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Abstract

Background: Cell-free DNA (cfDNA) profiling is increasingly used to guide cancer care, yet mutations are not
always identified. The ability to detect somatic mutations in plasma depends on both assay sensitivity and the
fraction of circulating DNA in plasma that is tumor-derived (i.e., cfDNA tumor fraction). We hypothesized that cfDNA
tumor fraction could inform the interpretation of negative cfDNA results and guide the choice of subsequent assays
of greater genomic breadth or depth.

Methods: Plasma samples collected from 118 metastatic cancer patients were analyzed with cf-IMPACT, a modified
version of the FDA-authorized MSK-IMPACT tumor test that can detect genomic alterations in 410 cancer-associated
genes. Shallow whole genome sequencing (sWGS) was also performed in the same samples to estimate cfDNA
tumor fraction based on genome-wide copy number alterations using z-score statistics. Plasma samples with no
somatic alterations detected by cf-IMPACT were triaged based on sWGS-estimated tumor fraction for analysis with
either a less comprehensive but more sensitive assay (MSK-ACCESS) or broader whole exome sequencing (WES).
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Results: cfDNA profiling using cf-IMPACT identified somatic mutations in 55/76 (72%) patients for whom MSK-IMPACT
tumor profiling data were available. A significantly higher concordance of mutational profiles and tumor mutational
burden (TMB) was observed between plasma and tumor profiling for plasma samples with a high tumor fraction
(z-score≥5). In the 42 patients from whom tumor data was not available, cf-IMPACT identified mutations in 16/42
(38%). In total, cf-IMPACT analysis of plasma revealed mutations in 71/118 (60%) patients, with clinically actionable
alterations identified in 30 (25%), including therapeutic targets of FDA-approved drugs. Of the 47 samples without
alterations detected and low tumor fraction (z-score<5), 29 had sufficient material to be re-analyzed using a less
comprehensive but more sensitive assay, MSK-ACCESS, which revealed somatic mutations in 14/29 (48%). Conversely, 5
patients without alterations detected by cf-IMPACT and with high tumor fraction (z-score≥5) were analyzed by WES,
which identified mutational signatures and alterations in potential oncogenic drivers not covered by the cf-IMPACT
panel. Overall, we identified mutations in 90/118 (76%) patients in the entire cohort using the three complementary
plasma profiling approaches.

Conclusions: cfDNA tumor fraction can inform the interpretation of negative cfDNA results and guide the selection of
subsequent sequencing platforms that are most likely to identify clinically-relevant genomic alterations.
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Background
Molecular profiling of tumors using next-generation se-
quencing (NGS) is increasingly used to aid in diagnosis,
guide treatment selection, and monitor disease status in
patients with cancer. However, biopsies of primary or
metastatic lesions may not be of sufficient quality for
genomic analysis, or may fail to capture spatial and/or
biologic heterogeneity or treatment-associated clonal
evolution. Profiling of plasma cell free DNA (cfDNA) in
body fluids can overcome many of these limitations [1,
2] by allowing for serial, minimally invasive sampling
which can be used to identify targetable genomic alter-
ations, monitor treatment response [3], detect minimal
residual disease [4], or screen for cancer in high-risk
populations [5, 6].
Negative cfDNA results must, however, be interpreted

with caution. In patients with cancer, the cfDNA in
plasma is derived from both tumor and normal cells, in
particular white blood cells [7]. cfDNA tumor fraction,
defined as the fractional proportion of tumor DNA rela-
tive to total cfDNA, is dependent on multiple factors, in-
cluding disease extent (localized vs metastatic) [8],
overall tumor burden, disease activity (progressing,
stable or responding to systemic therapy) [9], patient-
context factors such as fasting status or physical activity
prior to blood collection [10], and technical pre-analytic
factors related to sample acquisition, transport, and
sample processing procedures [11], among others.
The likelihood of detecting a tumor mutation in

plasma is dependent on (i) the cfDNA tumor fraction,
(ii) the breadth and depth of the cfDNA assay employed,
and (iii) the total number of tumor-derived mutations
interrogated. Given the generally low fraction of tumor-
derived DNA in plasma, many commercial cfDNA assays
are designed to screen for a small number of actionable

genomic alterations through ultra-deep sequencing (usu-
ally >10,000x total coverage) through targeted analysis of
a limited pre-selected genomic territory (<500kb). These
highly focused cfDNA assay are not well suited for dis-
covery of new resistance mechanisms or the detection of
global genetic features such as tumor mutational burden
(TMB), which has been shown to be predictive of im-
munotherapy response [12]. In contrast, broader sequen-
cing assays such as whole exome sequencing (WES,
typically >35Mb) are better suited to discovering novel
resistance mechanisms [13], quantifying TMB [14], or
for characterizing mutational signatures predictive of
drug response [15]. However, the sensitivity of plasma
WES for detecting individual mutations is generally lim-
ited to those mutations that are present at 5% or greater
allele frequency given current per megabase sequencing
costs. Recent studies have also demonstrated the feasibil-
ity of ultra-deep sequencing (>60,000x) across a
medium-size panel (~500 genes) to reveal low-allele fre-
quency mutations in plasma [16], or 30X whole genome
sequencing of cfDNA to detect minimal residual disease
by tumor-guided genotyping [17]. These approaches rep-
resent promising noval platforms for discovery research
but remain cost-prohibitive for near-term clinical
implementation.
Given the tradeoffs inherent in current cfDNA plat-

