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Profiling SARS-CoV-2 mutation fingerprints
that range from the viral pangenome to
individual infection quasispecies
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Abstract

Background: The genome of SARS-CoV-2 is susceptible to mutations during viral replication due to the errors
generated by RNA-dependent RNA polymerases. These mutations enable the SARS-CoV-2 to evolve into new
strains. Viral quasispecies emerge from de novo mutations that occur in individual patients. In combination, these
sets of viral mutations provide distinct genetic fingerprints that reveal the patterns of transmission and have utility
in contact tracing.

Methods: Leveraging thousands of sequenced SARS-CoV-2 genomes, we performed a viral pangenome analysis to
identify conserved genomic sequences. We used a rapid and highly efficient computational approach that relies on
k-mers, short tracts of sequence, instead of conventional sequence alignment. Using this method, we annotated
viral mutation signatures that were associated with specific strains. Based on these highly conserved viral
sequences, we developed a rapid and highly scalable targeted sequencing assay to identify mutations, detect
quasispecies variants, and identify mutation signatures from patients. These results were compared to the
pangenome genetic fingerprints.

Results: We built a k-mer index for thousands of SARS-CoV-2 genomes and identified conserved genomics regions
and landscape of mutations across thousands of virus genomes. We delineated mutation profiles spanning
common genetic fingerprints (the combination of mutations in a viral assembly) and a combination of mutations
that appear in only a small number of patients. We developed a targeted sequencing assay by selecting primers
from the conserved viral genome regions to flank frequent mutations. Using a cohort of 100 SARS-CoV-2 clinical
samples, we identified genetic fingerprints consisting of strain-specific mutations seen across populations and de
novo quasispecies mutations localized to individual infections. We compared the mutation profiles of viral samples
undergoing analysis with the features of the pangenome.

(Continued on next page)

* Correspondence: hojoon@stanford.edu; genomics_ji@stanford.edu

"Billy T. Lau, Dmitri Pavlichin and Anna C. Hooker contributed equally to this
work.

"Division of Oncology, Department of Medicine, Stanford University School
of Medicine, 269 Campus Drive, CCSR 1120, Stanford, CA 94305-5151, USA
Full list of author information is available at the end of the article

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-021-00882-2&domain=pdf
http://orcid.org/0000-0003-3772-3424
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:hojoon@stanford.edu
mailto:genomics_ji@stanford.edu

Lau et al. Genome Medicine (2021) 13:62

(Continued from previous page)

Page 2 of 23

Conclusions: We conducted an analysis for viral mutation profiles that provide the basis of genetic fingerprints.
Our study linked pangenome analysis with targeted deep sequenced SARS-CoV-2 clinical samples. We identified
quasispecies mutations occurring within individual patients and determined their general prevalence when
compared to over 70,000 other strains. Analysis of these genetic fingerprints may provide a way of conducting

molecular contact tracing.
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Background

The etiological agent of the COVID-19 pandemic is the
SARS-CoV-2 coronavirus, encoded by a single-stranded
RNA molecule [1]. Given its airborne transmission and
adaptation for highly efficient human-to-human trans-
mission, this virus has rapidly spread across disparate
geographic regions and infected diverse populations [2].
An important genetic feature of nucleic acid replication
is the accumulation of mutations. There are two general
categories of mutations based on their frequency among

infected individuals (Fig. 1). Strain-level mutations are
found in a relatively high frequency among affected pop-
ulations and provide viral genetic fingerprints from
which one can trace the routes of transmission across
broad geographic regions. This genetic information is
useful in contact tracing for super-spreader events,
where a given viral strain is introduced among a group
of exposed individuals [3]. On a more granular scale, in-
dividual patients with active infections also show evi-
dence of de novo mutations that occur as the virus
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Fig. 1 Framework for identifying population-level SARS-CoV-2 strains and lower frequency quasispecies through pangenome analysis. a GISAID
currently has thousands of SARS-CoV-2 genomic sequences banked. By analyzing large numbers of viral genomes together (blue lines), one can
pinpoint sequences that are present only once in a given genome but also occur consistently across all genomes (red, green, yellow, and purple
bars). These unique and conserved sequences can be used for a number of research and clinical sequencing applications. b This knowledge can
fuel epidemiological studies and allow scientists to characterize major SARS-CoV-2 strains. The green, orange, and pink figures represent
contagious individuals who contribute to the transmission of a virus within a population. ¢ The targeted sequencing enables the detection of
low-frequency quasispecies that are created through de novo mutations within an individual. The mutation profile from pangenome analysis
allow us to examine whether these mutations create a unique genetic profile that can be traced to and across individuals
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replicates within the individual [4, 5]. These novel muta-
tions define subclonal quasispecies that are private to an
individual [6]. Occurring at a significantly lower popula-
tion frequency, quasispecies-level mutations are fre-
quently present in only a fraction of the total viral load
of an infected individual and may be specific to a given
patient. Any of these viral subpopulations can infect an-
other individual. If a quasispecies unique to an individual
is transmitted to another, this information could be used
in characterizing transmission patterns of infection.

RNA-dependent RNA polymerases (RdRp) are the
major source of mutations in coronaviruses. Although
RNA polymerases are essential for viral replication, this
class of polymerases has high error rates, leading to the
accumulation of mutations in the viral genome over time
[7]. For coronaviruses, estimates of RNA polymerase
mutation rates range from 10~ * to 10~ ® mutations per a
given nucleotide [8]. Moreover, coronavirus genomes
undergo both homologous and nonhomologous recom-
bination which provides additional genetic variation for
fueling viral evolution [9]. Although SARS-CoV-2 muta-
tion rates are lower than viruses such as human im-
munodeficiency virus or influenza [10, 11], the
frequency of replication-based mutations is high enough
for genetic fingerprinting analysis and its related
applications.

Currently, the most common diagnostic methods de-
tect viral RNA, viral antigens, or antibodies produced by
the host during an immune response [12]. These mo-
lecular detection assays do not provide information
about specific viral mutations. Thus, next-generation se-
quencing (NGS) is required to identify viral mutations.
NGS provides comparable detection sensitivity to the
gold standard PCR assays while simultaneously provid-
ing viral genome sequence. In addition, sequencing stud-
ies of SARS-CoV-2 have generated complete viral
genome assemblies, where the entire end-to-end se-
quence of a viral isolate is reconstructed [13].

With the growing number of sequenced SARS-CoV-2
genomes, researchers have identified numerous mutations
indicative of different phylogenetic lineages, otherwise
known as clades, and related to specific strains transmitted
in the population [14]. Genetic information from these
public datasets can be leveraged to trace the spread of in-
fection across different populations. Specifically, one can
compare genetic fingerprints using mutation profiles from
different viral data sets to map the spread of infections [3,
15], identify virulence factors, and study features of viral evo-
lution in populations. In these studies, genome assemblies
and phylogenetic analyses from a densely sampled cohort
were used to determine how SARS-CoV-2 was introduced
into a new geographic region. Prospectively, the study of
these mutations also provides a foundation for designing fu-
ture vaccines and developing drugs for antiviral targets [16].
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To date, there are tens of thousands of samples and
matched genome assemblies for SARS-CoV-2 [17]. With
this data, it becomes feasible to conduct “pangenome”
studies that simultaneously analyze all of the available
viral genome assemblies. The analysis of the SARS-CoV-
2 pangenome is useful for determining the common se-
quence features of all viruses as well as the high fre-
quency mutations that distinguish the viral species most
prevalent in an infected population [18]. However, ana-
lyzing thousands of viral genome assemblies is time con-
suming. Among the challenges, there is a lack of
common sequence criteria for defining conserved versus
hypervariable genomic sequences prone to mutation.
Distinguishing between these features is important for
understanding the viral evolution, spread, and designing
future molecular assays that are specific to SARS-CoV-2.

This study had two objectives relevant for viral genetic
fingerprinting (Fig. 1). The first goal was developing a
rapid, efficient method for identifying conserved se-
quences and mutation profiles across thousands of dif-
ferent viral SARS-CoV-2 genomes in parallel. The
second goal was focused on leveraging our results from
pangenome analysis to develop a targeted deep sequen-
cing assay. We used it to identify genetic fingerprints
characteristic of viral quasispecies from clinical samples
and compared these results to the pangenome.

Most SARS-CoV-2 genomic studies have relied on
conventional sequence alignment, which is slow and in-
efficient when applied on a scale of thousands of gen-
ome sequences [19-21]. To overcome this issue and
facilitate viral pangenome studies, we developed a rapid
computational approach to identify conserved sequences
across any number of SARS-CoV-2 genome sequences.
This method does not use sequence alignment. Rather,
we employ k-mers, short sequences of tens of bases, for
annotating and querying the viral genome sequences
and genetic variation. This feature has computational
advantages for streamlining the analysis of large number
of genome sequences and comparing the features of as-
semblies [20]. We applied our k-mer approach to find
the highly conserved sequences across thousands of
SARS-CoV-2 genome assemblies and other viral genome
sequence data sets. This process provided the rapid
identification of conserved regions of the genome and
enabled us to index mutations across thousands of viral
genomes.

