllotoxins, corticosteroids, and vinca
alkaloids. Equivalency approaches were applied for cu-
mulative alkylating agent exposure [42] and anthracy-
cline exposure [43]. Region-specific radiation doses are
described elsewhere [44] and in Supplementary Methods
in Additional file 1.

Chronic health conditions
A modification of the Common Terminology Criteria for
Adverse Events (version 4.03, National Cancer Institute)
[45] was applied to clinically ascertain medical outcomes
and score for severity [39]. Clinical outcomes were
severity-graded as 0 (no problem), 1 (mild), 2 (moderate),
3 (severe or disabling), and 4 (life-threatening) [39]. All
CHCs with grades ≥1 were grouped together as cases.
Considering DNAm is known to play an essential role in
the regulation of blood lipids or metabolites [46], we
included in this study seven common cardiometabolic
CHCs: abnormal glucose metabolism, cardiomyopathy,
hypercholesterolemia, hypertriglyceridemia, hypertension,
myocardial infarction, and obesity. Only incident CHCs
that occurred after the blood draw for methylation
profiling as part of their long-term follow-up clinical as-
sessment (median = 29.4 years and interquartile range
[IQR] = 22.6–36.8 years from primary cancer diagnosis)
were considered in the current study.

DNA methylation profiling
Genome-wide methylation data were generated using
Infinium MethylationEPIC BeadChip array (Illumina,
San Diego, CA, USA). Genomic DNA (250 ng) was ex-
tracted from blood samples according to the standard
procedures as described previously [47]. Further, bisul-
fite treatment, array hybridization, and scanning are pro-
vided in Supplementary Methods in Additional file 1.
The raw intensity data were exported from Illumina
Genome Studio and analyzed in R (version 3.6.3) using
the minfi package [48] including a cross-array quantile
normalization. Methylation is described as a β value,
which is a continuous variable ranging between 0 (no
methylation) and 1 (full methylation). In any sample, a
probe with a detection p-value of more than 0.01 was
assigned missing status. Any sample or probe with more
than 5% missing values was excluded from the down-
stream analysis. Non-specific or cross-reactive probes,
probes with SNPs nearby the CpG site, or probes on sex
chromosomes (X, Y) were also excluded. A total number
of 686,880 probes remained for further analyses. Marker
intensities were normalized by quantile normalization.
M-value (i.e., logit transformation of β value) was subse-
quently calculated and used in regression analyses [49].
Six leukocyte subtype proportions (neutrophils, mono-
cytes, CD8+ T cells, CD4+ T cells, natural killer cells,
and B cells) were estimated based on methylation
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signatures using Houseman’s method [50, 51]. A princi-
pal components analysis of methylation levels of all CpG
sites that passed QC was performed to quantify latent
structures or batch effects in the data. The array annota-
tions provided by Illumina were used to map probes to
their corresponding genes.

Statistical analysis
To identify DNAm level at each CpG site influenced by spe-
cific treatment for childhood cancer, EWAS analysis was per-
formed using multiple linear regression of methylation level
at each CpG site (dependent variable, continuous) on each
treatment exposure status (independent variable, binary: ex-
posed vs non-exposed) or the cumulative dose (independent
variable, categorical, by tertiles or different dose ranges) with
covariate adjustments including sex, age, other cancer treat-
ment exposures (see below), leukocyte subtype proportions,
top three genetic principal components, and top four methy-
lation principal components determined by the change rate
of eigenvalues. The correlation between every pair of binary
treatment exposures was described by the phi coefficient,
and the statistical significance (p-value) of its departure from
0 was assessed. Adjustment for other cancer treatment expo-
sures in the EWAS was made if the phi coefficient with the
treatment exposure of interest is less than 0.4 and with a p-
value > 0.05. R package CpGassoc [52] was used for the
EWAS multiple linear regression analysis, and we used p-
value < 9 × 10−8 corresponding to 5% family-wise error as the
threshold for genome-wide significance [53]. Quantile-
quantile plots showing the observed and expected p-values
were generated using the CpGassoc R package. The genomic
inflation factors were in the range of 1.12–1.63 (Add-
itional file 1: Fig. S2). We used genetic control-adjusted p-
values instead of raw p-values for the assessment of
epigenome-wide significance (Pgc-adjusted < 9 × 10−8). Manhat-
tan plots were generated for visualization of EWAS results
using the CMplot R package [54], and Venn diagrams for
visualizing unique and overlapping CpGs associated with dif-
ferent cancer treatments were generated using the VennDia-
gram R package [55]. The distribution of treatment-
associated CpGs and overall array content was compared ac-
cording to the CpG island regions and genomic functional
annotations. After mapping significant treatment-associated
CpG hits to genes, we conducted a statistical overrepresenta-
tion test of the mapped genes with the PANTHER classifica-
tion system [56]. For this pathway analysis, both GO
biological process complete [57] and PANTHER pathway
were considered.
We systematically identified SNPs that were previ-