forms, negative cfDNA results need to be interpreted
with caution as the failure to detect a potentially action-
able mutation or mutational signature may be due to
low tumor fraction in plasma or, in the case of targeted
panel sequencing, the presence of driver mutations in
genomic loci not covered by the assay design. In this
study, we assessed whether cfDNA tumor fraction esti-
mation through low-pass, shallow whole genome se-
quencing (sWGS) [15, 18, 19], fragment size analysis [20,
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21], or both [22] could facilitate the interpretation of
negative cfDNA results and guide the choice between
broader WES and less comprehensive but more sensitive
ultra-deep sequencing assays to screen for clinically rele-
vant mutations or mutational signatures.

Methods
Sample collection, consent, and patient characteristics
Patients with metastatic solid tumors treated at a single
academic cancer center (Memorial Sloan Kettering Can-
cer Center, New York, USA) were studied. Patients had
one of several tumor types including breast cancer, pros-
tate cancer, urothelial cancer, testicular cancer, melan-
oma, and non-small cell lung cancer (Additional file 1:
Table S1). Patients were consented to an IRB-approved
research protocol (NCT01775072) which permits gen-
omic profiling of tumors, cfDNA, and matched normal
blood.

Plasma processing, cfDNA extraction
Whole blood was collected in 10-ml Cell-Free DNA
BCT tubes (STRECK, USA) and centrifuged in two steps
to separate cell-free supernatant from cells. In step 1,
samples were centrifuged at 800g for 10 min (ambient
temperature). Plasma supernatant was then separated
from red blood cells. In step 2, separated supernatant was
further centrifuged in a high-speed micro-centrifuge at 18,
000g for 10 min (ambient temperature). Cell-free plasma
supernatant was then aliquoted and frozen at −80°C until
DNA extraction. Extraction of cfDNA was performed
using a fully automated QIAGEN platform, QIAsymphony
SP, and the QIAsymphony DSP Virus/Pathogen Midi Kit
(QIAGEN, Germany). Quality and quantity of cfDNA was
evaluated with automated electrophoresis using the Frag-
ment Analyzer with the High Sensitivity genomic DNA
Analysis Kit (Advanced Analytical, USA). Plasma samples
from 10 healthy donors were subjected to the same ex-
traction and quantification process.

MSK-IMPACT analysis of tumor and plasma DNA
Two hundred fifty nanograms of DNA extracted from
tumor and matched whole blood normal were subjected
to targeted sequencing using MSK-IMPACT to a target
depth of 644x as previously described [23]. Sequencing
libraries were prepared according to the KAPA Hyper
protocol (Kapa Biosystems, USA) with the ligation of
Illumina sequence adaptors followed by PCR amplifica-
tion and purification as described [23]. Sample-specific
indexes were added to each library. For cf-IMPACT, 5–
100 ng of DNA was extracted from plasma or 50 ng
DNA from matched white blood cells and then sub-
jected to the same protocol except that an adapter con-
centration of 4.5 μM was used to increase the reaction
efficiency. Pre-capture libraries were quantified with

Qubit (Invitrogen, USA). An equal amount of each DNA
library (~250 ng per sample) was pooled for
hybridization capture using the NimbleGen SeqCap Tar-
get Enrichment system (Roche, USA) at 55°C for 16 h,
followed by post-capture washes and 16 cycles of PCR
amplification. The pooled, purified libraries containing
captured DNA fragments were then sequenced using the
Illumina HiSeq system to an average of 631x depth. The
version of MSK-IMPACT used for cfDNA profiling (cf-
IMPACT) was designed to detect known mutations at
1% VAF by genotyping based on prior tumor sequencing
results, or de novo identification of mutations at 2%
(hotspot) and 5% (non-hotspot) allele frequency across
410 genes [23, 24]. When available, matched tumor tis-
sue sequencing results were analyzed to assess the
clonality of single nucleotide variants (SNVs) using
FACETS (v.0.5.6) [25]: A clonal mutation was defined as
a mutation with an estimated cancer cell fraction (CCF)
of 75% or higher, and sub-clonal mutations were those
with a CCF below 75%. Variant allele frequencies were
determined by calculating the ratio of sequencing reads
supporting the variant allele versus the total (mutant +
wild type) number of reads at a given locus. When mul-
tiple mutations were detected, the median variant allele
frequencies (mVAF) were calculated. MSI status in
tumor and plasma was determined using MSIsensor
[26]. Tumor mutational burden (TMB) in plasma sam-
ples analyzed by cf-IMPACT was calculated as the num-
ber of non-synonymous mutations per megabase
(mutation/Mb) based on an panel size of 1,016,478 bp.
When comparing the mutation data between tumor and
plasma, we focused our analysis on the 410 genes that
were covered by both the tumor MSK-IMPACT and
plasma cf-IMPACT.

