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Abstract

Background: Circulating tumor DNA (ctDNA) offers minimally invasive means to repeatedly interrogate tumor
genomes, providing opportunities to monitor clonal dynamics induced by metastasis and therapeutic selective
pressures. In metastatic cancers, ctDNA profiling allows for simultaneous analysis of both local and distant sites of
recurrence. Despite the promise of ctDNA sampling, its utility in real-time genetic monitoring remains largely
unexplored.

Methods: In this exploratory analysis, we characterize high-frequency ctDNA sample series collected over narrow
time frames from seven patients with metastatic triple-negative breast cancer, each undergoing treatment with
Cabozantinib, a multi-tyrosine kinase inhibitor (NCT01738438, https://clinicaltrials.gov/ct2/show/NCT01738438).
Applying orthogonal whole exome sequencing, ultra-low pass whole genome sequencing, and 396-gene targeted
panel sequencing, we analyzed 42 plasma-derived ctDNA libraries, representing 4–8 samples per patient with 6–42
days between samples. Integrating tumor fraction, copy number, and somatic variant information, we model tumor
clonal dynamics, predict neoantigens, and evaluate consistency of genomic information from orthogonal assays.

Results: We measured considerable variation in ctDNA tumor faction in each patient, often conflicting with RECIST
imaging response metrics. In orthogonal sequencing, we found high concordance between targeted panel and
whole exome sequencing in both variant detection and variant allele frequency estimation (specificity = 95.5%, VAF
correlation, r = 0.949), Copy number remained generally stable, despite resolution limitations posed by low tumor
fraction. Through modeling, we inferred and tracked distinct clonal populations specific to each patient and built
phylogenetic trees revealing alterations in hallmark breast cancer drivers, including TP53, PIK3CA, CDK4, and PTEN.
Our modeling revealed varied responses to therapy, with some individuals displaying stable clonal profiles, while
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others showed signs of substantial expansion or reduction in prevalence, with characteristic alterations of varied
literature annotation in relation to the study drug. Finally, we predicted and tracked neoantigen-producing
alterations across time, exposing translationally relevant detection patterns.

Conclusions: Despite technical challenges arising from low tumor content, metastatic ctDNA monitoring can aid
our understanding of response and progression, while minimizing patient risk and discomfort. In this study, we
demonstrate the potential for high-frequency monitoring of evolving genomic features, providing an important
step toward scalable, translational genomics for clinical decision making.

Keywords: ctDNA, Circulating tumor DNA, Tumor evolution, Neoantigens, Serial sequencing, Ultra-low pass whole
genome sequencing, Targeted panel sequencing, Liquid biopsy

Background
Tumors are known to shed fragments of DNA into the
bloodstream through apoptosis and necrosis [1–3]. This
cell-free DNA, known as circulating tumor DNA
(ctDNA), can be acquired minimally invasively through
simple blood draws, then isolated from plasma in admix-
ture with cell-free DNA of non-tumor origin. The po-
tential for minimally invasive tumor profiling makes
ctDNA an attractive target for biomarker development
and serial profiling, especially in metastatic cancers. Des-
pite relative ease of collection, ctDNA assays are challen-
ging due to lower purity relative to tumor tissue
samples. For example, estimated ctDNA purity, or tumor
fraction (TFx), ranges from <0.01 to 0.80 in large co-
horts of metastatic cancer, with most samples with a
TFx <0.10 and varying by cancer type [4].
Despite technical challenges of ctDNA, progress has

been made in recent years in leveraging plasma samples
for clinical and genomic applications using diverse se-
quencing approaches, including specific mutation track-
ing, targeted panel sequencing, shallow whole genome
sequencing, methylation, and whole exome/genome se-
quencing. PCR-based strategies demonstrated the ability
to precisely track and quantify known variants in meta-
static breast cancer [5, 6]. Exome-based and targeted
panel sequencing strategies have suggested high con-
cordance between alterations discovered in circulating
tumor DNA [4], circulating tumor cells [7], and matched
tumor biopsies in solid tumors [8] and blood cancers,
like multiple myeloma [9, 10], where cancer cells are dif-
ficult to reach without bone marrow biopsy. Importantly,
ctDNA profiles have also demonstrated the capability to
capture novel somatic alterations not present in primary
cancers [4, 11, 12]. In metastatic cancer, ctDNA may act
as a “sink” of tumor DNA from multiple metastatic sites
from which genetic alterations across multiple sites may
be simultaneously profiled [13–15]. Further, ctDNA
tumor fraction levels have been found to correlate with
patient outcomes [9, 11, 16–18], pointing to a potential
for broader clinical application of ctDNA assays. Many
potential applications are under development, including

cancer screening [19], minimal residual disease assess-
ment [20–23], and tumor monitoring [18].
Circulating tumor DNA analyses offer the potential to

monitor tumor genomic features over more narrow time
windows, on the order of days to weeks or less, than is lo-
gistically or ethically feasible with repeated tissue biopsies.
An outstanding question in oncology, and specifically the
ctDNA field, is how rapidly tumor genomes evolve under
therapeutic selective pressures, and whether this can be
detected via ctDNA through the growing number of se-
quencing approaches. To evaluate this question, we fo-
cused on triple-negative breast cancer (TNBC), an
aggressive form of breast cancer defined by the lack of ex-
pression of three clinically important therapeutic targets,
the ER, PR, and HER2 receptors [24]. Metastatic TNBC
(mTNBC) is known to shed relatively high amounts of
ctDNA [11]. TNBC constitutes around 10–15% of all
breast cancer, but may be responsible for upwards of 30%
of breast cancer mortality [24–26].
In this work, we provide the first comprehensive ana-

lysis of ctDNA genetic profiling over narrow time win-
dows in mTNBC. We leverage serial sets of ctDNA
collected from patients with mTNBC enrolled in a phase
II clinical trial of Cabozantinib, a multi-receptor tyrosine
kinase inhibitor, as an exploratory analysis of available
samples. These clinical trial samples, whose primary
endpoints were previously reported [27], provide a co-
hort of patients on a uniform and targeted treatment
regimen. Using orthogonal sequencing approaches, we
demonstrate the feasibility of ctDNA genetic profiling
for modeling pan-tumor clonal dynamics, rare variant
detection, copy number analysis, and neoantigen predic-
tion. This work was presented in part as a conference
abstract [28].