ously reported to be associated with each specific
CHC using the GWAS catalog, pruned the SNPs to
satisfy pairwise r2 < 0.3, and constructed a polygenic
risk score by summing up all risk alleles carried by
each survivor. The polygenic risk score was added as

a covariate in the regression model for CHC risk. In
addition, we extracted the genetic variants for three
DNA methyltransferases (DNMTs) including DNMT1,
DNMT3A, and DNMT3B, and three ten-eleven trans-
location (TET) enzymes including TET1, TET2, and
TET3 for the whole-genome sequencing data. We
identified two survivors carrying germline truncation
mutations in the TET2 gene. Both TET2 mutation
carriers were excluded from the treatment EWAS and
CHC association analyses. We further investigated the
associations between the residual methylation level of
each treatment-associated methylation site (independ-
ent variable, residuals derived from the multiple linear
regression of the EWAS model above but without
adjusting for treatments) and a specific incident CHC
(dependent variable, binary) using a logistic regression
model with adjustments for age, sex, and CHC-
specific polygenic risk score. False discovery rate
(FDR)-adjusted p-values (PFDR) were obtained to con-
trol for multiple testing [58]. Survivors with specific
CHC occurring prior to collection of blood for the
methylation profiling were excluded from this ana-
lysis. Mediation analysis was performed by treating
the CpG sites as hypothesized causative mediators for
the association of treatment exposures with risk of in-
cident CHCs using the Mediation R package [59].
Statistical analysis workflow was summarized in Fig. 1.
All statistical analyses were performed by using
R.3.6.3 [2] or SAS 9.4 (SAS Institute Inc., Cary, NC,
USA), and all statistical tests were two-sided.