Shallow whole genome sequencing (sWGS) and whole
exome sequencing of plasma cfDNA
sWGS of plasma cfDNA and whole exome sequencing
[13] of plasma cfDNA were performed as previously de-
scribed [27]. Briefly, for sWGS, libraries were sequenced
to approximately 10 million reads per sample and ana-
lyzed using Plasma-Seq, which generates a genome-wide
z-score as an estimation of tumor fraction by comparing
global copy number alterations in a given plasma sample
to a panel of normal healthy donors [18, 27]. Patients
were then stratified using the Plasma-Seq algorithm as
having high (z-score≥5) or low (z-score<5) cfDNA tumor
fraction [19]. For comparison, the same data were also
analyzed using the ichorCNA algorithm to estimate
cfDNA tumor fraction [15]. Fragment lengths were col-
lected from the insert size data and short fragments were
defined as 0–150 bp and long fragments as 151–500 bp
[20]. For whole exome sequencing, sequencing libraries
were pooled in appropriate ratios depending on total
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mass and subjected to exome capture using the Nimble-
Gen SeqCap Exome Target Enrichment system and se-
quenced to a mean depth of 384X. Somatic alterations
and mutational signatures were identified using a cus-
tom bioinformatics pipeline (https://github.com/mskcc/
mutation-signatures). Clinical actionability of the vari-
ants were defined according to the OncoKB Precision
Oncology Database [28].

Ultra-deep sequencing of cfDNA using the MSK-ACCESS
assay
Approximately 10 ng of cfDNA or 50 ng of matched
buffy coat DNA per sample was used for DNA library
construction using the KAPA Hyper DNA library prep-
aration kit (Roche, Switzerland). Custom DNA probes
and unique molecular indexes (UMI) (Integrated DNA
Technologies, USA) were designed to capture selected
exons and introns of 129 genes. Pre-capture libraries
were quantified with Qubit (Thermo Fisher Scientific,
USA). Equal amounts of each DNA library were then
pooled for hybridization capture using a customized cap-
ture protocol modified from the NimbleGen SeqCap
Target Enrichment system (Roche, Switzerland). The
captured DNA libraries were then sequenced on an Illu-
mina HiSeq with paired end reads (2×100 bp). A panel
of 10 normal cfDNA samples was analyzed to establish
the background error profiles in order to remove se-
quencing artifacts. Sequencing reads were aligned to the
human genome (hg19) after UMI clipping, and reads
originating from the same DNA fragments were col-
lapsed into consensus read sequences using a custom
collapsing algorithm (https://github.com/mskcc/
Marianas). Consensus reads were then aligned back to
the human genome followed by variant calling using a
custom pipeline involving mutation callers VarDict
(V1.5.1) [29] and MuTect (V1) [30]. A summary of the
sequencing analysis workflow of the 118 samples in this
study is shown in Additional file 2 Fig. S1.

Statistical analyses
We applied a logistic regression model with 5-fold cross
validation to distinguish between high (≥ 10% mVAF) or
low (<10% mVAF) tumor fractions in cfDNA, using the
following features: (i) copy number profiles (represented
by genome-wide z-scores) derived from sWGS and (ii)
fragment size profiles from targeted sequencing (cf-
IMPACT). We evaluated the performance of predicting
tumor fraction using different ranges of fragment size
distribution, including 40–140 bp, 163–169 bp, and
210–330 bp extracted from the respective sequencing
data, and chose the size range with the best performance
to then compare with the copy number-based method.
Differences in the fraction of cfDNA in these size re-
gions have been reported to distinguish cancer patients

from non-cancer individuals’ cfDNA [20]. The perform-
ance of each type of feature was measured by 5-fold
cross-validation and then used to plot a receiver operat-
ing characteristic (ROC) curve and to calculate the area
under the curve (AUC). A Mann-Whitney U test was
performed to determine the difference in distributions in
the genome-wide z-scores between different groups.
Fisher’s exact test was performed to test for enrichment
of agreement between tumor and plasma in different
categories. A Pearson’s chi-squared test with Yate’s con-
tinuity correction was applied to determine the inde-
pendence of categorical variables such as the agreement
between tumor and plasma and different tumor content.
A p-value <0.05 was considered statistically significant.