Based on our identification of conserved regions of the
SARS-CoV-2 pangenome, we developed a sequencing
assay to identify novel mutations. Rather than covering
the entire viral genome, we used highly conserved se-
quences as primer sites that flank highly variable gen-
ome regions. The assay provides very deep sequencing
coverage on the average of thousands of reads per a
given base. We analyzed a series of contrived samples,
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artificial viral admixtures, and clinical samples. These re-
sults from our pilot study showed that one can achieve
both high sensitivity and specificity for detecting SARS-
CoV-2 with deep targeted sequencing. We detected mu-
tations in the SARS-CoV-2 genome at varying allelic
fractions representative of emerging quasispecies. Im-
portantly, when comparing our results with viral muta-
tions from public data sets of viral genomes, our analysis
revealed private mutations representing quasispecies
unique to a single infected individual. Our targeted
assay, utilizing only six amplicons to target 40% of the
viral genome, is flexible towards any region of interest.
This multiplexed targeted next-generation sequencing
assay demonstrated potential for massive scalability
required for population studies.

Methods

Viral samples

This study was conducted in compliance with the
Helsinki Declaration. The Institutional Review Board at
Stanford University School of Medicine approved the
study protocol. A total of 100 extracted RNA specimens
from clinical nasopharyngeal swabs were obtained from
the Stanford University Clinical Virology Lab (Stanford
University, Stanford, CA). All samples were anonymous
and had no identifiers. The specimens consisted of 30
positives and 70 negatives that had been clinically tested
at the Stanford Clinical Virology Laboratory with the
SARS-CoV-2 detection RT-qPCR assay (FDA EUA200036).

Saliva sample collection and processing

Saliva samples were obtained from two (n=2) healthy
donors with no symptoms of respiratory infection (pre-
sumed SARS-CoV-2 negative) at Stanford University
School of Medicine after obtaining their written in-
formed consent. Saliva samples were collected using the
OMNIgene ORAL OM-505 kit (DNA Genotek, Canada)
according to the manufacturer’s instructions. Cells were
lysed using the buffer provided in the caps of the sample
collection tubes. Lysed saliva samples were inactivated at
65 °C for 15 min prior to RNA extraction. We extracted
RNA using the Maxwell 16 Viral Total Nucleic Acid
Purification Kit (Promega, Madison, WI) according to
the manufacturer instructions. RNA samples were eluted
with 40 uL of RNAse-free water. Human RNA extracted
from saliva samples of SARS-CoV-2-negative donors
was quantified using the Qubit RNA HS Assay Kit
(Thermo Fisher Scientific, Waltham, MA) and stored at
-80°C.

Control samples
As an analytical positive control, we spiked genomic
RNA from SARS-Related Coronavirus 2, Isolate USA-
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WA1/2020 (ATCC, Manassas, VA), into two saliva sam-
ples from healthy individuals at Stanford University. To
assess the limit of detection, we generated a series of 12
contrived samples at total inputs ranging from 1 x 10° to
0 genome copies. We generated an additional set of 3
SARS-CoV-2 dilutions at the lowest inputs (e.g., 2 cop-
ies, 1 copy, and 0 copies) for downstream cDNA synthe-
sis to confirm the limit of detection for assay.

Admixture analysis for detection of sub-clonal mutation
allelic fraction

We created an additional set of 12 contrived samples
using genomic RNA from two previously characterized
SARS-Related Coronavirus 2 strains: Isolate USA-WA1/
2020 and Isolate Hong Kong/VM20001061/2020
(ATCC, Manassas, VA). These two strains were spiked
into the same PCR-confirmed SARS-CoV-2-negative
human RNA samples at different relative fractions. All
samples had the same total concentration of viral RNA
(1000 copies).

Genome sequences of SARS-CoV-2, other human viruses
and bacteria

We accessed the data available from three different
sources: SARS-CoV-2 genomes from Global Initiative on
Sharing All Influenza Data (GISAID) [18]; other human
coronaviruses from Virus Pathogen Resource (ViPR)
[22]; and lastly, other human viruses and bacteria se-
quences from the National Center for Biotechnology In-
formation (NCBI) (Additional file 1; Table S1) [23].
According to GISAID, the definition of “complete”
means the genome is greater than 29kb and “high-
coverage” means only select entries with 1% N’s and <
0.05% unique amino acid mutations (not seen in other
sequences in database) and no insertion/deletion unless
verified by the submitter. We also identified 447 human
coronavirus genomes by selecting “host: human,”
“complete genome,” and “date: up to 2019 Oct” from
ViPR. Furthermore, we obtained 804 virus genomes with
human host from NCBI viral genomes.

We identified and removed coronaviruses from the
compiled 804 virus genomes. As a result, we had our
own list of the virus genomes consisting of 42 influenza
viruses, and 320 human viruses. “Respiratory syncytial
virus” was added to our human virus list in acknow-
ledgement of the existence of this virus in the FDA’s
cross-reactivity list. With this, all viruses on the FDA’s
cross-reactivity list were included in our list. Addition-
ally, we retrieved and added the reference genomes of 27
bacteria in the FDA’s cross-reactivity list. We used
Rothia mucilaginosa DY-18 searched by “Stomatococcus
mucilaginosus,” which is the new name of Staphylococ-
cus salivarius. NCBI selected Pneumocystis jirovecii RU7
(assembly Pneu_jiro_RU7_V2) as reference genomes for
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Pneumocystis jirovecii. The accession numbers of all
SARS-CoV-2 genomes from GISAID and all other se-
quences used in this study can be downloaded from our
GitHub repository: https://github.com/compbio/sars-
cov-2-mutation-fingerprints [24].

Metadata of 25-mers present in SARS-CoV-2 genomes
and other genomes of interest

We generated a searchable index of location metadata for
all 25-mers found in 3968 SARS-CoV-2 genomes. Our
scripts and indices are also available at our GitHub reposi-
tory https://github.com/compbio/sars-cov-2-mutation-
fingerprints [24]. We included all of the 25-mers from 837
human viruses, bacteria, and the human genome reference
GRCh38 (Additional file 1; Table S1). The metadata pro-
vides the locations of all distinct canonical k-mers in all
sequences of interest, such as the 3968 SARS-CoV-2 ge-
nomes included in this analysis. A canonical k-mer is the
lexicographically smaller sequence of a k-mer and its re-
verse complement. For instance, the metadata for the 25-
mer “AGGGACTATTCCCACCCAAGAATAG” in the
SARS-CoV-2 genomes contains the following information:
sequence ID, position, and strand, appearing in three se-
quences (distinct entries separated by semicolons):

USA/CruiseA14/EPI_ISL, 413619/2020-02-25, 11742-
11766,+; Shangrao/JX1974/EPI_ISL_421258/2020-02-08,
11718-11742, + USA/TX_2020/EPIL_ISL,_419561/2020-
02-29,11742-11766,+;

We generated a table of k-mer counts within all
SARS-CoV-2 genomes in the 4K dataset, which can be
viewed as a matrix with one row for each genome, one
column for each distinct k-mer, and with values indicat-
ing the count of a k-mer in a genome. We utilized this
matrix to conduct downstream analyses such as primer
selection and computation of variant frequencies. We
provide this index and a command-line interface that
makes it easy to query this index (e.g., for listing all can-
didate primer pairs targeting a particular genomic re-
gion) at https://github.com/compbio/sars-cov-2-
mutation-fingerprints [24]. The command-line interface
is written in the Julia programming language [25, 26],
but does not require the user to program in Julia to be
used, for easier interoperation with other software. Our
analysis was run on an AMD EPYC 7501 32-Core
Processor, 503 GiB, Linux version 4.4.0-184-generic
#214-Ubuntu SMP (Advanced Micro Devices, Inc., Santa
Clara, CA).

Intuitively, a k-mer is “specific” to a “target” set of ge-
nomes with respect to another, “off-target” set of ge-
nomes if the k-mer occurs in many of the target
genomes and does not occur in any of the off-target ge-
nomes, even allowing for a few mismatching base pairs
in the off-target set. Moreover, a k-mer is “unique”
within a genome if it occurs exactly once within that
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genome. A k-mer is “X% conserved” within a set of ge-
nomes if it occurs in at least X% of those genomes. “An-
chor” k-mers are both 100% conserved and unique
within each genome. A k-mer is “X% specific with up to
M mismatches” to a target set of genomes G with re-
spect to off-target set of genomes G’ if it is X% con-
served in G and does not occur in any genome in G’
even if we allow up to M mismatching base pairs.