Results
Characteristics of the study population
Table 1 shows the characteristics of the 2052 childhood can-
cer survivors of European ancestry. Survivors were previously
diagnosed with leukemia (34.1%), lymphoma (21.8%), sar-
coma (13.4%), central nervous system (CNS) tumors (11.3%),
embryonal tumors (13.5%), and others (6.0%). Treatment ex-
posures comprised classic alkylating agents (58.2%), anthra-
cyclines (58.0%), antimetabolites (49.9%), asparaginase
enzymes (58.0%), epipodophyllotoxins (34.6%), corticoste-
roids (47.0%), vinca alkaloids (72.2%), brain-RT (30.7%),
chest-RT (28.1%), abdominal-RT (20.1%), and pelvic-RT
(17.2%). The incidence of cardiometabolic conditions in the
study population was abnormal glucose metabolism (18.0%,
95% CI = 16.2–19.9%), cardiomyopathy (9.6%, 95% CI = 8.4–
11.1%), hypercholesterolemia (32.8%, 95% CI = 30.5–35.3%),
hypertriglyceridemia (25.9%, 95% CI = 23.8–28.2%), hyper-
tension (53.3%, 95% CI = 50.7–56.0%), myocardial infarction
(2.5%, 95% CI = 1.9–3.3%), and obesity (62.0%, 95% CI =
59.6–64.5%). The median age at diagnosis was 8.5 (range =
0.0–23.6) years, and the median age at DNA sampling was
33.7 (range = 18.0–66.4) years.
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Treatment-specific associations of DNA methylation
Examination of all the pairwise correlations among the
11 different treatments (Additional file 1: Table S1)
showed 9 pairs of treatments with moderate to high cor-
relations (phi coefficient > 0.4 and p < 0.05), including
antimetabolites and asparaginase enzymes, antimetabo-
lites and corticosteroids, antimetabolites and vinca
alkaloids, asparaginase enzymes and corticosteroids,
asparaginase enzymes and epipodophyllotoxins, cortico-
steroids and vinca alkaloids, chest-RT and abdomen-RT,
chest-RT and pelvis-RT, and abdomen-RT and pelvis-
RT. By performing multiple treatment-specific EWAS
analyses after excluding the strongly correlated treat-
ments from covariate adjustments, a total of 935 CpG
sites mapped to 538 genes/regions were associated with
one or more cancer treatments at the epigenome-wide
significant level (p < 9 × 10−8). These epigenome-wide re-
sults showed 277 DNAm hits for alkylating agent, 108
hits for antimetabolites, 164 hits for asparaginase
enzymes, 421 hits for epipodophyllotoxin, 8 hits for
corticosteroids, 9 hits for brain-RT, 303 hits for chest-
RT, 330 hits for abdominal-RT, and 248 hits for pelvic-
RT, but no hit for anthracyclines and vinca alkaloids
(Additional file 1: Fig. S3, Table S2). Figure 2 shows the
overlap of DNAm sites associated with a specific chemo-
therapeutic agent or RT field. Among 652 CpG sites
identified to be associated with chemotherapy exposure,

there were 198 CpG sites associated with two or more
chemotherapy agents, and the remaining were specific-
ally associated with alkylating agents (n = 165), antime-
tabolites (n = 17), asparaginase enzymes (n = 38),
epipodophyllotoxins (n = 233), and corticosteroids (n =
1) (Fig. 2a). Among 462 CpG sites associated with RT
exposure, there were 273 CpG sites associated with two
or more region-specific RT treatments, and the
remaining are specifically associated with brain-RT (n =
9), chest-RT (n = 80), abdominal-RT (n = 60), and pelvic-
RT (n = 40) (Fig. 2b).
Among significant CpGs for each treatment status, there

were also statistically significant linear dose-response rela-
tionship between the continuous cumulative dose of the
specific treatment and DNAm level showing 264/277
(95.3%) hits for alkylating agents, 59/108 (54.6%) hits for
antimetabolites, 129/164 (78.7%) hits for asparaginase en-
zymes, 5/8 (62.5%) hits for corticosteroids, 92/421 (21.8%)
hits for epipodophyllotoxins, 7/9 (77.8%) hits for brain-
RT, 271/303 (86.6%) hits for chest-RT, 295/330 (89.4%)
hits for abdominal-RT, and 240/248 (96.8%) hits for
pelvic-RT. By analyzing the association between 9 paired
combinations of treatments and DNAm at CpGs (i.e.,
comparing DNAm between the group of survivors who
received both treatments with the group of survivors who
received neither of the two treatments), we identified 276
additional epigenome-wide significant CpGs which were