Results
Estimation of cfDNA tumor fraction using genome-wide
copy number profiles and cfDNA fragment size
Plasma was prospectively collected and analyzed from
118 solid tumor patients with progressing metastatic dis-
ease. Each plasma sample was analyzed using both cell-
free MSK-IMPACT (cf-IMPACT) and shallow whole
genome sequencing (sWGS). While cf-IMPACT can de-
tect mutations, copy number alterations, and gene fu-
sions in 410 cancer-associated genes, we focused in this
study on the detection of non-synonymous mutations.
To establish a rough estimate of tumor fraction in
cfDNA, we computed the mean variant allele frequency
(mVAF) in each sample based on the mutations detected
by cf-IMPACT. In parallel, we used two algorithms,
Plasma-Seq and IchorCNA, to generate a tumor fraction
estimate by calculating a genome-wide z-score based on
chromosomal copy number alterations in cfDNA mea-
sured by sWGS [15, 27]. We found that the sWGS-based
estimated genome-wide z-scores were significantly higher
in patients with mutations detected by cf-IMPACT (mean
7.91; range 0.106–34.2) compared to those without
mutations detected (mean 2.14; range 0.0178–17.9;
Mann-Whitney test, p=5.6e−09), and healthy blood
donors (mean 0.026; range −1.86 to 2.29 Mann-
Whitney test, p=4.7e−10) (Fig. 1a). These observations
held true when tumor fraction was estimated using
ichorCNA instead of z-score statistics (Additional file 2:
Fig. S2A). As the z-scores in the healthy donor samples
were calculated by comparing the samples to another
independent cohort of healthy individuals previously pub-
lished [27], z-scores <0 could be observed due to low-level
inter-individual variations. The ichorCNA tumor fraction
estimates also strongly correlated with both the mVAF
(correlation coefficient 0.84; Additional file 2: Fig. S2B)
and the z-scores (correlation coefficient = 0.72; Additional
file 2: Fig. S2C).
Since the copy number-based approach to estimate

cfDNA tumor fraction in plasma is dependent on the

Tsui et al. Genome Medicine           (2021) 13:96 Page 4 of 15

https://github.com/mskcc/mutation-signatures
https://github.com/mskcc/mutation-signatures
https://github.com/mskcc/Marianas
https://github.com/mskcc/Marianas


presence of tumor-specific copy number alterations, it
may underestimate cfDNA tumor fraction in patients
with tumors that are copy number neutral. To address
this possibility, we evaluated alternative strategies to esti-
mate cfDNA tumor fraction that do not depend on
tumor genomic information. Previous studies have
shown that the average fragment length of tumor-

derived cfDNA is shorter than cfDNA derived from nor-
mal white blood cells and that the relative proportions
of short and long fragment sizes differs between cancer
patients and healthy individuals [20]. We therefore eval-
uated the performance of different fragment size ranges
(see the “Methods” section) to predict whether or not a
given cfDNA sample would have a mVAF of 10% or

Fig. 1 Estimation of cfDNA tumor fraction by genome-wide copy number profiles or fragment size profiles. a Comparison of shallow whole
genome sequencing (sWGS)-estimated z-score distribution between plasma samples from healthy controls and cancer patients with or without
mutations detected by cf-IMPACT (cell-free MSK-IMPACT). b Comparison of cfDNA fragment size, expressed as the ratio of the counts between
short to long fragments (0–150 bp)/(151–500 bp), in plasma samples from healthy controls and cancer patients with or without mutations
detected by cf-IMPACT. c Correlation between sWGS-estimated z-scores and median variant allele fraction (mVAF) as quantitated by cf-IMPACT
analysis of plasma cfDNA. Correlation between the ratio of the counts between short to long fragment (0–150 bp)/(151–500 bp) computed from
cf-IMPACT data and median variant allele frequency (mVAF) quantitated by cf-IMPACT analysis in cfDNA. d Comparison of model performance of
global copy number change (Z-scores) from sWGS and the short to long fragment size ratio computed from cf-IMPACT data to predict high or
low tumor fraction
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greater, using a logistic regression model with 5-fold
cross-validation. We found that the ratio of short to long
fragment size (0–150 bp)/(151–500 bp) provided the
best performance among the size ranges tested. We then
computed the ratio of short to long fragment size (0–
150 bp)/(151–500 bp) of the cf-IMPACT data and found
that samples with mutations detected by cf-IMPACT
had a significantly higher ratio of short to long frag-
ments than samples with no mutations detected (Mann-
Whitney test, p=0.00021, Fig. 1b). We then plotted the
distribution of genome-wide z-score and short to long
size ratio, respectively, against the mVAF, and found a
strong correlation between z-score and mVAF (correl-
ation coefficient 0.72) but only a modest correlation be-
tween size ratio and mVAF (correlation coefficient 0.51,
Fig. 1c). We then compared the performance of cfDNA
tumor fraction prediction based on fragment size versus
sWGS genome-wide z-scores and found that copy
number-based z-score statistics (AUC=0.925) performed
better than size-based estimates (AUC=0.828) (Fig. 1d).
Combining the two features (fragment size profiles and
z-scores) resulted in similar performance (AUC=0.928)
to that of sWGS-based z-score alone. Therefore, in this
study, we decided to use the sWGS-based z-score alone
to estimate whether a cfDNA sample had low or high
tumor fraction.