In the example above, a 25-mer appears in three
SARS-CoV-2 genomes at the coordinates printed. These
coordinates are relative to the respective sample ge-
nomes. Crucially, our method supports fast, approximate
search, necessary to satisfy constraints of maximum 80%
similarity to other human viruses/bacteria and 90% simi-
larity to GRCh38 as outlined by the FDA’s SARS-CoV-2
detection assay EUA criteria. Our 25-mer index stores
location metadata for all 25-mers in a list of genomes
and also allows approximate lookup by allowing up to M
mismatching base pairs when querying the set of loca-
tions at which a 25-mer appears. For example, the 25-
mer AATTGTACTGTTTTTAACAAAGCTT is con-
served and unique among the 3968 SARS-CoV-2 se-
quences but is not specific to SARS-CoV-2 because it
occurs within 2 mismatches at 2 locations in GRCh38
(see below; dots indicate base pairs matching GRCh38,
and capital letters denote mismatches).

seq’ i ToA. S chrl, post183137629-183137653;,
Strand’:-),
Seq: A Coevnne. , ‘chrl6é, ‘pos’457072-457096,
Strand’-’

This enables us to identify 25-mers that have no ap-
proximate matches (1) up to 4 mismatched base pairs
with the genomes of all human coronaviruses, other hu-
man viruses, influenza, and the 27 bacteria included in
the FDA’s SARS-CoV-2 detection assay cross-reactivity
list, and (2) up to 2 mismatched base pairs with the
human genome (GRCh38).

We also constructed a k-mer index containing all k-
mers induced by all possible single-substitution
mutations, two previously reported deletions, and multi-
nucleotides substitutions in the N gene. To make this
index, for each variation we took the set of k-mers from
the SARS-CoV-2 reference genome that overlaps the ref-
erence allele position—the “reference set,” modified
these k-mers to instead contain the alternate allele—the
“alternate set,” and then associated each of these modi-
fied k-mers with metadata describing the variation. For
example, suppose that (1) k=3, (2) our variant is the
substitution from A to C at position 1000, and (3) the
reference sequence from position 998 to 1002 is CGAT
T. Then the reference set of 3-mers is (CGA, GAT,
ATT) (reference allele in bold), the alternate set of 3-
mers is (CGC, GCT, CTT) (alternate allele in bold), and
our k-mer index would map each of the alternate 3-
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mers to a description of this variant. An “alternate” k-
mer can be associated with multiple distinct mutations,
but for k=25 we found that most of the alternate 25-
mers were associated uniquely with exactly one muta-
tion. Any 25-mers that were not associated with exactly
one mutation were removed from the index. This 25-
mer index allows us to survey efficiently mutations in
viral assemblies from GISAID without using a sequence
alignment. The k-mer index file is available for down-
load at our GitHub repository https://github.com/
compbio/sars-cov-2-mutation-fingerprints [24]. In other
words, we obtain the frequency of a particular mutation
simply by counting the number of genomes that have
the mutation-specific 25-mers. In general, k-mers be-
longing to all classes of mutations can be detected, but
our annotation of complex variants such as indels and
multi-nucleotide substitutions is limited to reported sets
because the enumeration of all possible indels and
multi-nucleotide substitutions can be arbitrarily large.

Quantitative PCR

We used the TaqPath™ 1-Step RT-qPCR assay (Thermo
Fisher Scientific, Waltham, MA) on the StepOnePlus Real
Time Quantitative PCR instrument (Applied Biosystems,
Foster City, CA) as an additional validation test on the
contrived samples. Briefly, RNA samples were reverse
transcribed to cDNA and then subjected to 45 cycles of
quantitative PCR according to the following recom-
mended conditions: UNG incubation at 25°C for 2 min,
reverse transcription incubation at 50 °C for 15 min, en-
zyme activation at 95 °C for 2 min, 45 cycles of amplifica-
tion consisting of denaturation at 95 °C for 3 s followed by
annealing/extension at 60°C for 30s, and a final infinite
holding step at 4°C. We used previously described
primers (CDC 2019-nCoV Real-Time RT-PCR Diagnostic
Panel) and 6-carboxyfluorescein (FAM)-labeled hydrolysis
probes targeting three regions of the SARS-CoV-2 nucleo-
capsid protein (N) gene [27]. We also used additional pri-
mer probe set targeted a human housekeeping (RPP30)
gene as an internal/extraction control. The primers and
probes used for both the SARS-CoV-2 targets and the
human RPP30 targets were identical to those described in
the CDC nCoV-19 assay [27].

Digital PCR

We measured the concentrations of both human
(RPP30) cDNA and SARS-CoV-2 ¢cDNA in the contrived
samples by performing multiplexed droplet digital PCR
(ddPCR) using ddPCR Supermix for Probes (no dUTP)
(Bio-Rad, Hercules, CA), the CDC nCoV-19 N1 assay
(IDT, Newark, NJ), and a commercially available human
RPP30 genomic DNA assay (Bio-Rad, Hercules, CA) on
the QX200 Droplet Digital PCR System (Bio-Rad,
Hercules, CA). The N1 assay included a FAM-labeled
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hydrolysis probe and the RPP30 assay included a HEX-
labeled hydrolysis probe. Viral and human genomic tar-
gets were amplified following droplet generation accord-
ing to the following recommended cycling conditions:
incubation at 25 °C for 3 min, enzyme activation at 95 °C
for 10 min, 40 cycles of denaturation at 94°C for 30s
followed by annealing/extension at 60 °C for 1 min, en-
zyme deactivation at 98 °C for 10 min, and a final infinite
holding step at 4°C. Following amplification, droplets
were analyzed using the QX200 Droplet Reader and
QuantaSoft Software (Bio-Rad, Hercules, CA).

Identifying sequencing primers

We generated a list of candidate primer pairs for tar-
geted sequencing. Let G_cov2 denote the set of 3968
SARS-CoV-2 GISAID genomes, let G_other denote the
set of viral and bacterial genomes, and let G_human be
the human reference genome GRCh38. A candidate pri-
mer pair consists of two 25-mers denoted x (forward
primer) and y (reverse primer) that satisfy four proper-
ties: conservation and uniqueness, specificity, positional
constraints, and compositional constraints. To be con-
served and unique, both x and y must appear in all 3968
SARS-CoV-2 sequences exactly once. In order to be spe-
cific, at least x or y in a pair must not occur in G_other,
even allowing for up to 4 out of 25 mismatched base
pairs (i.e., maximum 80% similarity to any 25-mer in G_
cov2). Additionally, x or y must not occur in G_human
even allowing for up to 2 out of 25 mismatched base
pairs. If the primer pair meets the requirements for pos-
itional constraints, the maximum distance between x
and y in any sequence in G_cov2 must be within a heur-
istic limit of 2500 base pairs, not including the combined
50 base pairs of x and y. We chose a size of 2.5kb in
order to reduce the need for extended long-range PCR
optimization. Having long amplicons covering significant
portions of SARS-CoV-2 also decreases the complexity
of multiplex PCR amplification of many short amplicons.
Finally, the compositional constraints mean that the GC
content of x and y may differ by 2 out of 25 base pairs at
a maximum.

We identified 67,478 candidate primer pairs that met
the above criteria. The entire list of candidate primer
pairs can be found at our GitHub repository https://
github.com/compbio/sars-cov-2-mutation-fingerprints
[24]. Primer pairs were selected from the list of candi-
dates, and each amplicon was validated individually
using simplex PCR (as in “Targeted sequencing of
SARS-CoV-2,” below). Individual primers from neigh-
boring candidates were also manually evaluated, which
increased the maximum amplicon size to 2.67 kb.

We selected six primer pairs to target the SARS-CoV-
2 genome for our PCR workflow (Additional file 1; Table
S4). In addition, we selected RPP30 as a human


https://github.com/compbio/sars-cov-2-mutation-fingerprints
https://github.com/compbio/sars-cov-2-mutation-fingerprints
https://github.com/compbio/sars-cov-2-mutation-fingerprints
https://github.com/compbio/sars-cov-2-mutation-fingerprints

Lau et al. Genome Medicine (2021) 13:62

transcript control, which was used in the Centers for
Disease Control and Prevention’s (CDC) RT-PCR diag-
nostic testing. To ensure all copies of RPP30 were ampli-
fied, we designed primers for both human c¢cDNA and
genomic DNA. We selected highly conserved sequences
such that genetic variation among individuals would not
affect the ability of the primers to anneal to their com-
plement. Specifically, we selected conserved regions that
flank regions of high variability, according to frequencies
in the Genome Aggregation Database (gnomAD) [28].
For human DNA, we chose two forward and reverse pri-
mer pairs. The first primer pair sequences RPP30 across
exon 1 to produce an amplicon of 0.476 kb. The second
primer pair sequences a region between exons 6 and 7
to produce an amplicon of 1.277 kb. Within the ampli-
con of the second primer pair, there are three regions
with high variability. If the variability of each region is
50% such that one out of two individuals is likely to have
a single nucleotide polymorphism, then there are 8
unique amplicons that can arise from that primer pair.
Each individual therefore has a slightly distinct amplicon
that can be used to differentiate patient samples within a
pool.