Methods
Patient eligibility, selection, and treatment
Individuals were considered eligible for study if they
were 18 years of age or older with diagnosed TNBC, des-
ignated by the following indications: estrogen receptor-
negative (ER−; <10% staining by immunohistochemistry
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[IHC]), progesterone receptor-negative (PR−; <10% stain-
ing by IHC), and HER2-negative (0 or 1+ by IHC or fluor-
escence in situ hybridization [FISH] ratio<2.0). Patients
had measurable disease by Response Evaluation Criteria
In Solid Tumors (RECIST) version 1.1 and may have re-
ceived 0 to 3 prior chemotherapeutic regimens for
mTNBC. Key exclusion criteria include the following: re-
ceiving another investigational agent within 2 weeks of the
first dose of cabozantinib, untreated brain metastases,
symptomatic brain metastases, or those which required
therapy for symptom control, or prior treatment with a
MET inhibitor (other than tivantinib ARQ-197) [27].
Patients who met eligibility criteria and consented to

participation were enrolled in a single-arm, two-stage
phase II study assessing the efficacy of cabozantinib
monotherapy in patients with mTNBC (NCT01738438,
https://clinicaltrials.gov/ct2/show/NCT01738438). Treat-
ment consisted of oral dosing of cabozantinib at 60mg
daily over a 21-day cycle. Patients underwent radio-
graphic restaging at 6 weeks and every 9 weeks there-
after. Patients were enrolled from February 2013 to May
2015. The primary endpoint was the activity of cabozan-
tinib, as defined by objective response rate (ORR) in pa-
tients with mTNBC. Predefined secondary endpoints
included progression-free survival (PFS), toxicity, and
pain. Correlative studies included analysis of MET and
phospho-MET expression in archival tumor tissue, and
molecular and cellular biomarkers of cabozantinib. The
results of this study have been published previousl y[27].
The analyses presented herein are exploratory analyses
of existing plasma specimens. Clinicopathologic data
were abstracted from the medical record. Research was
approved by local human research protections programs
and institutional review boards at the Dana-Farber Can-
cer Institute and Ohio State University, and studies were
conducted in accordance with the Declaration of
Helsinki.

Sample collection and processing
Plasma was collected at baseline, on day 8 of therapy, on
day 1 of each 21-day cycle of therapy, and, if available, at
the time of progression. Eight milliliters of the blood
was collected in BD brand EDTA vacutainers and proc-
essed within 4 h of collection at the Clinical Laboratory
Improvement Amendments-certified core in the Steele
Laboratories (Massachusetts General Hospital), where
the whole blood was separated into cellular fraction and
plasma by centrifuging at 1000–1900×g for 10 min at
room temperature. Plasma was stored at −80°C.

Extraction and quantification of cfDNA and germline DNA
Frozen aliquots of the plasma were thawed at room
temperature then centrifuged a second time at 15,000×g
for 10 min at room temperature in low-bind tubes to

remove residual cells from plasma. cfDNA was extracted
from 1 to 7 mL of plasma and eluted into 40–80 μL of
re-suspension buffer using the Qiagen Circulating DNA
kit on the QIAsymphony liquid handling system. Germ-
line DNA (gDNA) was extracted from 400 μL of the
blood and eluted into 200 μL of re-suspension buffer
using the Qiasymphony DSP DNA midi kit on the QIA-
symphony liquid handling system. Extracted cfDNA and
gDNA was frozen at −20 °C until ready for further pro-
cessing. Quantification of extracted cfDNA and gDNA
was performed using the PicoGreen (Life Technologies)
assay on a Hamilton STAR-line liquid handling system.

Library construction of cfDNA and gDNA
For cfDNA, initial DNA input was normalized to the
range 25–52.5 ng in 50 uL of TE buffer (10mM Tris
HCl 1mM EDTA, pH 8.0) according to picogreen quan-
tification. For gDNA, an aliquot of gDNA (50–200ng in
50μL) was used as the input into DNA fragmentation
(aka shearing). Shearing was performed acoustically
using a Covaris focused-ultrasonicator, targeting 150bp
fragments. Library preparation was performed using a
commercially available kit provided by KAPA Biosystems
(KAPA HyperPrep Kit with Library Amplification prod-
uct KK8504) and IDT’s duplex UMI adapters. Unique 8-
base dual index sequences embedded within the p5 and
p7 primers (purchased from IDT) were added during
PCR. Enzymatic clean-ups were performed using Beck-
man Coultier AMPure XP beads with elution volumes
reduced to 30μL to maximize library concentration. Li-
brary quantification was performed using the Invitrogen
Quant-It broad range dsDNA quantification assay kit
(Thermo Scientific Catalog: Q33130).