Fig. 1 Statistical analysis workflow. Abbreviations: CHC, chronic health condition; EWAS, epigenome-wide association study; HTG, hypertriglyceridemia. aLinear
regression model was adjusted for covariates including sex, age, other cancer treatment exposures, leukocyte subtype proportions, top three genetic principal
components, and top four methylation principal components. bLogistic regression model was adjusted for covariates including sex, age, and CHC-specific
polygenic risk score. cResidual of M-value was calculated based on linear regression adjusted for covariates including sex, age, leukocyte subtype proportions,
significant genetic principal components, and methylation principal components. dMediation analysis included two regression modes: a logistic regression
model with CHC status as an outcome, specific treatment as treatment variable (term used for the exposure in the Mediation R package), residual M-value for a
CpG site as a mediator variable and adjusted for age, sex, CHC-specific polygenic risk score, and other cancer treatment exposures; a linear regression model
with residual M-value for a CpG site as an outcome, specific treatment as treatment variable and other significant treatments as covariates. eMediation analysis
as above except for replacing residual M-value for a CpG site with a combined methylation score by summing up the residualM-values for multiple CpG sites
that were found to be significant mediators individually
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not found by analyzing each of the two treatments separ-
ately (Additional file 1: Table S3). In the pathway analysis,
we found 20 GO biological processes for chest-RT-
associated hits and 12 processes for epipodophyllotoxins-
associated hits with PFDR < 0.05 (Additional file 1: Table
S4). When distributions of treatment-associated CpG sites
and overall array content were compared by CpG islands
or genomic functional annotations, the treatment-
associated CpGs were significantly overrepresented in the
categories of open sea and intergenic, and significantly un-
represented in the categories of CpG islands, TSS1500,
TSS200, 5′-UTR, and 1st exon (Additional file 1: Fig. S4).

Association of treatment-associated methylation sites
with CHC
Evaluation of the association between each treatment-related
CpG and each CHC using logistic regression models showed
that the highest number of abdominal-RT-related CpGs
(n= 63) were significantly (PFDR < 0.05) associated with
hypercholesterolemia, followed by brain-RT-related CpGs
(n= 7) with obesity, abdominal-RT-related CpGs (n= 16)
with hypertriglyceridemia, brain-RT-related CpGs (n= 1)
with hypertriglyceridemia, and corticosteroids-related CpG
(n= 1) with obesity (Additional file 1: Table S5). There was

Table 1 Characteristics of the study population

Characteristics Number Percent

Total 2052 100.0

Sex

Male 1084 52.8

Female 968 47.2

Diagnosis

Leukemia 699 34.1

Acute lymphoblastic
leukemia

644 31.4

Acute myeloid leukemia 53 2.6

Other leukemia 2 0.1

Lymphoma 448 21.8

Hodgkin lymphoma 288 14.0

Non-Hodgkin lymphoma 160 7.8

Sarcoma 274 13.4

Ewing sarcoma 74 3.6

Osteosarcoma 74 3.6

Rhabdomyosarcoma 71 3.5

Soft tissue sarcoma 55 2.7

CNS tumors 231 11.3

Astrocytoma or glioma 93 4.5

Medulloblastoma or PNET 56 2.7

Ependymoma 26 1.3

Other CNS tumors 56 2.7

Embryonal 276 13.5

Wilms tumor 134 6.5

Neuroblastoma 107 5.2

Germ cell tumor 35 1.7

Others 124 6.0

Retinoblastoma 45 2.2

Hepatoblastoma 13 0.6

Melanoma 12 0.6

Carcinomas 24 1.2

Others 30 1.5

Chemotherapy

Alkylating agent, classic 1194 58.2

Alkylating agent, heavy metal 239 11.6

Alkylating agent, non-classic 67 3.3

Anthracyclines 1190 58.0

Anti-metabolites 1024 49.9

Asparaginase enzymes 1190 58.0

Epipodophyllotoxins 709 34.6

Corticosteroids 965 47.0

Vinca alkaloids 1482 72.2

Radiation therapy (RT)

Table 1 Characteristics of the study population (Continued)

Characteristics Number Percent

Brain RT 629 30.7

Chest RT 577 28.1

Abdominal RT 412 20.1

Pelvic RT 352 17.2

CHCs Incident N/N at
risk

(%, 95% CI)

Abnormal glucose
metabolism

302/1680 (18.0, 16.2–
19.9)

Cardiomyopathy 168/1742 (9.6, 8.4–11.1)

Hypercholesterolemia 479/1461 (32.8, 30.5–
35.3)

Hypertriglyceridemia 399/1539 (25.9, 23.8–
28.2)

Hypertension 727/1365 (53.3, 50.7–
56.0)

Myocardial infarction 47/1892 (2.5, 1.9–3.3)

Obesity 942/1519 (62.0, 59.6–
64.5)

Median age at diagnosis,
years (range)

8.5 (0.0–23.6)

Median age at DNA sampling,
years (range)

33.7 (18.0–66.4)

Median follow-up from primary
diagnosis, years (range)

29.4 (7.5–55.6)

Abbreviations: CNS central nervous system, PNET primitive neuroectodermal
tumor, RT radiation therapy, CHC chronic health condition, and CI
confidence interval
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no single treatment-associated CpG site associated with ab-
normal glucose metabolism, cardiomyopathy, myocardial in-
farction, or hypertension.