Targeted sequencing of SARS-CoV-2
Based on the final set of primer pairs (Additional file 1;
Table S4), we developed a two-step multiplex PCR
protocol for the reverse transcription and PCR amplifi-
cation of SARS-CoV-2 targets from both the clinical and
contrived samples. Briefly, cDNA was synthesized from
RNA samples using random hexamer priming and
ProtoScript II First Strand cDNA Synthesis Kit (New
England Biolabs, Ispwich, MA) according to the manu-
facturer’s instructions. We generated amplicons from
c¢cDNA samples using the Titanium Taq PCR Kit
(TaKaRa Bio, Japan) according to the following recom-
mended cycling conditions: enzyme activation at 95°C
for 1 min, 40cycles of denaturation at 95°C for 30s
followed by annealing/extension at 68°C for 2.5 min,
final extension at 68°C for 3min, and a final infinite
holding step at 4 °C. One microliter of cDNA from con-
trived samples was used for the PCR reaction, and 5 pl
was used for the patient samples to maximize the
amount of genomic material to be amplified. We used a
panel of six SARS-CoV-2-specific primers sets targeting
non-overlapping regions ranging from 1 to 2.67kb in
length across the viral genome, and a primer set targeted
the human RPP30 gene as an extraction control (Add-
itional file 1; Table S4). PCR was performed on a Veriti
Thermal Cycler (Applied Biosystems, Foster City, CA).
We performed massively parallel library preparation
using a pooled tagmentation approach with the plex-
Well™ 384 kit (seqWell, Beverly, MA). Briefly, this library
preparation workflow consists of a two-step transposase-
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based process referred to as tagmentation, where se-
quencing adapters are randomly inserted into the PCR
amplicons DNA by transposition. The first tagmentation
step incorporates well-specific Illumina i7-Read 2 bar-
codes. After pooling, a second tagmentation step incorp-
orating a plate-specific Illumina i5-Read 1 barcode
finishes the library. After PCR amplification, we per-
formed a 1:10 dilution of the PCR plate for use with the
plexWell protocol per manufacturer’s instructions, with
the only adjustment being a final magnetic bead cleanup
using a ratio of 0.9X beads rather than 0.75X to enrich
for shorter fragments. After library preparation, the sam-
ple was quantified on a Qubit 4 Fluorometer (Thermo
Fisher Scientific, Waltham, MA), visualized on a 2% E-
Gel EX cartridge (Thermo Fisher Scientific, Waltham,
MA), and loaded on an iSeq 100 reagent cartridge
(Illumina, San Diego, CA) with 5% PhiX library control v3
(lumina, San Diego, CA) spike-in with 151 bp paired-end
reads and 8 bp dual indexing.

Bioinformatic sequencing analysis

Raw sequence data underwent base calling and demulti-
plexing using bcl2fastq v2.20 (Illumina, San Diego, CA).
Reads were aligned using bwa (mem algorithm; v0.7.17)
and processed into bam files using samtools (v1.10) [29].
As a reference genome, we generated a merged reference
by concatenating GRCh38 and the ancestral SARS-CoV-
2 reference sequence (NC_045512.2) into a single
FASTA file and creating a new bwa reference. Reads
aligning to either the human or viral genome were
counted by using the command “samtools idxstats,” and
per-base coverage metrics were analyzed using bedtools
(v2.29) using the “bedtools coverage -d” command,
selecting only for the SARS-CoV-2 genome.

For identification of variants in clinical samples, we
performed variant calling using Sentieon (v201808.08)
with the reference genome of SARS-CoV-2 (NC_
045512.2) and the reference human genome (GRCh38).
First, we preprocessed FASTQ files containing raw se-
quence data with quality control using the default setting
of fastp. Second, the paired-end alignments from the fil-
tered reads against were implemented by the Sentieon
bwa binary. Next, deduplication and realignment around
indels were performed on each sample: “sentieon driver
--algo Dedup and --algo Realigner”. Fourth, we used the
haplotype caller setting to conduct variant calling with
base quality recalibration, which was derived from the
recalibrated bam files: “sentieon driver --algo Haplotyper
—annotation QD,MQ, MQRankSum,ReadPosRankSum,
ES, SOR,DP”. Finally, variants consistent between two or
more replicates from each respective patient sample
were considered real mutations for each sample and
were included in our downstream mutation profile
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analyses. Downstream analysis used R for generating
plots and statistical calculations.

Results

k-mer analytics across a SARS-CoV-2 pangenome

To identify conserved regions across thousands of
SARS-CoV-2 genome assemblies, we developed a com-
putational workflow that analyzes k-mer sequences
(Fig. 1a). We developed our approach using 3968 SARS-
CoV-2 genome assemblies, each representing a different
viral sample (Additional file 1; Table S1, Additional file 2;
Table S10). The sequence assemblies were obtained
from GISAID. We built a series of k-mer indices across
the entire viral data set. For any given genome, an indi-
vidual k-mer is derived from single-base increments
along the length of the viral genome (“Methods”). Thus,
in a genome with a length of 30 kb, the approximate size
of the SARS-CoV-2 genome, there are ~ 30,000 k-mers.
If all viral genomes had the same sequence, this number
would not change.

The length of the k-mer sequences was another im-
portant variable that we considered. We evaluated k-
mers ranging from 21 to 29 bases, the typical length of
primers for molecular assays. We chose odd lengths to
prevent issues associated with searching for reverse com-
plement sequences. Many of viral k-mer sequences
could be identified in the human genome within rela-
tively short edit distances when the length was set at 21
or 23 bases (Additional file 1; Table S2). Increasing k-
mer length is a trade-off between increasing specificity
for differentiating SARS-CoV-2 sequences from other
viral, bacterial, and human genome sequences, and redu-
cing the total number of possible conserved and unique
k-mers that can be represented in the SARS-CoV-2 gen-
ome. Balancing these factors, we chose a k-mer length of
25 bases (“25-mer”).

We generated an index of 25-mers from all viral as-
semblies by associating each 25-mer with the following
metadata: (1) IDs of all viral assemblies containing the
25-mer, (2) start position coordinates within each viral
assembly containing the 25-mer, and (3) the frequency
of each 25-mer within each viral assembly. We identified
a total of 94,402 different k-mers from our viral assem-
bly data set. This high number of different k-mers dir-
ectly reflects viral genome assemblies with mutations.
Namely, a variation in sequence such as a mutation gen-
erates novel k-mers, thus leading to an increase in the
total k-mer number. Without any mutations, we would
expect the counts of k-mers around 30,000, which is size
of reference SARS-CoV-2 genomes. At this baseline state
without additional filtering, the k-mer index corre-
sponded to a matrix M with 94,402 columns (one for
each 25-mer), 3968 rows (one for each SARS-CoV-2
genome), and with elements M [i,j] being the number of
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times the jth 25-mer appears in the ith genome. The k-
mer index also contains the locations of each k-mer in
each genome, expressed in the local coordinate system
per a given genome as metadata. As we demonstrate
later, this index enables to generate annotations and
compare mutations among different viral genomes very
efficiently.

We identified all of the 25-mers that were present only
once within an individual viral assembly (“Methods”). In
other words, our definition of a unique k-mer is one
where the sequence is found only once in that individual
SARS-CoV-2 genome (Table 1). However, the same
unique k-mer can also be found in other SARS-CoV-2
assemblies so long as its uniqueness is maintained per a
given viral genome (Fig. 1b). This simple definition pro-
vided us with a way of measuring conservation across
different viruses and employing a conservation score.
We identified 1977 k-mers which had the property of be-
ing unique among all of the k-mers for a given viral gen-
ome and where the same 25-mer sequence
demonstrated this feature across all of the genomes in
our data set (k-mer conservation at 100%). We referred
to these conserved sequences as “anchor k-mers” given
their properties of both uniqueness and conservation
across the pangenome. Additional details about the der-
ivation and properties of the anchor k-mers are de-
scribed in the “Methods”.

Our approach was conducted independent of a coord-
inate system for any given genome and therefore was in-
dependent of the choice of a specific SARS-CoV-2
reference. If we conducted this study with an alignment
method, comparisons of viral genome assemblies would
have scaled exponentially as the number of samples in-
evitably increased. On the other hand, our method of
characterizing the viral pangenome scales linearly and
therefore is computationally efficient. Our analysis took
a total of 5 s using 32 cores on a server to index ap-
proximately 4000 viral genome assemblies using the k-
mer approach. In comparison, using multiple sequence
alignment with Clustal Omega [30] took 712 s for only
10 genomes; with Kalign [31], we measured 423 s for 40
genomes. Extrapolating these metrics means multiple se-
quence alignment would require a minimum of 12 h for
4000 viral genomes when neglecting exponential scaling.

Conservation and mutation landscapes of SARS-CoV-2
resolved with k-mer indexing

We grouped the 1977 anchor 25-mers based on overlap-
ping sequence. As result, we identified 166 highly con-
served regions across the 3968 viral assemblies (Fig. 2).
The number of overlapping anchor 25-mers in these
conserved regions ranges from 1 to 98 with median of 8.
The total size of conserved sequences was 5.947 kb,
which is 19.8% of the 29.9kb reference genome. To
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Fig. 2 SARS-CoV-2 landscape of conserved regional sequences. A total of 1977 conserved 25-mers (“anchor 25-mers”) were identified from the
3968 SARS-CoV-2 genome sequences included in the k-mer analysis. a Distribution of anchor 25-mers across the (i) SARS-CoV-2 genome.
Individual anchor 25-mers are shown as (i) black lines with their overall density. Conserved regions consist of either discrete or overlapping
anchor 25-mers and vary in total length (black rug plot). The density of conservation refers to the total number of base pairs comprising anchor
25-mers within each consecutive 100-bp window across the genome (red kernel density plot). b The total number of conserved base pairs within

each given region of the genome varies across ORFs and genes

display the extent of conserved sequences, we plotted
the position of these sequences across the length of a
reference viral genome NC_045512.2 for gene and pro-
tein annotations (Fig. 2a). The gene with the highest
number of conserved 25-mers was orflab (Fig. 2b),
which is also the largest viral gene. We considered the
gene length in the context of the entire genome and
normalized the representation as a fraction of the total
sequence. By correcting for sequence length, we found
that orf7a and orf7b were the most highly conserved at
24.96% and 30.3%, respectively.