cf-IMPACT analysis detected tumor-derived mutations in
the majority of plasma samples with high tumor fraction
In the 76 patients with available tumor mutation profil-
ing data, we identified somatic mutations in the cfDNA
of 72% (55/76) using a combination of de novo mutation
identification and genotyping of previously known muta-
tions from the patient-matched tumor MSK-IMPACT
results. cfDNA samples with at least one mutation de-
tected had significantly higher genome-wide z-scores
compared to those patients with no mutations detected
in plasma (p-value = 1.2e−05) and unrelated healthy
blood donors (p-value=0.0002) (Additional file 2: Fig.
S3A). We next compared the distribution of z-scores to
the mVAF and found that 22 (88%) of the 25 samples
with a mVAF of ≥10% had a z-score of ≥5, and 46 (90%)
of the 51 samples with mVAF of <10% had z-scores of <
5 (Additional file 2: Fig. S3B), consistent with published
results [8]. We also found that the percentage of all
tumor mutations that were detected in plasma was sig-
nificantly higher in plasma samples with z-scores of 5 or
higher (Mann-Whitney test, p=3.3e−07; Fig. 2, Add-
itional file 2: Fig. S4). Notably, in some patients, cfDNA
analysis also revealed sub-clonal mutations that were
present in the tumor below the detection threshold of
the MSK-IMPACT tumor profiling assay. For example,
in a metastatic castration-resistant prostate cancer
(mCRPC) patient, cf-IMPACT analysis of plasma

revealed an AR p.H875Y mutation, a likely acquired re-
sistance mechanism to prior hormonal therapy. A tumor
biopsy was then collected 6 days after the cfDNA sam-
ple, and MSK-IMPACT analysis confirmed the presence
of this AR mutation at a VAF of 0.3%, significantly below
the threshold for de novo mutation calling using the
MSK-IMPACT assay. These data are consistent with
prior studies suggesting the potential for cfDNA to de-
tect clinically informative sub-clonal mutations [9, 31].

High cfDNA tumor fraction was associated with
mutational concordance between cfDNA and tumor
mutational profiles
We then investigated the mutational concordance be-
tween tumor and plasma mutational profiles in the con-
text of (1) sWGS-based z-score (as an estimate of high
versus low tumor fraction in cfDNA), (2) clonality of the
mutations in the corresponding tumor, (3) the time
interval between tumor and plasma collection, and (4)
whether the mutation was oncogenic and/or therapeut-
ically actionable. We found that the fraction of shared
mutations between tissue and plasma was significantly
higher in cfDNA samples with z-scores ≥5 (207/283,
73%) relative to those with a z-score <5 (160/320, 50%,
Fisher’s exact test, p-value = 6.72e−09; Fig. 3a, Add-
itional file 3: Table S2). This observation held true for
both clonal (70/73, 96% [z-score ≥5] versus 97/151, 64%
[z-score <5], Fisher’s exact test, p-value = 5.78e−08) and
sub-clonal (99/122, 81% [z-score ≥5] versus 25/84, 30%
[z-score <5], Fisher’s exact test, p-value = 1.03e−13) mu-
tations (Fig. 3b). We next evaluated the effect of collec-
tion time interval between tumor and plasma. Patients
with plasma and tumor samples collected less than 180
days apart generally had a higher, but not statistically
significant, median proportion of tumor mutations de-
tected in plasma than those with the two specimens col-
lected 180 days or more apart (Mann-Whitney test, p=
0.22, Additional file 2: Fig. S5). To account for the effect
of z-score in this analysis, we confirmed that there was
no significant difference in z-scores between the two col-
lection time intervals (Mann-Whitney test p-value = 0.24).
Similarly, mutation type (hotspot, oncogenic, or clinically
actionable) was also not associated with the likelihood of
detection in plasma (Additional file 2: Fig. S6).

TMB quantitation and assessment of MSI status by
cf-IMPACT
Tumor mutation burden (TMB) and microsatellite in-
stability (MSI) status have been associated with response
to immunotherapy [12]. One limitation of current com-
mercial cfDNA assays is that their small genomic foot-
print (typically <500kb) limits their ability to quantify
tumor mutational burden or detect mutational signatures
associated with drug response. Among patients with tumor
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Fig. 2 Detection of tumor-derived mutations in plasma by cf-IMPACT as a function of cfDNA tumor fraction. a–c Concordance of mutations
detected by tumor and cf-IMPACT as a function of increasing z-scores. Patients with a bladder, b prostate, and c germ cell cancers that had both
tumor and plasma mutational data are shown. The top 8% (bladder), 4% (prostate), and 20% (germ cell tumor) most frequently mutated genes
are shown. The thresholds of 2.5 and 5 z-scores corresponding to 5% and 10% tumor fraction delineates a clear cutoff between a majority of
samples with mutations detected in plasma from samples with few or no plasma mutations detected in each of the cancer types
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data available, tumor-based MSK-IMPACT analysis identi-
fied 15 patients with high TMB (defined as ≥10 mutations/
Mb). Of these 15 patients, 11 of them were also found to
have ≥10 mutations/Mb in the corresponding cf-IMPACT
analysis. The remaining 4 cfDNA samples all had z-score <
5, suggesting that the lack of TMB concordance between
tumor and plasma analysis in these cases was likely due to
low levels of tumor-derived DNA in plasma, rather than
lesion-to-lesion genomic heterogeneity. The correlation of
TMB between matched tumor and plasma was also higher
in patients with z-scores ≥5 (correlation coefficient between
tumor and plasma TMB: 0.894, p-value: 1.7e−09, slope =
0.929) versus z-scores <5 (correlation coefficient:
0.476, p-value: 0.0079, slope = 0.525) (Fig. 3c).
Apart from TMB, we also sought to determine