Treatment-associated methylation sites mediate the effect
of treatment on CHC
The multivariable associations between treatment expo-
sures and CHCs are presented in Additional file 1: Table
S6. Associations were observed between anthracyclines
and cardiomyopathy (p = 0.01), epipodophyllotoxins and
hypercholesterolemia (p = 0.02), brain-RT and hyper-
cholesterolemia (p < 0.001) and hypertriglyceridemia
(p < 0.001), abdominal-RT and abnormal glucose metab-
olism (p = 0.001), hypercholesterolemia (p = 0.03) and
hypertriglyceridemia (p = 0.001), chest-RT and hyperten-
sion (p = 0.03), and pelvis-RT and myocardial infarction
(p = 0.04).
There were 63 CpG sites whose methylation levels were

associated with abdominal-RT at the genome-wide signifi-
cance level and also with hypercholesterolemia after
adjusting for multiple comparison. In the mediation ana-
lysis, each of these CpGs was considered as a hypothesized
mediator variable, abdominal-RT as the exposure, and sta-
tus of hypercholesterolemia (binary) as the outcome while
adjusting for sex, age, polygenic risk score, and brain-RT
(another exposure significantly associated with hypertri-
glyceridemia). Eighteen CpGs were identified with signifi-
cant average causal mediation effects (ACME) (PFDR <
0.05). Using pairwise Pearson correlation coefficient r2

threshold of 0.05, four independent CpGs were obtained
by top-down pruning the 18 CpGs sorted by estimated
ACME in decreasing order. For the final mediation

analysis, using a combined score (i.e., summation of the
methylation levels of four CpGs) as a mediator variable,
substantial mediation (70.3%) was achieved for the effect
of abdominal-RT on hypercholesterolemia (OR = 1.49)
(Fig. 3 and Table 2). Using the same strategy, we found a
combined score encompassing 3 CpGs accounted for
54.6% mediated effects of abdominal-RT on the risk of
hypertriglyceridemia (OR = 1.50), and another set of three
CpGs partially mediated (32.9%) the effect of brain-RT on
the risk of obesity (OR = 1.56). One CpG (cg13360224)
partially mediated the effect of brain-RT on the risk of
hypertriglyceridemia (10.5%, OR = 1.75), and another CpG
(cg22351187) mediated the effect of corticosteroids on the
risk of obesity (14.2%, OR = 1.56). Among 12 mediator
CpGs (Table 2), five were positively associated and seven
were negatively associated with a specific cardiometabolic
condition (Additional file 1: Fig. S5).

Discussion
The biological basis underlying treatment-related risks
for adverse health outcomes among survivors of child-
hood cancer is largely unknown. We speculated that one
plausible casual pathway is the acquisition and persistent
soma-wide alterations in DNAm. In this study, the first
large-scale association analyses between cancer treat-
ments and DNA methylation in survivors of childhood
cancer, our mediation analyses provide compelling
evidence in substantiating this hypothesis. Moreover, we
identify unique and overlapping methylation signatures
across different cancer treatments that may serve as
mechanistic targets for future intervention studies.

Fig. 2 Venn diagram showing the overlap of DNA methylation sites associated with specific cancer treatments. a Chemotherapy. b Radiation therapy
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Many of the genome-wide significant treatment-
associated CpGs have established associations with
aging, smoking, diet, and other lifestyle factors [60], sug-
gesting there is a common set of CpGs serving as “sen-
sors” that are sensitive to both internal and external
environments. Among chemotherapy exposures, epipo-
dophyllotoxins had the highest number of CpG hits,
followed by alkylating agents, asparaginase enzymes, an-
timetabolites, and corticosteroids, and there was no
single hit for anthracyclines or vinca alkaloids.