The orflab sequence encodes multiple proteins
(Fig. 2b). Interestingly, three protein-coding regions
within orflab had high percentage of conserved se-
quences: 54.88% for nsp8; 43.65% for nspl0; 43.29% for
RdRp. In contrast, the E gene did not overlap with any
conserved regions. This result suggests that the E gene is
more likely to subject to significant mutations during
the course of viral evolution.

From our initial pangenome dataset of 3968 SARS-
CoV-2 genomes, we identified 2346 mutations occurring
in at least one SARS-CoV-2 genome assembly (Add-
itional file 3; Table S12). Focusing on point mutations,
1005 (42.8%) were non-synonymous mutations, and

1577 mutations (63.9%) were unique to a single isolate.
Thirty-eight mutations were found in more than 1% of
genomes, while 15 mutations were found in more than
5% of genomes. The most common mutations found in
more than 40% of genomes were as follows: (1) 14408
C>T; RdRp P323L (45.7%), 2) 3037 C>T; nsp3 F106
(45.3%), 3) 23403 A>G; S D614G, and 4) 241 C>T; 5’
UTR (45.2%).

We further conducted an expanded pangenome ana-
lysis by examining an additional set of 75,681 complete
and high-coverage viral genomes from GISAID (down-
loaded on 09/23/2020). These mutations were distin-
guished by patterns of unique 25-mer sequences (Figure
S1) and were incorporated into our k-mer mutation
index. We identified 20,671 mutations from at least one
viral genome assembly; (1) 15,914 of these mutations
(21%) were found in less than 0.001% of genomes and
(2) 8071 (10.6%) were unique to a single sample (Fig. 3a,
Additional file 3; Table S13). On average, each viral
genome contains 8.61 mutations with a standard deviation
of 3.45.

From this expanded pangenome analysis, we identified
mutation profiles that were highly specific viral identi-
fiers, or genetic “fingerprints,” based on their relatively



Lau et al. Genome Medicine (2021) 13:62

Page 11 of 23

reference genome

A 241: C>T, 5UTR 14408: C>T, P323L (RARP) 23403: A>G, G614S (S)
B037: C>T, F106 (NSP3)
€ 1045- 28881: GGG>AAC, 208 204delinskR (N),
S
=
g 1040 |
<
=
; 103.5 L
]
E 103.0 L
o
& 1025
) 10% "
# | 18 \
1020 L L valghe R
0 5.0x103
i i
5 ;266 13,468 21,563 29,674:
' ORF1a cw N
H P : H ]
: N W . 0O
: I_I — E/frameshm Helicase ispike (8) ]
: P;::xtl:a-zlée 3CL-protease H / H :
: o ;
B = '
2 1 1 a II 1 1 1 .
io : ' : P
~ H H 1 H . h i
L3 [ | 1 1 1 1 1 1 1 i
o 8000 — II 1 I 1 : 1 1 1 I
15 1 : 1 |I i 1 1 . 1
S i i i i ' A
Q 6000 | | ' | S | ! C
g | | I | G
oY T
O 4000
£ ||| |1 | GGG - AAC
i}
€ 2000\
o]
c
o
ETY 0 . ! ! ! I
0 5.0x103 1.5x104 3.0x104

Strain mutation sets per genome position
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low frequency among these samples. Among the notable
characteristics, 12,552 (60.7%) mutations were nonsy-
nonymous, 7234 (35%) were synonymous, and 885
(4.3%) mutations occurred within non-coding regions,
such as the 5" UTR and the 3" UTR. Fifty-seven muta-
tions were found in greater than 1% of assemblies while
14 variants were found in greater than 5% of assemblies.
We found that RdRp had the largest number of muta-
tions that occurred in more than 1% of assemblies (7 out

of 57 mutations). The most common mutations we ob-
served were as follows: 62,018 (81.95%) for 3037C>T
(F106) in the nsp3 protein; 61,993 (81.91%) for the
23404A>G (D614G) in the S gene; 61,920 (81.82%) for
14408C>T (P323L) in the RdRp protein (Fig. 3a).

Using our k-mer mutation index, we identified the
twenty most common combination profiles of muta-
tions, or “fingerprints,” among the 75,681 genome as-
semblies that we examined (Fig. 3b). As shown in



Lau et al. Genome Medicine (2021) 13:62

Fig. 3b, the top 20 SARS-CoV-2 genetic fingerprints rep-
resented the mutation profile of approximately 11.6% of
viral assemblies. The remaining 88.4% had more discrete
sets of mutations, suggesting that these signatures oc-
curred less frequently across the viral genomes included
in our analysis. Notably, the fourth most frequent finger-
print (occurring in approximately 1% of assemblies
included in our analysis) had no mutations relative to
the SARS-CoV-2 reference genome (Fig. 3b). The overall
majority of viruses included in our analyses had at least
one viral genetic signature with the vast majority occurring
at low frequencies.

Quantitative measurement of SARS-CoV-2 with deep
targeted sequencing

Based on our pangenome results, we designed a targeted
sequencing assay using the highly conserved sequences
from anchor 25-mers. Our goal was to develop a robust
amplification assay covering a wide portion of the viral
genome but not necessarily the entire viral genome. This
latter point was important, seeing that we intended to
generate sequencing coverage in the thousands at a
reasonable sequencing cost and with a minimal number
of amplicons.

As part of the amplicon design, we considered the
following parameters for primer sequences: (1) specific
only to SARS-CoV-2; (2) present in highly conserved
regions per our pangenome analysis; (3) flanking non-
conserved regions; (4) having DNA properties such as
GC content that facilitated multiplex PCR; (5) mini-
mizing the number of amplicons to reduce multiplexing
artifacts. Based on these combined parameters, we anti-
cipated that our primer sets had a very high probability
of amplifying any SARS-CoV-2 genomes regardless of
the location of any mutations. As illustrated in Fig. 2, we
found a total of 1977 anchor 25-mers, all being highly
conserved across nearly 4000 viral genomes. Interest-
ingly, when we examined the ARTIC primers which are
commonly used for viral genome sequencing [32], only
57% of the primers appeared in at least 99% of the
genomes in the 75,681 k GISAID dataset.

We followed the Food and Drug Administration’s
(FDA) Emergency Use Authorization guidelines for de-
signing SARS-CoV-2 detection assays [33]. The FDA’s
criteria include testing for cross-reactivity against other
viral, bacterial, and human genomes (Additional file 1;
Table S3). To reduce the chance of off-target amplifica-
tion, we eliminated any candidate primer sequences up
to an edit distance of four present in other human cor-
onavirus, human viruses, and bacteria. Likewise, we used
the same criteria for sequences that were found in the
human genome and excluded any candidate primer
sequences within an edit distance of two (“Methods”).
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This multiplexed assay had six amplicons targeting the
more variable regions of the SARS-CoV-2 genome, for a
total coverage of approximately 39.9% of the viral gen-
ome (Fig. 4a; Additional file 1; Table S4). Amplicon sizes
ranged from 1 up to 2.67 kb. In addition, we amplified a
region in human gene RPP30 as a positive control
against technical problems that may occur during RNA
extraction. Polymorphisms detected in this gene also
serve as a control against potential sample swaps or
contamination.

First, we used randomly primed reverse transcription
of viral and human RNA. This step was followed by a
multiplexed PCR amplification. Afterwards, to generate
[lumina-compatible sequencing libraries we used a two-
step transposase approach where the first step incorpo-
rates a unique DNA barcode among 96 wells and the
second pooled reaction adds a plate-specific barcode
(“Methods”). For the first step, the amount of tagmenta-
tion conducted by transposase is limiting for any given
reaction volume. Thus, sequencing libraries are automa-
tically normalized prior to loading onto a sequencing
instrument, reducing the total hands-on operational time.
With these new features, our experimental approach was
highly scalable, enabling the generation of hundreds of
normalized sequencing libraries in a single day without
the need for robotic automation.