whether MSI status could be accurately determined from
cf-IMPACT analysis using MSIsensor [26]. The cohort in-
cluded two metastatic castration-resistant prostate cancer
patients with high MSIsensor scores (>10), both of whom
were found to have high TMB based on the plasma
cf-IMPACT analysis above. In one patient, at the time of
cf-IMPACT analysis, two prior tumor biopsies collected
from the prostate and bone had been deemed inadequate
for MSK-IMPACT tumor genomic profiling due to
insufficient tumor DNA. After detecting the MSI-High
status by cf-IMPACT, a subsequent third biopsy (a
bone lesion) confirmed the cf-IMPACT result, leading
to treatment with the anti-PD-1 antibody pembrolizu-
mab following progression on hormonal therapies
[32]. Pembrolizumab treatment resulted in a dramatic
and durable response with a decline in serum PSA from
118 to <10, which has been durable for over a year
(Fig. 4a).

Analysis of plasma DNA revealed clinically actionable
mutations without prior knowledge from the tumor
A common challenge with tumor-based molecular pro-
filing is the lack of adequate tumor tissue for NGS-based
genomic profiling. We therefore sought to determine
whether cf-IMPACT could identify targetable genomic
alterations in the 42 patients for whom adequate tumor
tissue was unavailable for tumor profiling (N=25) or in
whom prior tumor testing had failed to identify any
known oncogenic mutations (N=17). In total, cf-IMPACT
identified somatic mutations in 11 of 25 (44%) patients
who had no tumor available or in whom the test had failed
due to poor sample/DNA quality, and 5 of 17 (29%)
patients whose tumors had previously be analyzed by
MSK-IMPACT but no somatic alterations were identified
(Fig. 4b). Mutations detected included OncoKB Level 1
alterations (defined as predictive biomarkers of response to
an FDA-approved drug) such as BRCA2 mutations, which
are predictive of response olaparib (a poly(adenosine
diphosphate-ribose) polymerase (PARP) inhibitor) in pros-
tate cancer [33], and PIK3CA mutations, which are predict-
ive of response to alpelisib (a selective PI3 kinase inhibitor)
in breast cancer [34] (Fig. 4c). Consistent with the
results in the 76 patients with matched tumor tissue,
sWGS-based z-scores were significantly higher in the
samples with mutations detected as compared to
those without mutations detected (Additional file 2:
Fig. S3).
Across the entire cohort, cf-IMPACT identified som-

atic mutations in cfDNA in 71/118 (60%) patients,
including variants associated with potential clinical
actionability (OncoKB levels 1-4) [28] in 30/118 (25%)
patients (Fig. 4c). In the 47 patients in which cf-

Fig. 3 Agreement between plasma and tumor MSK-IMPACT profiles in the context of sWGS-estimated cfDNA tumor fraction. a Comparison of
the proportion of mutations detected in both plasma and tumor (shared, percentages shown on graph), versus mutations detected in tumor
only, or plasma only. Data shown for three categories: all samples, samples with low tumor fraction (z-score <5) in plasma, and samples with high
tumor fraction (z-score ≥5) in plasma. b Comparison of the proportion of clonal versus subclonal tumor mutation detected in plasma samples.
Data shown for three categories: all samples, samples with low tumor fraction (z-score <5) in plasma, and samples with high tumor fraction
(z-score ≥5) in plasma. Clonality was defined based on tumor cancer cell fractions estimated by FACETS analysis. c Comparison of mutation burden as
quantitated by MSK-IMPACT analysis of tumor and plasma. Samples are color coded based on z-score: ≥5 (blue) versus <5 (gray)
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Fig. 4. (See legend on next page.)
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IMPACT did not detect any somatic variants, 42/47 had
z-score <5 (Additional file 2: Fig. S1).

Ultra-sensitive targeted sequencing can identify clinically
relevant alterations in plasma samples with low tumor
fractions
To explore the biologic basis for the failure to detect any
somatic mutations in the plasma samples of the 42 pa-
tients with no mutations detected by cf-IMPACT and
sWGS-estimated z-scores <5, we utilized an ultra-deep
sequencing assay (MSK-ACCESS) that could detect mu-
tations at a VAF as low as 0.1%. We hypothesized that a
subset of these patients had actionable tumor-derived
somatic mutations in plasma at allele frequencies below
the limit of detection of cf-IMPACT. To achieve higher
sensitivity, we employed error correction using unique
molecular indices. As this approach requires significantly
greater sequencing depth (target depth of coverage of
>12,000x), the breadth of this assay was limited to se-
lected exonic and intronic regions of only 129 cancer as-
sociated genes (around 13% of the genomic territory
covered by cf-IMPACT).
Of the 42 patients with no mutations detected by cf-

IMPACT and z-scores <5, 29 had sufficient leftover
plasma derived DNA for analysis by MSK-ACCESS.
Within this subset, MSK-ACCESS identified 19 high-
confidence somatic mutations in 14 (48%) patients.
These mutations had a median VAF of 0.49% (range
0.05–3.64%), and 7 (34%) were clinically actionable
based on the OncoKB knowledgebase [28] (Fig. 5, Add-
itional file 4: Table S3). A notable example was a heavily
pre-treated metastatic breast cancer patient in which
neither tumor (MSK-IMPACT) nor cf-IMPACT de-
tected any somatic mutations. Ultra-deep sequencing of
cfDNA using the MSK-ACCESS assay, identified an
ESR1 p.E380Q mutation, an alteration previously associ-
ated with resistance to hormonal therapy [35], at a vari-
ant allele frequency of 1.7%. Notably, evidence of this
mutation was present in the cf-IMPACT data below the de-
tection threshold of that assay, illustrating that more

sensitive profiling methods could identify alterations of
potential clinical relevance in samples with low tumor
fraction.