In-solution hybrid selection for exome or targeted panels
After library construction, hybridization and capture
were performed using the relevant components of IDT’s
XGen hybridization and wash kit and following the man-
ufacturer’s suggested protocol, with several exceptions.
A set of 12-plex pre-hybridization pools were created.
Custom exome bait (TWIST Biosciences) along with
hybridization mastermix was added to the lyophilized
pre-hybridization pool prior to resuspension. Library
normalization and hybridization setup were performed
on a Hamilton Starlet liquid handling platform, while
target capture was performed on the Agilent Bravo auto-
mated platform. Post capture, a PCR was performed to
amplify the capture material. After post-capture enrich-
ment, library pools were quantified using qPCR (auto-
mated assay on Agilent Bravo), using a kit purchased
from KAPA Biosystems with probes specific to the ends
of the adapters. Based on qPCR quantification, pools
were normalized using a Hamilton Starlet to 2nM and
sequenced using Illumina sequencing technology. The
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targeted panel bait set used in this study was designed at
the Broad Institute to maximize pan-cancer utility and
contains regions from 396 driver genes previously anno-
tated in cancer literature.

Cluster amplification and sequencing
Cluster amplification of library pools was performed ac-
cording to the manufacturer’s protocol (Illumina) using
the Exclusion Amplification cluster chemistry and HiSeq
X flowcells. Flowcells were sequenced on v2
Sequencing-by-Synthesis chemistry for HiSeq X flow-
cells. The flowcells were then analyzed using RTA
v.2.7.3 or later. Each pool of libraries was run on paired
151bp runs, reading the dual-indexed sequences to iden-
tify molecular indices and sequenced across the number
of lanes needed to meet coverage for all libraries in the
pool. For ultra-low-pass whole genome sequencing
(ULP-WGS), we sequenced cfDNA to an average
genome-wide fold coverage of ∼0.1X.

Tumor fraction, purity, and ploidy assessment of cfDNA
For ULP-WGS, we applied ichorCNA [4], a software
package which simultaneously predicts regions of CNAs
and estimates the fraction of tumor in ULP-WGS. The
workflow consists of three steps: first, computation of
read coverage over binned 1 MB genomic regions, next,
normalization of coverage to known sources of bias, and
finally joint inference of the CNA profile and estimation
of tumor fraction.

Variant calling and copy number assessment
Somatic SNV and INDEL calling in both WES and TPS
were completed on the Terra/Firecloud platform using
gatk-Mutect2 pipelines (https://portal.firecloud.org/
? r e t u r n= t e r r a #me t hod s / g e t z l a b /CGA_WES_
Characterization_Pipeline_v0.1_Dec2018/2) [29, 30].
With exome sequencing, we employed the standard
Mutect2 tools, including the orientation-bias filtering
model provided in GATK-4.1.6.0. Taking advantage of
the serial design of our study, we leveraged Mutect2
Multi-sample mode to borrow information across sam-
ples belonging to the same patient, for local haplotype
reassembly. Panel sequencing variants were delivered by
the Broad Institute who employed tools in GATK-4.1.0.0
with liquid biopsy and duplex-UMI sequencing-specific
parameters.
To compare purity and ploidy information from WES

to that of ULP-WGS/ichorCNA, we implemented AB-
SOLUTE [31] and FACETS [32]. ABSOLUTE was run
as described via the CGA WES characterization pipeline,
developed by the Getz Lab (see above). For FACETS,
which requires a database of common SNP locations, we
chose the dbSNP release 138 [32] for hg19 aligned se-
quencing. Finally, for correlation studies of log-ratio, we

employed CNVkit [33], a copy number profiling tool
which relies on target level read count binning and cir-
cular binary segmentation.

Clonal dynamics and phylogenetic reconstruction
To model the clonal structure and dynamics of meta-
static breast cancer, we employed the popular python-
based tool, PyClone [34], to use hierarchical-Bayes tech-
niques for jointly estimating prevalence of somatic alter-
ations and simultaneously clustering them into groups
representing the underlying cancer’s cell population
structure. PyClone inputs require read count informa-
tion for somatic alterations, as well as their copy number
state and sample purity. For our variant sets, we chose
the union of filter-passing alterations from each sampled
time point delivered by the commercially available
liquid-biopsy targeted panel-sequencing pipeline at the
Broad Institute. In addition to this set, we added the fil-
ter passing alterations discovered through orthogonal
exome sequencing, so long as they intersected the 396-
gene panel bait-target regions. For copy number infor-
mation, we intersected our genomic variants with the
discrete states determined in ichorCNA profiles at base-
line and used the corresponding total_copy_number set-
tings for the preparation of genotype files. ichorCNA
also provided sample-level estimates of purity. We chose
the PyClone Binomial model, with standard concentra-
tion and base measure parameters for the MCMC
process. Each patient model was run for 15,000 itera-
tions with the initial 1500 steps thrown out as burn-in.
Sequencing error rate for our TPS-based data was set to
0.001, based on earlier estimates from the panel devel-
opers. Phylogenetic tree inferences were made using
PyClone estimates of the prevalence and the CITUP-QIP
algorithm [35], choosing the optimal tree for further in-
vestigation of biological context.

Neoantigen prediction
Neoantigen-binding predictions for known MHC mole-
cules were completed using machine learning ap-
proaches learned on peptide-affinity data, NetMHCpan
4.0 [36]. We set scoring thresholds at 0.5% for strong
binders and 2.0% for weak binders, representing the rank
of the prediction against a panel of random natural pep-
tide sequences, as described by NetMHCpan.