We tested this sequencing assay on cDNA generated
from a serial dilution of twelve different concentrations
of commercially available SARS-CoV-2 genomic RNA
(Fig. 4). The SARS-CoV-2 RNA serial dilution was
spiked into total nucleic acid extracted from human sal-
iva. The human RNA sample was SARS-CoV-2 negative
as per qPCR. The range of SARS-CoV-2 concentrations
spanned three orders of magnitude from 1000 total cop-
ies to 1 total copy per a given sample (Additional file 1;
Table S5). We generated and sequenced eight technical
replicates per concentration from the ¢cDNA samples.
Following Illumina sequencing, the data was processed
and aligned to both the human genome (GRCh38) and
the SARS-CoV-2 reference NC_045512.2. Overall, the
coverage in viral regions was over 1000X with high viral
inputs with over 95% of target regions sequenced, but
declined as viral inputs decreased towards single viral
copies (Additional file 4; Table S14). There was a high
correlation between sequence reads aligning to the
SARS-CoV-2 genome compared to the amount of viral
RNA (Fig. 4b) with a log-log correlation coefficient of
0.865 (p<2.2e-16). In parallel, as the viral input de-
creased, the proportional number of RRP30 reads in-
creased. Here, we found that deep targeted sequencing
enabled sensitive detection of SARS-CoV-2.

To validate the quantitative performance of the se-
quencing assay, we performed digital PCR (dPCR) on
the same batch of ¢cDNAs used in the SARS-CoV-2
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across GISAID isolates is also shown. b Dynamic range of SARS-CoV-2 sequencing. Next-generation sequencing libraries were created from the
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assay. Shown are the reads aligning to both SARS-CoV-2 and the RPP30 control gene. Significance values (FDR-corrected) which test against the
negative control (O copies) are shown

dilution series (Fig. 4c). Digital PCR provides absolute
quantitative measurement of RNA templates at near
single-molecule resolution. We used a set of PCR
primers for the N1 region and a TagMan-based oligo-
nucleotide probe to detect the presence of template in
each droplet (“Methods”). We observed a high concord-
ance between digital PCR and sequencing (Pearson cor-
relation coefficient = 0.996; p = 1.75e-7; log-transformed
values), supporting equivalent sensitivity between the
two methods (Fig. 4d). Overal, we demonstrated
sequencing-based viral detection at a resolution as low
as a single copy per reaction.

We further validated the lower detection threshold of
sensitivity of our sequencing assay. For this experiment,
we used the cDNA samples with absolute quantitation
from dPCR. We generated 32 amplicon replicates from
cDNA samples containing two, one, and zero SARS-
CoV-2 genomic copies (Fig. 4d). We observed statisti-
cally significant differences between one and zero input
copies (p=0.0094; one-sided FDR-corrected t-test),
suggesting that this sequencing assay may have more

sensitive detection compared to other molecular diag-
nostic assays for SARS-CoV-2 detection [34].

Detection of viral mutation allelic fractions

We validated our sequencing assay for detecting muta-
tions at low read frequency and resolving genetic finger-
prints. We generated admixtures of USA-WA1/2020
and Hong Kong/VM20001061/2020 purified SARS-CoV-
2 RNA (ATCC, Manassas, VA) to test the capability of
the k-mer-based mutation index to distinguish muta-
tions among different viral strains. Within the targeted
regions that we sequenced, the Hong Kong strain had a
total of six exclusive mutations and the Washington
state strain had one exclusive mutation (Additional file 1;
Table S6). We prepared viral RNA admixtures with dif-
ferent relative fractions of each strain for a total input of
1000 copies, which were spiked into human nucleic acid.
The admixture ranged from a high of 99% to a low value
of 1% for a given viral strain component. Eight technical
replicates of each admixture were prepared and se-
quenced in parallel. The average sequencing coverage
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for all the replicates was in the thousands (Additional
file 4; Table S14). Using the published assembly se-
quences of each strain and their associated mutations,
we determined the read coverage of each mutation base
(Additional file 1; Table S7). We plotted with the empir-
ical value versus the expected allelic fraction (Fig. 5). In
the case of the mutations with the Hong Kong strain,
the correlation coefficient was 0.983. For the Washing-
ton strain, the correlation coefficient was 0.998. Our re-
sults showed that the measured mutation allelic fraction
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per our sequencing data highly correlated with the
theoretical admixture fraction. Moreover, mutations
expected to be present at a 1% allelic fraction were
detected across all replicates. This result indicates that
sensitive detection of low allelic fraction mutations was
feasible. At the time of the study, the Hong Kong and
Washington viral samples were the only commercially
available sources of purified RNA that was suitable for
genomic mixture analysis. We analyzed genomic assem-
blies from two additional commercially available strains,
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hCoV-19/Germany/BavPat1/2020 and 2019-nCoV/Italy-
INMI1 (ATCC). Our additional mutation analysis re-
vealed at least one distinguishing mutation per strain
that could be used to detect and characterize the given
strain. Therefore, our admixture analysis can broadly be
applied to other SARS-CoV-2 strain standards provided
the defining mutations are covered by our designed
amplicons.

Viral quasispecies analysis of a SARS-CoV-2 patient cohort
We examined a set of SARS-CoV-2 clinical samples that
included both positive and negative samples previously
evaluated with a RT-qPCR assay (FDA EUA200036)
approved by the US Food and Drug Administration
(FDA). We sequenced a total of 100 extracted RNA
clinical specimens from nasopharyngeal swabs obtained
from patients tested at the Stanford Clinical Virology
lab. The specimens consisted of 30 positive samples and
70 negative samples (Additional file 1; Table S8,
Additional file 4; Table S14). A total of three ¢cDNA
technical replicates were made from each of the 30 posi-
tive RNA samples for immediate downstream use in
PCR amplicon generation and sequencing library pre-
paration. Data is available through the National Insti-
tutes of Health’s Short Read Archive [35].

Overall, each sample yielded high quality reads, of
which Q30 scores were over 90%. In addition, 99% of
the reads aligned to either the human or SARS-CoV-2
genome (Additional file 4; Table S14). We observed that
some samples had substantially lower sequencing yield.
Upon further investigation, these samples had low num-
bers of reads in both viral and human targets across
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replicates, indicating low viral RNA yield from nasopha-
ryngeal swabbing or sample extraction. Viral sequencing
coverage varied from less than 100X to greater than
10,000X, indicating large-scale variation in viral load
across patients.

While developing the assay, we observed that the pro-
portional number of reads aligning to either SARS-CoV-
2 or RPP30 was dependent on the number of viral copies
loaded. Therefore, we utilized the virus-to-RPP30 read
ratio as a normalization metric to assess performance
and detection (Fig. 6). We found that this metric had a
high correlation to the Ct values from qPCR diagnostic
test (Pearson correlation coefficient of —0.90, p =2.4e
-11) (Fig. 6). Previously found to be negative for SARS-
CoV-2 by qPCR, these 70 clinical samples provided us
with a calibration threshold for determining a positive
case. We determined the average read ratio and standard
deviation to be 0.00494 and 0.00163, respectively. We
set our threshold at three standard deviations (0.00488)
above the average to detect the presence of SARS-CoV-2
reads. Based on this definition, the sequencing results
were positive for 30 out of 30 samples previously diag-
nosed by qPCR. All negative samples had a read ratio of
less than 2%, well below the read ratio of the positive
samples. To assess our criteria for separating positive
and negative samples, we used the same threshold calcu-
lations with a random subset of negative samples (50%,
N =35) resulted in a false positive rate of 0.03 and a false
negative rate of zero (N =100 trials). A small proportion
of viral reads were noted in the negative controls and
samples. These viral reads were an artifact in which
sample indexes are swapped among multiplexed libraries
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Fig. 6 Targeted sequencing of SARS-CoV-2 of clinical samples. Targeted sequencing was performed on a total of 100 clinical samples (30 positive
and 70 negative) derived from nasopharyngeal swabs. The ratio of reads aligning to viral and RPP30 sequences is displayed, with samples shown
in increasing order of the ratio of reads aligning to SARS-CoV-2 to RPP30. The positive samples (blue; N = 3) were found to be higher than the
reads ratio of negative samples by setting a threshold of greater than three times greater than the standard deviation away from the mean of
the negative samples (dashed line). Inset: Correlation of viral reads ratio to gPCR Gy values as derived from clinical tests (correlation coefficient = — 0.90,
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when using the Illumina platform [36]. To quantify this
effect, we leveraged the admixture control experiments;
in sequence data of only the Hong Kong strain, we mea-
sured the amount of reference nucleotides where we ex-
pected to observe only the variant allele. Using a cutoff
depth of 500 at variant positions, we measured the index
hopping rate to be 2.4%.

After sequence data processing, we identified muta-
tions from the 30 COVID-19 positive clinical samples
and a control SARS-CoV-2 isolate (“Methods”). We
identified a total of 37 mutations across 26 positions
from 16 out of the 30 clinical samples (Table 2). The
remaining 14 samples showed no variant differences
from the reference assembly NC_045512.2. We observed
a broad range of allelic fractions from mutations in our
clinical sample set, ranging from less than 10%, indica-
tive of subclonal mutations, to strain-specific mutations
with allelic fractions greater than 90% for a given viral
sample (Fig. 7a). We observed 25 positions with

Table 2 Observed SARS-CoV-2 mutations in clinical samples
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substitutions (16 missense and 9 silent) (Fig. 7b). One
deletion was observed at a single site for one sample.
Mutations leading to substitutions were noted at 20 of
the 26 total positions. These mutations were unique to
an individual sample. The remaining six substitutions
were found in more than one sample (Table 2). Among
our samples, six mutations were also found in with high
frequency (greater than 1000 samples) in different data
sets such as the WHO SARS-CoV-2 collection (N =10,
022) and the GISAID (N =75,681) collection. Four mu-
tations were observed in the SARS-CoV-2 genomic RNA
isolate from Washington which we used as a positive
control. Interestingly, two of these four mutations were
shared with one patient sample (P145) and two were pri-
vate to the positive control.