Whole exome sequencing of plasma samples with high
cfDNA tumor fraction to identify tumor-derived
mutational signatures and oncogenic alterations
Five of the 47 patients with no mutations detected by cf-
IMPACT had sWGS-estimated z-scores ≥5. We hypoth-
esized that these samples harbored oncogenic mutations
in genes not covered by the MSK-IMPACT panel.
Indeed, WES of cfDNA (cf-WES) identified somatic
mutations in all 5 samples (average 212, range 169–268
mutations) with an average mVAF of 11% (range 8.1–
13.4%). Ninety-nine percent of mutations identified by
cf-WES were in genomic regions not covered by MSK-
IMPACT, with 13.1% of the mutations present in genes
reported to be mutated in the TCGA analyses of the
respective cancer types. We were able to obtain suffi-
cient tumor material to perform WES on the tumor
specimens from 3 of the 5 patients who underwent
cf-WES and observed that the predominant muta-
tional signatures found in tumor were also detectable
in plasma. cf-WES also revealed likely oncogenic al-
terations not covered by the cf-IMPACT assay design
including a likely oncogenic frameshift deletion in the
tumor suppressor IRF1 [36] in a prostate cancer pa-
tient, and in a urothelial cancer patient a likely onco-
genic frameshift deletion in EP400, which encodes a
component of the NuA4 histone acetyltransferase
complex that positively regulates transcription [37].
These results confirm that cfDNA tumor fraction esti-
mates based on sWGS-based z-scores can identify pa-
tients who could benefit from a more comprehensive
plasma-based profiling approaches.
Taken together, tumor fraction-guided ultra-deep or

whole-exome sequencing identified oncogenic or likely
oncogenic mutations in 19/34 (43%) samples with nega-
tive results by cf-IMPACT. Overall, using the three com-
plementary plasma profiling approaches, we identified
mutations in 90/118 (76%) patients in the entire cohort.

(See figure on previous page.)
Fig. 4. cf-IMPACT revealed actionable alterations in plasma without prior knowledge from tumor. a Treatment timeline of a metastatic prostate
cancer patient whose initial prostate needle biopsy and bone biopsy showed negative results on tumor MSK-IMPACT testing. cf-IMPACT revealed
MSI-High status and a high tumor mutational burden. A later tumor biopsy confirmed these results and the patient was then treated with
pembrolizumab resulting in a significant clinical response, as reflected by a sharp drop in serum PSA from 118 to 6 within a month and later to
undetectable levels. b Summary of the number of patients analyzed by cf-IMPACT and the proportion with somatic variants of potential clinical
actionability according to the OncoKB knowledgebase. De novo analysis refers to the identification of mutations without prior knowledge of the
tumor mutational profile. Mutations detected refers to the genotyping of mutations in cfDNA based on prior knowledge of the matching tumor. c
Summary of mutations in patients with OncoKB level 1–4 variants (gene name shown) identified in plasma cfDNA. Mutations that were detected
in both tumor and plasma are indicated with a dot and a filled square. Mutations detected only in plasma but not in the matched tumor are
indicated with a filled square. Mutations detected in plasma in patients for whom tumor analysis was not available are indicated with a filled
square with a line. The colors of the boxes represent the corresponding OncoKB annotations (green=level 1, dark purple=level 3A, light purple=
level 3B, gray=level 4)
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Discussion
Tumor molecular profiling is increasingly used to guide
treatment selection in patients with advanced solid tu-
mors. Oncologists now need to rapidly screen for an in-
creasing number of disease-specific or tumor agnostic
biomarkers of drug response, and a lack of adequate
tumor tissue for comprehensive tumor profiling can
delay the administration of the most appropriate sys-
temic therapies. Patients with metastatic cancers that are
difficult to biopsy, such as bone only metastatic prostate
and breast cancers, are at particular risk of never

receiving the most effective targeted therapies or poten-
tially curative immunotherapies [38].
The observation that tumor-derived DNA is present in

the plasma of patients with cancer has made possible the
non-invasive detection of actionable somatic mutations
as a guide to treatment selection [39]. While whole ex-
ome and genome-scale sequencing of cfDNA is feasible
in cancer patients [13, 17], the low fraction of cfDNA
derived from tumor and the high cost of sequencing
limit the clinical feasibility of such approaches. Con-
versely, more sensitive but more focused cfDNA