Statistical tests and data visualization
Figure plotting and statistical tests were completed in R
3.6.3, with heatmaps generated by the ComplexHeatmap
Package [37]. All T tests were performed with unequal
variance procedures using the Welch–Satterthwaite ap-
proximation for degrees of freedom.
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Results
Metastatic TNBC patient and sample selection
Thirty-five patients with metastatic TNBC, who were
enrolled on a phase II study of cabozantinib monother-
apy (NCT01738438), had available, banked, narrowly
sampled, plasma-derived ctDNA samples [27]. Using
ultra-low-pass whole genome sequencing (ULP-WGS)
at approximately 0.1x coverage, ctDNA tumor fraction
(TFx) was computational estimated using the
ichorCNA algorithm [4] for each available sample. We
identified seven individuals with at least three measure-
ments of ctDNA TFx >0.10 who all had similar baseline
TFx values (range 0.22–0.34). The clinical and patho-
logic characteristics of the selected patients mirrored
those of the remaining, excluded study population
(Table 1). Among the pertinent characteristics evalu-
ated, we found no significant differences between in-
cluded and excluded individuals in stage at diagnosis of

primary breast cancer (p value: 0.74, chi-squared test),
neoadjuvant therapy received (p value 0.24, chi-squared
test), and prior lines of metastatic treatment (p value
0.44, chi-squared test), among others. The selected
women were between 42 and 69 years old at the time
of sample collection, with a median age of 52. Each pa-
tient had received neoadjuvant therapy and surgery for
localized disease, then had mTNBC confirmed by meta-
static biopsy. In total, there were 42 samples on seven
patients (4–8 per individual, median = 6; Fig. 1a). Sam-
ple collection occurred regularly, every 6–49 days with
a median time of 21 days between samples (Fig. 1b,
Additional file 1: Table S1). We performed 10,000x
unique molecular identifier (UMI)-based targeted panel
sequencing (TPS) for each plasma sample with matched
germline, and orthogonal 150x whole exome sequen-
cing (WES) for samples with TFx >0.10, along with
matched germline (Additional file 1: Table S2).

Table 1 Cohort clinical and pathologic characteristics

Current clonal dynamics Remaining patients P
valueStudy cohort In phase II study

Age 0.67

Median 52 49

Range 42–69 31–78

Stage at diagnosis of primary breast cancer 0.74

I 1 (14%) 5 (17%)

II 4 (57%) 15 (50%)

III 1 (14%) 7 (23%)

Iv 1 (14%) 1 (3%)

Germline BRCA status 0.97

Wildtype 6 (86%) 20 (71%)

Mutant 1 (14%) 4 (14%)

Unkown 0 (0%) 4 (14%)

Primary cancer receptor status 0.25

Triple negative 5 (72%) 23 (82%)

Metastatic biopsy receptor status 1

Triple negative 7 (100%) 28 (100%)

Metastatic site

Lung metastases 1 (14%) 13 (46%) 0.1

Liver metastases 4 (57%) 7 (25%) 0.11

Bone metastases 5 (71%) 12 (43%) 0.17

Neoadjuvant therapy 0.24

Recieved 7 (100%) 19 (68%)

Prior lines of metastatic therapy 0.44

0 1 (14%) 5 (18%)

1 4 (57%) 14 (50%)

2 1 (14%) 3 (11%)

3+ 1 (14%) 6 (21%)
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Fig. 1 (See legend on next page.)
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Circulating tumor DNA content fluctuates during
treatment
Estimates of ctDNA tumor fraction computed from
ULP-WGS using the ichorCNA package showed consid-
erable variation during treatment, including crossing
below the threshold of 0.10 tumor fraction (Fig. 1c),
which has been shown to be associated with overall sur-
vival in mTNBC [11]. Tumor fraction ranged from 0.025
to 0.443 with a median value of 0.18. In the first 8 days
of cabozantinib treatment, the phase-II cohort displayed
a significant reduction in tumor fraction (paired two
sample T test, D = −0.056, 95% CI [−0.089, −0.022], p
value=0.002) (Figure S1). We evaluated the magnitude
and direction of change from cycle 1, day 1 of treatment
(C1D1) to cycle 1, day 8 (C1D8), and its association with
best imaging response via RECIST v1.1 [38] and Choi
CT criteria [39]. We modeled the relationship via logistic
regression and found no significant relationship between
initial tumor fraction change and RECIST/Choi mea-
sured outcomes (p value = 0.59 and 0.69 for RECIST
and Choi criteria, respectively; Additional file 1: Figure
S1 B-C). Within the seven-patient cohort, we found
similar discordance between tumor fraction dynamics
and imaging response: all patients had stable disease as
best RECISTv1.1 imaging response despite significant
variation in TFx with some patients’ TFx rising and
others demonstrating significant decline (Fig. 1d).

Orthogonal ctDNA sequencing approaches are highly
concordant
Published reports vary in the concordance of ctDNA
single-nucleotide variant (SNV) detection across orthog-
onal sequencing approaches—from very high concord-
ance [4] to relatively poor concordance, even across
commercial platforms [40]. To address this, we assessed
whether ctDNA TPS can recapitulate variants detected
via WES. In our selected cohort, we identified 45 som-
atic alterations which were called by Mutect2 in one or
more WES experiments and also intersected the gen-
omic intervals captured in the targeted panel sequen-
cing. Using this set of observed alterations, we searched
for support in our targeted panel sequencing, in order to
measure agreement in the two sequencing modalities. In
general, we found that the recall of WES events in TPS
was very high, sensitivity = 0.955 and reliable across time