We observed five mutations, each private to a single
sample, in the helicase gene from three clinical samples
(Table 2). One sample (P145) had two mutations in the
helicase gene and the other two (P142 and P132) had

Mutation Gene / open reading frame Translational change Sample frequency Samples GISAID frequency
(n=30) n=75,681)
2721 C>T Nsp3 AV 1 P145 7
3037 &>T Nsp3 Synonymous 5 P133, P152, P128, P140, 62,018
P125
7482 C>T Nsp3 S1588L 1 P162 10
8092 C>T Nsp3 Synonymous 1 P145 42
8389 C>T Nsp3 Synonymous 1 P133 154
11074 CT>C NA Microsatellite 3 P155, P128, P142 NA
16267 C>A Helicase Q11K 1 ATCC_WA-01 NA
16375 C>T Helicase P47s 1 P142 16
16876 A>G Helicase T214A 1 P132 0
17747 C>T Helicase P504L 1 P145 2104
17858 A>G Helicase Y541C 1 P145 2167
18060 C>T 3"to 5" exonuclease Synonymous 2 ATCC_WA-01, P145 2233
18084 C>T 3"to 5" exonuclease Synonymous 1 P126 4
21646 C>T S Synonymous 1 P151 257
22289 G>T S A243S 1 P152 15
23403 A>G S D614G 3 P152, P125, P133 61,993
26542 C>T M T71 1 ATCC_WA-01 13
26625 C>T M Synonymous 1 P144 86
26951 G>T M Synonymous 1 P146 44
27131 C&>T M Synonymous 1 P137 16
27641 C>T ORF7a S83L 1 P126 31
27670 G>T ORF7a VI3F 1 P139 35
27874 C>T ORF7b T401 2 P144, P146 40
27925 C>T ORF8 T 1 P138 22
27970 C>T ORF8 1261 1 P132 66
28144 T>C ORF8 L84S 2 P145, ATCC_WA-01 4655
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only one mutation. The two helicase mutations (17747
C>T and 17858 A>@) observed in sample P145 were re-
ported in 2104 (2.78%) and 2167 (2.86%), respectively,
out of the 75,681 GISAID genomes included in our ana-
lysis. The other mutations observed in the helicase gene
were present in less than 0.03% of the 75,000 genomes
annotated in GISAID genomes.

We identified three nonsynonymous mutations in orf7
and three nonsynonymous mutations in orf8 from the
clinical specimens. All but one (27874 C>T in orf7b)
were private to their respective samples (Table 2). Two
of the mutations in orf7 were in orf7a (P126 and P139)
and one was in orf7b (P144 and 146). All three orf7 mu-
tations were present in less than 0.1% of the SARS-CoV-
2 GISAID genomes included in our pangenome analysis.
In orf8, one mutation (28144 T>C) was identified in a
clinical sample (P145), present in the positive control
strain (ATCC_WA-01) and observed in 4655 genomes,
or 6.15% per GISAID. The other mutations in orf8 were
seen in frequencies less than 0.1% in the GISAID pan-
genome analysis (Table 2, Additional file 1; Table S9).
Interestingly, all of the mutations observed in both orf7
and orf8 among our clinical sample set are expected to
result in significant changes to the amino acid side chain
polarity (Table 2, Additional file 1; Table S9). For ex-
ample, three of the six mutations observed between orf7

and orf8 (27874 C>T in samples P144 and P146, 27925
C>T in sample P138, 27970 C>T in P132) lead to an
amino acid change from threonine to isoleucine, which
constitutes a major change in sidechain polarity.

Several studies have illustrated that the previously
observed D614G variant in the spike protein potentially
increases the infectivity of SARS-CoV-2 as indicated by
both in vitro viability experiments in cell culture and
lower Cr values in clinical settings [37, 38]. Our results
are concordant with this observation, as samples con-
taining the D614G variant had higher proportions of
sequences aligning to SARS-CoV-2 (Fig. 6 and Fig. 8).
This observation was also confirmed from diagnostic
PCR, where patients with D614G mutations had mean
Cr values of 18.56 +2.94 (N = 3) versus mean Cr values
of 27.9 +7.24 (N = 27) (Additional file 1; Table S8).

Comparisons of SARS-CoV-2 genetic fingerprints

We compared our mutation profiles among the 17 pa-
tient samples with strain-specific or quasispecies-level
mutations representative of subclonal viral populations.
Hierarchical clustering of mutations points out some po-
tential group structure (Fig. 8). While some individual
mutations were shared between two or more samples,
no two samples had the same mutation profile. In other
words, each patient had their own unique genetic viral
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fingerprint with no direct match among our set of clin-
ical samples. Notably, we observed private mutations for
each sample. Three clinical viral samples had mutations
which occurred in less than 0.01% of 75k GISAID viral
samples.

As we described previously, we constructed a k-mer
mutation index database in which individual mutations
were represented for 75,681 viral samples from GISAID.

These mutations had passed quality control criteria
(“Methods”). The k-mer index facilitated rapid pairwise
similarity calculations among our samples versus those
from the GISAID (Table 3). When making comparisons
from our clinical cohort with this expanded set of sam-
ples, we used two different criteria between our viral
sample set that underwent deep sequencing versus the
mutation signatures from GISAID (Table 3). First, we
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Table 3 Viral mutation fingerprint comparisons

Page 19 of 23

Patient Private Reported mutations?

Strict matching #

Relaxed matching # Ratio relaxed

mutation’ genomes® genomes* criteria

P125 3037C>T, 23403A>G 17,851 43,943 5.806345E-01
P126 8084C>T 27641C>T 0 0 0.000000E+00
p128 3037C>T 66 61,952 8.185938E-01
P132 16876A>G 27970C>T 0 0 0.000000E+00
P133 3037C>T, 8389C>T, 23403A> 37 115 1.519536E-03
P137 27131C>T 1 15 1.982003E-04
P138 27925C>T 0 22 2.906938E-04
P139 27670G>T 1 34 4492541E-04
P140 3037C>T 66 61,952 8.185938E-01
P142 16375C>T 0 16 2.114137E-04
P144 26625C>T, 27874C>T 0 0 0.000000E+00
P145 2721CT 8092C>T, 17747C>T, 0 0 0.000000E+00

17858A>

18060C>T, 28144T>C
P146 26951G>T, 27874C>T 3 0 0.000000E+00
P151 21646C>T 0 257 3.395833E-03
P152 3037C>T, 22289G>T, 23403A> 4 9 1.189202E-04
P162 7482C>T 0 10 1.321336E-04

'Private mutations refer to those with a frequency less than 0.001%
2Mutation in bold are non-synonymous
3Strictly refers to other samples with the exact same number of mutations

“Relaxed refers to samples that are inclusive for these mutations but may have others

applied strict matching criteria such that a mutation set
per a given Stanford clinical sample exactly matched the
set of another sample annotated in GISAID. When using
the strict matching criteria, there were seven samples
that were unique and not found among the 75,681 GISA
ID samples. In addition, there were four patients (P137,
P139, P146, P152) with viral samples which did match
those in GISAID but were present at a frequency of less
than 0.0001%.

Given that we only had partial genome coverage, we
considered a second criterion in assessing the genetic
fingerprints observed in patient samples (Table 3). We
had initially required that the mutation signatures from
the clinical samples have an exact mutation set match.
Under our new relaxed matching criteria, we also in-
cluded GISAID samples with mutations additional to
those identified in our sequencing study. Given that the
alignments downloaded from GISAID were obtained via
whole genome sequencing, this allowed us to include
samples with mutations outside of the regions we
targeted.

When we considered the relaxed criteria, there were
four samples which had no matches with GISAID (P126,
P132, P144, P145). Nine samples (P133, P137, P138,
P139, P142, P146, P151, P152) had matches to viral se-
quences in GISAID, but when considering them as a
subtotal, these sets of mutations occurred at a frequency

of less than 0.001% among the GISAID genomes in-
cluded in our analysis. There were three patients (P125,
P128, P140) in which, when using the relaxed matching
criteria, the frequency of matching GISAID samples
ranged from 5.8 to 8.2%. Overall, a significant fraction of
patients (13/30) had viral mutation signatures which
were relatively unique, even when using this relaxed
criterion.