Interestingly, the majority of alkylating agent-associated
CpGs (68%) were hypomethylated (i.e., negative correla-
tions between DNAm level and alkylating exposure sta-
tus). Alkylating agents primarily cause alkylated DNA
adducts which can be repaired by base excision [61]. It
is known that base excision repair plays a role in epigen-
etic regulation and may erase epigenetic marks (i.e., 5-
methylcytosines) by converting them back to cytosine
[62]. Also, it is important to note that DNA methylation
is the most common type of alkylation, and a methyl

Fig. 3 DNA methylation mediates the associations between treatment exposures and CHCs. The diagram illustrates the combined mediation
effect for the association between abdominal RT and HCL. Abbreviations: HCL, hypercholesterolemia; RT, radiation therapy. aLinear regression
model with residual M-value for a CpG site as an outcome and was adjusted for covariates including sex, age, other cancer treatment exposures,
leukocyte subtype proportions, top three genetic principal components, and top four methylation principal components. bLogistic regression
model with CHC status as an outcome, a specific treatment as an independent variable and was adjusted for covariates including sex, age, and
CHC-specific polygenic risk score, and other significant treatments. cResidual of M-value was calculated based on linear regression adjusted for
covariates including sex, age, leukocyte subtype proportions, significant genetic principal components, and methylation principal components.
dMediation analysis included two regression modes: a logistic regression model with CHC status as an outcome, specific treatment as treatment
variable (term used for the exposure in the Mediation R package), residual M-value for a CpG site as a mediator variable and adjusted for age, sex,
CHC-specific polygenic risk score, and other cancer treatment exposures; a linear regression model with residual M-value for a CpG site as an
outcome, specific treatment as treatment variable and other significant treatments as covariates. The final mediation analysis used a combined
methylation score by summing up the residual M-values for multiple CpG sites that were found to be significant mediators individually
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group (CH3) is a special form of the alkyl group (CnH2n +

1). Therefore, we speculated that it is possible that alkyl-
ating agents have a more direct impact on DNA methy-
lation. Among radiation exposures, there were a
comparable number of hits among chest-RT, abdominal-
RT, and pelvic-RT exposures, but far fewer CpG hits
were associated with brain-RT exposure. This is likely
due to limited exposure to the bone marrow tissue
among patients who received RT to the brain, consider-
ing we measured methylation on blood-derived DNA. In
this regard, the observation of a high percentage of
CpGs with a dose response for RT exposures, but not
for chemotherapy agents, was intriguing.
Some of the sensor CpGs were also associated with

human traits such as aging, dyslipidemia, BMI, and alco-
hol consumption based on the annotation using EWAS
catalog (Additional file 1: Table S7) [60] as well as one
or more of the seven CHCs in our study, which make
them eligible as potential mediators in the mediation
analysis for the pathway from treatment exposures to
health outcomes. Indeed, we found a range of mediation
effects by multiple CpGs for the associations between
treatments and CHCs. It is highly notable that we found
100% mediation for the association between abdominal-
RT and hypertriglyceridemia or hypercholesterolemia.
The existing literature provides strong support for the
plausibility of our findings. DNAm methylation has an

established role in the regulation of blood lipids and the
etiology of dyslipidemia [46]. The mediator CpGs that
showed statistically significant mediation effects in this
study have been associated with blood lipids and related
diseases in other studies and/or are in the proximity of
well-established genes regulating dyslipidemia. (e.g.,
cg21922478 (ITGA1) [63], cg22976567 (LMNA)) [64].
The identification of key genes previously implicated in
abnormal lipid metabolism in an agnostic EWAS attests
to the strength of our findings.
For the partially mediated effects we discovered, other

causal pathways from specific treatment to CHC are
possible, including a process that indicates that DNA
damage is associated with anticancer therapies and spe-
cific mechanisms for DNA repair [61, 65–68]. Our previ-
ous study show pathogenic mutations in DNA repair
pathways increase the risk of developing subsequent
neoplasms, especially among survivors who received
high doses of radiation or specific types of chemothera-
peutic agents [26].
Our study has some limitations. First, due to fre-

quent use of multimodality therapy, delineation of in-
dependent associations was not always feasible. To
identify independent hits for each treatment, EWAS
for each treatment was adjusted for other treatment
exposures except for specific treatments that were
highly correlated. Furthermore, due to the fact that