(Fig. 2a). In our variant set, TPS detected more somatic
calls than WES especially at low variant allele frequen-
cies (VAF), not unexpected due to the higher achievable
sequencing depth in combination with the UMI-based
read processing protocol, which reduces false positive re-
sults. For each site in the test set, we compared VAF be-
tween WES and TPS and found that VAF measurements
were highly concordant (Pearson’s r=0.949) (Fig. 2a, b).
Collectively, these data demonstrate that orthogonal
TPS and WES sequencing approaches demonstrate ro-
bust concordance in both SNV detection and VAF
among shared loci.
Accurate measures of purity and ploidy are crucial to

modeling tumor evolution and subclonal structure. To
evaluate estimation methods for purity and ploidy, we
employed three popular, open-source, orthogonal
methods designed for either WES or ULP-WGS data
and compared across time points with high tumor frac-
tion (TFx > 10%). We ran ABSOLUTE [31] and FACE
TS [32] on WES data and compared the results to esti-
mates provided by ichorCNA [4] run on ULP-WGS data.
We found that purity measurements were generally ro-
bust to differences in algorithm and sequencing modality
(Fig. 2c). However, ploidy solutions were less stable (Fig.
2d), even across samples drawn over a short timeframe
from the same patient, among which one would not an-
ticipate a significant shift in ploidy. Overall, ichorCNA
provided the most stable ploidy profile, with similar pur-
ity estimates to ABSOLUTE/FACETS. For subsequent
modeling of clonal structure, we used ichorCNA purity
and ploidy solutions.

Copy number profiles are stable during treatment for
metastatic breast cancer
ULP-WGS of ctDNA provides high-quality copy number
information at TFx>0.10, making it feasible to follow
somatic copy number alterations (SCNAs) over the
course of treatment in the metastatic setting. Using
ichorCNA copy number profiles, we examined longitu-
dinal changes in log ratio and copy number state. Reduc-
tions in TFx corresponded with lower resolution copy
number profiles, as evident in the case vignette of par-
ticipant RP-466 (Fig. 3a). At the lowest levels of TFx,
global trends in somatic copy number alterations
(SCNAs) were maintained, but focal and sub-arm level

(See figure on previous page.)
Fig. 1 Study design and sampling dynamics. a Schematic diagram of the analysis workflow from patient selection, sample capture, and
sequencing to downstream analyses. We leveraged the Terra Genomics/FireCloud platform for data storage and high-performance computing
tasks. b Schematic representation of sampling density for each of the seven cohort members on study, also specifying whether whole exome
sequencing and/or targeted panel sequencing was performed on that sample. All samples received ultra-low-pass whole genome sequencing. c
Tumor fraction dynamics colored by individual. Tumor fraction was measured on study using ultra-low-pass whole genome sequencing and the
ichorCNA algorithm. d Tumor fraction dynamics recolored by RECIST v1.1 response by imaging categories. RECIST v1.1 bucket response type into
several categories: complete response (CR), partial response (PR), stable disease (SD), and progressive disease (PD)
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Fig. 2 (See legend on next page.)
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chromosomal events, like those at 1p, 4q, 10p, and 12q loci,
were lost. These trends were largely mirrored in the profiles
of the other cohort patients (Additional file 1: Figure S2).
To understand the SCNA dynamics, we assessed

SCNA stability between the first and last sequencing
time points for each patient in the cohort. We randomly
and uniformly sampled genomic positions, querying
their states at the first and last time points, and con-
structed a confusion matrix of possible copy number
states (Fig. 3b, c). Overall, we found stable genome
structure from first to last sampled time point, with
SCNA calls collapsed into amplification, neutral, and de-
letion states (balanced accuracy = 0.858, sensitivity =
0.815, specificity = 0.900). Similarly, comparison of the
discrete copy number at the first and last time point per
patient also yielded high accuracy, sensitivity, and speci-
ficity (balanced accuracy = 0.830, sensitivity = 0.716, spe-
cificity = 0.945), implying stability of the more specific,
called states over time.
To test the coherence of copy number information pro-

vided by ctDNA WES and TPS, we compared the log ra-
tios computed from ULP-WGS and the corresponding
measurement from either WES or TPS (target reads only).
WES displayed high concordance to ULP-WGS estimates
of log ratio (Pearson’s r = 0.948), but TPS displayed very
little relationship to ULP-WGS (Person’s r = 0.148) (Fig.
3b, c). In terms of the collapsed copy states (i.e., amplifica-
tion, neutral, and deletion), WES predicted ULP-WGS
states at rates better than chance (balanced accuracy =
0.746, sensitivity = 0.663, specificity = 0.830). TPS pre-
dicted these same states no better than random chance
(balanced accuracy = 0.523, sensitivity = 0.364, specificity
= 0.682). It may be the case that the on-target/off-target
binned read count strategy used in the WES/TPS copy
number analyses may be improved through the incorpor-
ation of allelic imbalance information at common SNP
loci if targeted panel bait sets are appropriately designed.

Modeling clonal architecture over narrow time frames via
ctDNA
As ctDNA offers the potential for high density, minim-
ally invasive sample collection, we explored its ability to

model the clonal structure of metastatic disease progres-
sion. Combining somatic variants found by deep TPS, as
well as total copy number information, purity, and
ploidy from ULP-WGS, we modeled the tumor subclo-
nal structure using the PyClone software package [34].
PyClone uses a hierarchical Bayesian approach, allowing
for joint estimation across variants and time points [34].
PyClone assigns variants into clusters, representing
underlying cellular populations or clones, and estimates
corresponding adjusted cellular prevalence for each
clone within the tumor proportion. Using a combinator-
ial approach which interfaces easily with PyClone output
profiles [35], we built phylogenetic trees and labeled the
detected non-synonymous, somatic alterations.
In our cohort, the structure and dynamics of subclonal

populations varied considerably. Profiles of three pa-
tients, RP-466, RP-527, and RP-557, illustrate the ob-
served trends among the patients (Fig. 4). RP-466 clone
populations were characterized, generally by stability
across the 147-day sampling window (Fig. 4a).
We noted that RP-466’s profile appears to fluctuate at

the fourth and sixth time points, in discordance with the
rest of the profile, potentially revealing overestimation of
sample purity at those time points. As an added sensitiv-
ity analysis (Additional file 1: Figure S3), we re-ran the
PyClone model under the same conditions removing (1)
the sample corresponding to the fourth time point (Add-
itional file 1: Figure S3A) and (2) the samples corre-
sponding to the fourth, fifth, and sixth time points
(Additional file 1: Figure S3B). The removal of these
samples has little impact on the general trends of the
clonal structure, with both plots display the same hall-
mark stability, as the original analysis. We note the only
identifiable change occurs in the second of the two sen-
sitivity analyses, where low-level residual clusters incon-
sistently split into an additional group. Since our
principal intent is to assess the feasibility of this model-
ing approach to real-time monitoring, we feet the re-
moval of any of these samples may tend to
misrepresent the anticipated utility of this approach;
thus, we decided to keep the original data intact for
subsequent analyses (Fig. 4a). The phylogenetic tree