Fig. 5 cfDNA tumor fraction guides the optimal selection of profiling assays. a MSK-ACCESS analysis of cfDNA samples with sWGS-estimated z-
score <5 and no mutations detected by cf-IMPACT identified mutations at allele fractions below the detection limit of cf-IMPACT. Mutations with
potential clinical relevance that were not detected by cf-IMPACT but were identified by MSK-ACCESS are highlighted. Retrospective manual
curation of cf-IMPACT data guided by MSK-ACCESS results revealed evidence of a subset of mutations below the detection limit of cf-IMPACT.
The dotted lines indicate the two different detection limits of cf-IMPACT: 1% for genotyping of mutation known from tumor profling and 2% for
de novo calling of hotspot mutations. The colors of the shapes represent the corresponding OncoKB annotations (dark purple=level 3A, light
purple=level 3B, gray=level 4, open = variants not listed on levels 1–4)
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platforms can only detect those clinically actionable mu-
tations covered by the assay design. Small gene panels
are also not well suited for the characterization of global
genomic features such as mutational signatures or tumor
mutational burden, which was recently recognized by
the FDA as a tumor agnostic biomarker of immune
checkpoint inhibitor response. In the clinical setting,
parallel or sequential testing of cfDNA using comple-
mentary assays could provide additional clinically rele-
vant information. For example, in cancer types such as
ovarian and prostate cancer where targetable hotspot
mutations are less common, a broader profiling ap-
proach can reveal patterns of structural somatic alter-
ation that are predictive of response to systemic
therapies, such as PARP inhibitors or immune check-
point blockade [40].
In this study, we assessed whether cfDNA tumor frac-

tion estimates could serve as a guide to the interpret-
ation of plasma cfDNA results, especially negative
results, and inform clinical decision making. A com-
monly used method to estimate tumor fraction in
plasma DNA is the median variant allele frequencies
(mVAF) of multiple mutations determined by sequen-
cing analysis. However, the observed allele frequency of
a given mutation can be affected by multiple factors
such as copy number changes at the respective genomic
loci, loss of heterogeneity or the overall ploidy of the
tumor. More importantly, the calculation of mVAF de-
pends heavily on the number of mutations identified by
the assay, which is governed by the assay design and size
of the panel. A mutation-agnostic approach to quantify-
ing cfDNA tumor fraction could potentially overcome
these limitations. In this study, we compared two
methods for estimation of cfDNA tumor fraction in a
given plasma sample: analysis of genome-wide copy
number profiles derived from shallow whole genome se-
quencing (sWGS), and cfDNA fragment size profiles ex-
tracted from targeted sequencing data. These two
approaches proved to be complementary: genome-wide
copy number estimates were more predictive but not al-
ways informative in tumors with few copy number alter-
ations, which accounted for up to 30–40% of the tumor
samples in this cohort and in the reported literature [24,
41]. In contrast, fragment size profiles of plasma DNA
can be calculated independent of the genomic features
of the underlying tumor.
As expected, the overall concordance between tumor

and plasma genomic profiles (mutations and TMB esti-
mates) proved to be higher in plasma samples with high
cfDNA tumor fraction suggesting that an estimate of
cfDNA tumor fraction could help clinicians interpret the
robustness of clinical cfDNA profiling results. Of par-
ticular note, cfDNA tumor fraction could be used to
inform the interpretation of “negative” cfDNA-based

genomic profiling results. In cases where no mutations
were identified in plasma, cfDNA tumor fraction could
help distinguish between samples in which low shedding
of DNA from tumor led to a false-negative result from
samples in which oncogenic drivers were not detected as
they were not covered by the targeted assay design. Fur-
thermore, we were able to use the cfDNA tumor fraction
estimates to guide the choice of the most suitable subse-
quent genomic profiling assay for a given sample: whole
exome sequencing to identify mutations not included
within the targeted panel or global genomic features for
samples with a high cfDNA tumor fraction, or a more
focused but more sensitive assay capable of detecting
clinically actionable mutations present at low VAF in
cfDNA samples with low tumor fraction. We believe that
this strategy will be of widespread interest as cfDNA
profiling will likely become the initial tumor sequencing
assay for many patients with lung and several other can-
cer types given its relatively shorter turnaround time
and the need to rapidly identify actionable drug targets
prior to therapy initiation.
The current study had several limitations: Plasma and

tumor samples were collected retrospectively, and there
was variability in the clinical status of the patients, the
time interval between tumor and plasma collections, and
the treatment modalities received. Future disease specific
analyses may also find that the predictive value of cfDNA
tumor fraction estimates based on sWGS or fragment size
analysis vary as a function of tumor type. Prospective
disease-specific studies incorporating estimation of cfDNA
tumor fraction at various stages of disease progression will
therefore be needed to evaluate the utility of this approach
for disease monitoring and to guide additional diagnostic
testing, in particular in patients with no tumor tissue avail-
able and negative cfDNA results from targeted panels.

Conclusions
The results of this study suggest that estimation of
cfDNA tumor fraction can facilitate the interpretation of
cfDNA results and help guide the selection of the most
appropriate alternative assays in patients with negative
results. In a prospective setting, this approach could be
used to triage samples for cfDNA profiling assays that
provide the most appropriate genomic breadth and
depth based on the estimated tumor fraction of an indi-
vidual blood sample.
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