We evaluated the frequency of specific genetic finger-
prints. The P125 viral sample matched the most com-
mon GISAID fingerprint consisting of 3037 C>T and
23403 A>G (Fig. 3b), indicative of a common viral strain.
The P155 viral sample matched the 3rd most common
fingerprint in which there are no variants distinct from
the NC_045512.2 reference which originated from Wu-
han. The P125 viral sample had a common mutation sig-
nature with 17,851 exact matches (Fig. 8b), and P155
has 1587 exact matches. Seven viral samples did not
match any of the top 20 most common strain finger-
prints. This included viral samples from P128, P133,
P137, P139, P140, P146, and P152 which had a range of
1 to 66 matches. These samples had relatively unique
fingerprints given that they were present in less than
0.001% in the larger GISAID data set. Overall, our re-
sults suggest that unique and relatively rare viral muta-
tion fingerprints can be identified among a significant
number of patients.
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Discussion

With the rapid transmission of SARS-CoV-2 around the
world, different strains have emerged as defined by the
propagation of viruses with new mutations. Our study
leveraged a systematic k-mer-based analysis of the
SARS-CoV-2 to identify critical regions of viral sequence
conservation and provide mutation indexes across tens
of thousands of viral sequences from GISAID. We used
this sequence analysis to develop a robust targeted se-
quencing assay to detect viral mutations with high sensi-
tivity by focusing specifically on those regions identified
as hypervariable in our k-mer analysis. We subsequently
compared mutation profiles observed in the clinical sam-
ple set to those reported in GISAID. Based on the results
of our study, this approach could be leveraged to provide
a highly scalable and integrated framework for identify-
ing viral genetic fingerprints among patients that are
relatively unique. Importantly, this process may facilitate
molecular contact tracing where one compares viral mu-
tation fingerprints among infected individuals, which
can bolster our understanding of how transmission
events occur throughout the global population. This no-
tion is broadly supported by population-scale sequencing
initiatives such as GISAID to characterize SARS-CoV-2
and enumerate lineages [39], and further builds upon it
at the individual level by measuring viral genetic finger-
prints at clonal and subclonal resolution. Recently, ge-
nomes representing the novel SARS-CoV-2 lineage
B.1.1.7 have been observed around the world. This novel
strain contained 17 mutations that are expected to yield
a translational change (14 nonsynonymous and 3 dele-
tions), with several mutations located in the S gene. This
specific lineage, which necessitates the use of
sequencing-based analysis methods for its definitive
ascertainment, emphasizes the need for SARS-CoV-2
sequencing programs to detect and monitor ongoing
evolutionary patterns.

During the course of the SARS epidemic in 2003-
2004, a number of mutations and deletions in orf8 be-
came prevalent in the population [40-42]. A 29-
nucleotide deletion in SARS-CoV orf8 was observed in
nearly all cases diagnosed during the middle and end of
the outbreak, and complete or almost complete deletions
of orf8 [40-42]. Evidence from our pangenome study
suggests that SARS-CoV-2 orf8 shows evidence of evolu-
tionary divergence with less than 10% of all bases
sharing an anchor 25-mer sequence (Fig. 2). Notably, we
observed six total mutations between orf/ and orf8 in
our clinical sample set. Three were nonsynonymous
mutations (27874 C>T in samples P144 and P146, 27925
C>T in sample P138, 27970 C>T in P132) and are ex-
pected to result in a change from threonine to isoleucine
(Additional file 1; Table S9). It will require additional
studies to determine the consequences of these changes
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on viral fitness and disease, along with discovering evi-
dence of positive selective pressure on this region of the
viral genome.

Currently, there are a number of methods for detect-
ing SARS-CoV-2 [43-45]. Quantitative reverse tran-
scription polymerase chain reaction (RT-qPCR) is the
most widely used SARS-CoV-2 diagnostic test and is
considered the “gold standard” for detection due to its
high specificity [44]. RT-qPCR diagnostic tests are based
on the detection of viral nucleic acid from SARS-CoV-2
in respiratory specimens (such as nasopharyngeal and
oropharyngeal swabs, sputum, and bronchoalveolar
lavage fluid) collected from individuals suspected of
COVID-19 infection. Serological antibody tests detect
IgM and IgG generated in response to SARS-CoV-2
from blood samples. Antibody tests can provide infor-
mation regarding current and previous SARS-CoV-2
infection, as well as potential immunity [46]. Neither
serological tests nor RT-qPCR assays provide informa-
tion about the viral sequence, the potential emergence of
new strains or viral fingerprint patterns that are associ-
ated with transmission within a population. The role of
viral sequencing is thus becoming increasingly important
in diagnostic testing and disease control.

The increasing availability of SARS-CoV-2 genome se-
quences provides biomedical and clinical researchers
with a rich resource for investigating pandemic spread.
However, traditional alignment-based analysis tech-
niques lead to challenges when applied on a scale of
thousands of genome sequences. Our analysis is inde-
pendent from coordinate systems of any given genome
as a SARS-CoV-2 reference. Comparisons of viral gen-
ome assemblies scale exponentially as the number of
samples increases. In contrast, our k-mer counting ap-
proach for identifying novel pangenome features scales
linearly and therefore is computationally efficient. This
approach enabled us to rapidly survey viral pangenome
features such as genome conservation and mutation
signatures from thousands of viral samples.

We developed a robust deep sequencing assay to as-
certain quasispecies mutations and generate mutation
signatures. We targeted the SARS-CoV-2 genome using
primers from highly conserved regions based on our
pangenome analysis. In the future, these same conserved
primers can be used to detect novel mutations in add-
itional viral regions. By virtue of designing primers in
conserved regions, we expect that our assay will be able
to amplify most strains of SARS-CoV-2, including re-
gions of the viral genome that may be subject to in-
creased selective pressure as vaccines become readily
available to the global population. Notably, when per-
forming the same type of k-mer analysis to primer sets
used in the ARTIC network’s amplicon sequencing
assay, we observed that only 57% of the primers
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appeared in at least 99% of the 75,681k GISAID dataset.
This indicates that genomic variations observed in
SARS-CoV-2 may both impact the performance and
binding of primers as well as obscure mutations missed
due to imperfect primer annealing and amplification
during PCR.

This method also has the potential to be used for iden-
tifying recombination sites among viral genomes. By in-
vestigating unique k-mers in the SARS-CoV-2 genome,
we may be able to identify recombination events that are
representative of novel sequences. One limitation posed
by short-read sequencing is that such structural changes
in the viral genome may be less obvious given the length
of the reads. The use of long read sequencing may
overcome this issue. Another challenge is that a novel
sequence breakpoint and new k-mers may be less readily
identified when they occur at low frequency in a sample.
These topics should be taken as considerations for the
design and implementation of future studies.

We restricted the number of amplicons to improve the
multiplexed amplification of viral genome sequences.
However, one limitation of this deep sequencing ap-
proach is that coverage is restricted to approximately
40% of the viral genome. As a result, not all mutations
present in a viral sample will be detected. When examin-
ing named SARS-CoV-2 strains, we observed three
strains (20A, 20B, and 20C) out of twelve that could not
be distinguished from each other using our designed
assay. To overcome this issue, future iterations of assay
design will expand the number of amplicons for broader
coverage while maintaining primers in conserved se-
quences by leveraging the primer table that we have cre-
ated. Thus, based on our pangenome analysis, there are
opportunities to target additional mutation-prone se-
quences as they appear in the population. Previous stud-
ies have demonstrated the dynamic nature of mutation
accumulation in the SARS-CoV-2 genome and their suc-
cessive propagation throughout the human population
[39]. When considering previously characterized SARS-
CoV-2 lineages as well as future selective pressures due
to both ongoing pandemic spread and vaccination, it will
behoove future sequencing approaches to incorporate a
flexible workflow to best adapt to novel changes in the
viral genome. The primer design framework that we
have developed for our sequencing approach both ac-
complishes this within our own sequencing workflow
and facilitates adaptability for other researchers investi-
gating the SARS-CoV-2 genome.

Our sequencing assay possesses important operational
advantages compared to other molecular detection
methods. Following sample processing, numerous indi-
vidual specimens can be pooled during library prepar-
ation and maintain their unique identity. Identification
of individual samples relies on assignments from DNA-
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based sample barcodes. Another advantage is the use of
a library normalization procedure that eliminates the
need for library balancing, greatly simplifying the se-
quencing library preparation workflow. For small ge-
nomes like SARS-CoV-2, one can sequence tens of
thousands of samples in single sequencing run depend-
ing on the capacity of the sequencer. This scalability fea-
ture makes the analysis of large numbers of samples
feasible compared to other assays that require samples
to be maintained in individual wells throughout the en-
tire sequencing workflow. The operational scalability of
NGS also enables one to conduct large-scale population
screening with the potential for significant cost reduc-
tion compared to other disease detection and diagnostic
methods. In our study, we estimate that the total cost is
approximately $20 per sample. As the number of sam-
ples increases, the use of higher capacity sequencing
instruments will shift most of the cost burden to
sample preparation; we estimate the total reagent cost
could be lowered to $13 per sample. This is in the
same range as the ARTIC sequencing workflow [47] and
is substantially cheaper than studies utilizing shotgun
approaches [15].

Conclusions

Overall, the characterization of SARS-CoV-2 genetic
variation provides insight into the paths of transmission
and selection processes that may influence infection
rates. Thus, viral mutations provide genetic fingerprints
that cover a range of frequencies, such as the dominant
species commonly observed among infected populations
to less prevalent quasispecies that are limited to an
individual or small number of patients. Analysis of lower
frequency viral fingerprints may provide a way of con-
ducting molecular contact tracing.
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