(See figure on previous page.)
Fig. 2 Orthogonal ctDNA sequencing approaches are highly concordant. Somatic SNV and INDEL calling of whole exome sequencing (WES;
average depth 150X) and targeted panel sequencing (TPS; nominal sequencing depth 10,000X) were completed on the Terra/Firecloud platform
using gatk-Mutect2 pipelines (McKenna et al., 2010). a Variant recall assessment of TPS on somatic variants discovered in one or more WES assays.
Only variants intersecting theoretical capture regions of TPS were considered. Variants used in assessment were those called in WES at any point,
which also overlapped in genomic position with target or bait regions included in the TPS. X’s indicate a lack of adequate sequencing depth in
the TPS. Center and right panels compare variant allele frequency (VAF) data from each assay. b Scatter plot comparing estimated VAF in TPS and
WES sequencing across all individuals and time points. 1:1 line drawn for reference. c WES and ULP-WGS based algorithmic estimates of sample
purity (a.k.a. tumor fraction) across samples and time points with high tumor fraction (TFx > 10%). d Algorithm estimation of ploidy (averaged
copy number state across genome) across WES and ULP-WGS-based methods at time points with high tumor fraction. ABSOLUTE Soln.1 and
Soln.2 represent the top two proposed solutions by model likelihood (Included here, as ABSOLUTE often suggests manual curation and/or
override of the top solution)

Weber et al. Genome Medicine           (2021) 13:89 Page 9 of 17
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(See figure on previous page.)
Fig. 3. Copy number profiles are stable. Ultra-low pass whole genome sequencing (ULP-WGS) was performed on all 42 ctDNA samples and
tumor fraction and copy number data derived using ichorCNA. a Genome-wide copy profile of patient RP-466, derived from ULP-WGS on liquid
biopsy ctDNA, showing changes in focal event resolution resulting from shifts in tumor fraction. Dark green segments represent a copy number
of 1; blue represent neutral or 2 copies, brown and red represent 3 and 4+, respectively. b Scatter plot of computed log-ratios in ULP-WGS,
compared to those derived from WES or TPS data using binned read-count of on and off target bins. c Discrete copy number confusion matrix
for ULP-WGS based calls at first and last time points. All samples had tumor fraction ≥10%. Genomic positions assayed between first and last time
points were uniformly and randomly sampled, and discrete copy number states were capped between one and seven during initial
ichorCNA analyses

Fig. 4 Tumor subclonal dynamics vary across patients. Models of clonal and subclonal populations which make up the cancers of metastatic
patients, derived using PyClone [34]. Variant inputs include union of filter-passing alterations from each sampled time point delivered by the
commercially available liquid-biopsy targeted panel-sequencing pipeline at the Broad Institute. Copy number information and purity were derived
from ichorCNA. a, b Clonal prevalence dynamics, clustering, and inferred phylogenetic tree structure for patient RP-466, revealing generally
unchanging populations in the tumor, with important drivers occupying early positions in cell lineages. c, d RP-527 clonal dynamics profile and
inferred tree structure showing statistically significant clonal expansion of cell lineage marked by non-synonymous DDR2 and RNF43 variants. e, f
RP-557 profile and tree showing the opposite trend as RP-527, with a decreasing cell population marked by RB1 mutation
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structure inferred for patient RP-466 features hallmark
characteristics of cancer evolution, with high prevalence
somatic alterations in tumor suppressors and pleiotropic
signaling pathway members; TP53, CREBBP, PIK3CA, and
CDK4. Subsequently appearing non-synonymous alter-
ations span a wide variety of biological processes. It’s un-
clear whether any of these variants assigned to lower
nodes play important roles in subclone identity or whether
they are passenger mutations.
In contrast, RP-527 and RP-557 reflect shifts in

clonal dynamics over narrow time windows. In RP-
527, cluster four significantly expanded from back-
ground prevalence levels (D147-D0 = 0.461, n = 2, p
value = 0.04552, Welch two-sample T test) and per-
sists for at least 49 days (Fig. 4c). This expanding
cluster contained two missense variants of conse-
quence, a K/N substitution in the receptor tyrosine
kinase DDR2 as well as a splice-site variant in the
tumor suppressor RNF43 (Fig. 4d). DDR2 is a known
target of cabozantinib, shown to be inhibited through
kinome analysis of cabozantinib clinical trial speci-
mens via quantitative kinome analysis [41]. On the
other hand, RP-557 demonstrates a subclone (cluster
1) that drops in prevalence (D64-D0 = −0.205, n = 2,
p value = 0.1732, Welch two-sample T test), over the
64-day period. This drop appears to co-occur with
the dynamics in the dominant clones represented by
clusters 3 and 4 which dip and then rise in the final
sampled time point (Fig. 4e). This cluster is charac-
terized by decreased prevalence of a missense muta-
tion encoding a single H/L substitution in exon 11 of
the tumor suppressor RB1 (Fig. 4f). Clonal dynamics
for the remaining patients are visualized in (Add-
itional file 1: Figure S4) as are all variants and clonal
abundances for all samples (Additional file 1: Figure
S5), with variants annotated in (Additional file 2:
Table S3), both of which were completed using the
same TPS/ULP-WGS modeling strategy.