Table 2 DNA methylation mediation effect of treatment exposures and CHCs

Treatment CHC Total effect,
OR

CpG Chromosome Gene Functional genomic
annotation

CpG island
region

%
mediation

Abdominal RT HCL 1.49 cg06963130 chr2 NA Intergenic Open sea 35.5

cg21922478 chr5 ITGA1; CTD-
2175A23.1

Intergenic Open sea 23.8

cg22976567 chr1 LMNA 5′-UTR Open sea 22.1

cg07403981 chr1 NA Intergenic Open sea 14.6

Combined
scorea

70.3

Abdominal-RT HTG 1.5 cg19634849 chr5 CYSTM1; PFDN1 Body Open sea 28.6

cg13552692 chr18 CCDC102B 5′-UTR Open sea 24.8

cg09853238 chr6 NA Intergenic Open sea 17.2

Combined
scorea

54.6

Brain-RT HTG 1.75 cg13360224 chr6 RP11-359 N11.1 Intergenic Open sea 10.5

Brain-RT Obesity 1.57 cg26572901 chr7 NA Intergenic Open sea 16.3

cg12715065 chr6 NA Intergenic Open sea 14.3

cg21163477 chr16 XYLT1 Body Open sea 11.7

Combined
scorea

32.9

Corticosteroids Obesity 1.56 cg22351187 chr12 KRT80 TSS1500 Open sea 14.2

Abbreviations: CHC chronic health condition, OR odds ratio, RT radiation therapy, HTG hypertriglyceridemia, and HCL hypercholesterolemia
aCalculated by summing the DNA methylation values of CpG sites with the significant mediation effect of treatment exposures and CHCs
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cancer treatment is determined by cancer type to-
gether with age at diagnosis and era of diagnosis, our
EWAS findings of treatment-specific effects may be
driven by an underlying specific cancer diagnosis.
Moreover, the lack of detailed stage information for
all study participants precluded adjustment for child-
hood cancer stage in the analysis. Second, we did not
consider other factors that affect the methylation
landscape such as social economic status, health be-
haviors, and environmental exposures which could
confound the findings. Third, even though we consid-
ered temporality among treatment exposures, DNAm
(measured at a single time point), and incidence of
CHCs, we could not definitively infer causality among
three entities. Fourth, our study focused on European
ancestry survivors of childhood cancer. Further repli-
cation with larger and more diverse survivor popula-
tions and validation to confirm generalizability to
other ethnicities are needed to confirm the role of
DNAm in associations between cancer treatments and
adverse health outcomes. Lastly, the other limitation
of the study is that we did not consider co-morbidity
in the analysis of the association between DNAm and
cardiometabolic conditions; therefore, when each spe-
cific condition was analyzed, survivors also had a
range of other CHCs that could impact methylation.

Conclusions
In summary, we identified thousands of CpG sites asso-
ciated with specific cancer treatments at genome-wide
significant levels, suggesting that DNAm is an important
biological embedding mechanism for prior cancer treat-
ment exposures. We observed hundreds of these
treatment-associated CpG sites significantly associated
with one or more of the seven cardiometabolic CHC
risks after adjusting for multiple testing. Moreover,
dozens of these sensor CpG sites showed full or partial
mediation effects for the association between specific
treatment exposure and cardiometabolic CHC, suggest-
ing DNAm, as a biomarker, can be used as a risk pre-
dictor and potential mechanistic target for future
intervention studies among survivors of childhood can-
cer. Our study has limitations that require cautious in-
terpretation of the results presented. Future studies are
warranted to further validate and replicate these
findings.
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