Whole exome sequencing uncovers driver mutations and
allows neoantigen discovery
To examine the longitudinal consistency of driver gene
variant calling in ctDNA WES data, we looked at known

driver mutations previously outlined in the breast cancer
literature [42, 43] as well as those found by the TCGA
Pan Cancer Atlas studies and OncoKB [44, 45]. Our data
indicate that WES of ctDNA samples recovers driver
variants consistently over multiple time points (Fig. 5a).
For example, the most frequently altered genes were
TP53 and PIK3CA, detected at every time point in seven
and three cohort members, respectively. Among pan
cancer drivers, EP400 was detected in three individuals,
and both synonymous and non-synonymous alterations
in the genes AMER1 and PTPRB were detected in two
cohort members. The low dropout rates of variants over
up to seven consecutive exomes at moderate read depth
indicate that detection of driver mutations overtime with
ctDNA is feasible.
Whole exome sequencing of ctDNA allows computa-

tional prediction of neoantigens. To this end, we lever-
aged NetMHCpan 4.0 [36], a published tool for
neoantigen prediction from mutational data. Among the
patients in our cohort, we detected between 36 and 195
novel alterations (median = 96) predicted to produce ei-
ther strongly or weakly binding neoantigens (Fig. 5b).
These sites account for 182–1007 unique peptide pre-
sentations per individual (median = 445). In general, we
found the number of novel, neoantigen-producing alter-
ations have a strong and positive correlation with the
total mutation burden (Pearson’s R = 0.992). Weakly
binding neoantigens were predicted more often than
strongly binding neoantigens, with an average detection
ratio of 2.9:1.
To take advantage of the serial nature of our study, we

looked at neoantigen dynamics over time. Representative
trends are illustrated by the individual profiles of RP-527
(Fig. 5c) and RP-535 (Fig. 5d). Predicted neoantigen dy-
namics for the other patients are visualized (Additional
file 1: Figure S6). Notably, the majority of strongly and
weakly binding neoantigen producing alleles are detect-
able at all time points (RP-527 = 475/851, RP-535 =
530/893 omnipresent neoantigens), despite fluctuations
in tumor fraction and clinical response. Despite this
trend, not all neoantigens are present at baseline. In RP-
527 and RP-535, we found 4.1% and 20.8% of variants
resulting in neoantigens were totally absent in day zero

(See figure on previous page.)
Fig. 5 Whole exome sequencing uncovers driver mutations and allows neoantigen prediction. Whole exome sequencing results from 31 total
samples with tumor fraction ≥10% using short variant and INDEL calling tools from gatk-Mutect2 pipelines (McKenna et al., 2010), with
subsequent neoantigen binding predictions for known MHC molecules from NetMHCpan 4.0 (Reynisson et al., 2020). a Driver mutations found via
whole exome sequencing across time points. Variant data visualized are those whose genes have been previously annotated in literature as
breast cancer drivers or pan cancer drivers. b Trends in predicted neoantigens among cohort members. Strong binders are denoted as those
peptide sequences with NetMHCpan ranks <0.5%, and weak binders are those with ranks <2%. Neoantigen Generating sSNV are alterations
whose changes to peptide structure are predicted to produce neoantigens capable of strong or weak binding to known MHC molecules. c, d
Neoantigen dynamics from patient RP-527 and RP-535, showing proportions of detected neoantigens and dropout over time. Strong, weak, and
ND labels correspond to binding affinity of predicted neoantigens, as well as a non-detected category to capture dropout. Threads are colored
by their state at the final sequencing time point
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sequencing. In RP-527, we find neoantigens which ap-
pear at the initial and final time points but disappear
intermittently below detectable levels in mid-series se-
quencing events. In both profiles, we also find neoanti-
gen alleles which dropout without re-detection, possibly
indicating loss of specific cell populations harboring
these variants. In addition, we find potentially clinically
important patterns of dynamics in specific neoantigens
which only present later in the course of therapy. In RP-
535, for instance, we find specific neoantigens which
present in the sixth and seventh exome sequencing as-
says, suggesting the development or expansion of vari-
ants resulting in novel predicted neoantigens.
In an exploratory analysis, we investigated the associ-

ation of the number of neoantigens with clinical out-
comes in this small cohort. We found no significant
association between cabozantinib progression-free sur-
vival (PFS) and total neoantigens either categorically
(above vs. below median total neoantigens, log-rank p=
0.87; Additional file 1: Figure S7A) or continuously (per
10 total neoantigens: HR 1.002, 95% CI 0.98–1.02, log-
rank p=0.9). However, there was an association between
overall survival from metastatic diagnosis and total
neoantigens, both categorically (above vs. below median
total neoantigens, log-rank p=0.02; Additional file 1: Fig-
ure S7B) and continuously (per 10 neoantigens: HR 0.96,
95% CI 0.92–1.0, log-rank p=0.03). This relationship be-
tween overall survival and neoantigens remained signifi-
cant for both strong binders alone (per 10 neoantigens:
HR 0.86, 95% CI 0.72–1.03, log-rank p=0.03), and weak
binders alone (per 10 neoantigens: HR 0.95, 95% CI
0.89–1.01, log-rank p=0.04). These exploratory data sup-
port investigation of predicted neoantigens in larger co-
horts of mTNBC with multivariable models.

Discussion
While tumor biopsies remain the gold standard for diag-
nosis, ctDNA-based “liquid biopsies” overcome many
limitations of tumor biopsies: metastases may be in-
accessible or not feasible to biopsy serially over time [46,
47]; biopsies sample a localized region of a single meta-
static site, which may introduce sampling bias [48]; biop-
sies may be painful and cause anxiety; and biopsies have
a risk of bleeding or infection [46]. Minimally invasive
ctDNA assays from simple blood draws offer the poten-
tial to serially analyze tumor genomic features through a
more patient-centric approach. To date, our understand-
ing of the opportunities and limitations of frequent
ctDNA analyses over days to weeks via orthogonal se-
quencing approaches is limited. In this study, we sought
to understand (1) tumor genomic changes (SNVs,
SCNAs, predicted neoantigens) detectable over narrow
time windows and (2) the performance, utility, and

limitations of orthogonal sequencing approaches and al-
gorithms on serial ctDNA samples.
This study provides an important assessment of the

tumor genomic features that change, or remain stable,
over narrow time windows. Overall, copy number was
stable across the seven patients in this cohort. This may
reflect that large-scale SCNA events occur early in
TNBC development and subsequent alterations are in-
frequent [49, 50], but should be evaluated in other
tumor types and settings (e.g., DNA damaging chemo-
therapy). Alternatively, this may reflect challenges and
limitations of SCNA characterization via ctDNA (dis-
cussed further below).
Conversely, we detected shifts in SNVs both via TPS

and WES approaches. To track within-patient clonal dy-
namics, we evaluated a combined ULP-WGS + TPS ap-
proach to obtain purity, ploidy, copy number, and
variant data, using PyClone for clonal reconstruction. In
general, performance of PyClone and subsequent phylo-
genetic reconstruction appear to depend heavily on the
number of variants recovered, and the number of sam-
ples taken. Our profiles with the best resolution had a
high number of variants and many time points. Deeper
sequencing may increase the number of trackable vari-
ants recovered from ctDNA, as well as lower the error in
modeling prevalence. Additionally, joint modeling across
sampling events is beneficial for studying response or re-
sistance to treatments over time. Finally, there were
many low prevalence variants (VAF< 20%), which were
inconsistently recovered across time. Further resolution
of these low-prevalence variants may be possible with
deeper sequencing, or deep sequencing of paired WBC,
depending on whether these markers represent members
of the tumor cell phylogeny or contaminating artifacts of
clonal hematopoiesis. Recent advances in personalized
ctDNA-based assays, in which a patients’ tumor is se-
quenced and validated mutation-specific primers are de-
veloped, may allow for higher sensitivity detection of
known variants in ctDNA than the method used in this
study [20, 22, 51]. However, these personalized mutation
panels fail to capture the development of new alterations
over time, limiting their utility to largely retrospective
analyses.
An intriguing finding regarding predicted neoantigens

from this study was the detection of either newly devel-
oped or clonally expanding alterations that result in pre-
dicted neoantigens over relatively short time frames.
This is the first study, to our knowledge, to specifically
track shifts in predicted neoantigens via ctDNA within
individual patients. Knowledge of sustained and emer-
ging neoantigen peptides has potential implications for
immunotherapy, including neoantigen vaccine develop-
ment and selecting patients or optimizing tumors to re-
spond to checkpoint inhibitors.
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This study is unique in analyzing serial ctDNA samples via
multiple ctDNA sequencing modalities (ULP-WGS, TPS,
WES). A major hurdle to clinical implementation of ctDNA
sequencing is inconsistency across platforms [40, 52]. When
evaluating specific alterations that demonstrated adequate se-
quencing quality and coverage on both TPS and WES, we
found very high recall. This reinforces the importance of
clinical ctDNA sequencing assays reporting quality metrics.
While reliable total copy number information can be inferred
in most ctDNA samples via ULP-WGS, allele-specific SCNA
resolution, especially for exome-based or panel-based assays,
remains a challenge. Other future areas of investigation in-
clude determinants of ctDNA “shedders” versus “non-shed-
ders” and the best use of very low TFx samples. Additionally,
we believe that investigating approaches specific to copy
number analysis on liquid biopsy exome and panel sequen-
cing would allow for more precise and affordable genetic
monitoring in metastatic cancers. Further work will also ex-
plore pre-analytical and analytical factors impacting ctDNA
results, particularly for rare variants detected at low allele
fractions.
This study does have limitations. Given the multi-sample,

orthogonal sequencing analysis approach, we focused on a
small number of patients with a single cancer sub-type who
all received the same therapy on clinical trial without a clin-
ical response. Thus, while we make some fundamental obser-
vations on technical aspects, generalization will require larger
studies in other tumor types and clinically interesting set-
tings. Also, these samples were collected using EDTA tubes
rather than the common preservative-based tubes commonly
used for ctDNA studies now: however, processing con-
formed to ASCO/CAP guidelines [53].

Conclusions
In this work, we demonstrate that analysis of multiple
ctDNA samples collected from patients over narrow
windows of time is not only feasible, but provides poten-
tially important insights into clonal and neoantigen dy-
namics. Our approach reveals strengths and limitations
of existing ctDNA sequencing and analytical approaches.
In the future, we anticipate the expansion of ctDNA ap-
plications in clinical use, including serial genetic moni-
toring of tumor dynamics in metastatic patients,
neoantigen prediction for immunogenic therapies, and
real-time modeling of prognoses. Our hope is that low
cost, minimally invasive genetic monitoring, made pos-
sible through ctDNA profiling, expands the toolkit of
physicians and patients in metastatic cancers of all
types—allowing more responsive approaches to the
management of metastatic treatment and facilitating
novel methodologies in translational research.
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