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Abstract

Here, we describe a novel approach for rapid discovery of a set of tumor-specific genomic structural variants (SVs),
based on a combination of low coverage cancer genome sequencing using Oxford Nanopore with an SV calling
and filtering pipeline. We applied the method to tumor samples of high-grade ovarian and prostate cancer patients
and validated on average ten somatic SVs per patient with breakpoint-spanning PCR mini-amplicons. These SVs
could be quantified in ctDNA samples of patients with metastatic prostate cancer using a digital PCR assay. The
results suggest that SV dynamics correlate with and may improve existing treatment-response biomarkers such as
PSA.
https://github.com/UMCUGenetics/SHARC.
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Background
The detection of cancer recurrence as well as accurate
and fast monitoring of response to treatment currently
lacks sensitivity for detection of changes over time [1, 2].
Liquid biopsies, which can be used to detect circulating
tumor DNA (ctDNA) from body fluids, such as blood, in
a minimally invasive manner, are a promising approach
to improve monitoring of tumor burden over time [3, 4].
Circulating tumor DNA, which originates from apop-
totic and necrotic tumor cells, has been shown to have a

positive linear correlation with tumor burden [5]. In
multiple cases, ctDNA analyses identified cancer recur-
rence months before clinical symptoms presented [6–8].
As ctDNA is only a fraction of the total circulating

cell-free DNA (cfDNA), it should be distinguished from
cfDNA from normal cells by identification of ctDNA-
specific genetic alterations. Genomic structural varia-
tions (SVs) represent tumor- and ctDNA-specific bio-
markers to detect and quantify ctDNA with high
sensitivity in liquid biopsies [7–10]. Most solid cancers
contain dozens to hundreds of somatic SVs [11, 12].
Besides some recurrent driver SV events that function-
ally impact tumorigenesis, the vast majority of these
somatic SVs are patient- and tumor-specific passenger
events [13], which may nevertheless be valuable bio-
markers for tumor load tracing. SVs form a unique
breakpoint junction between two joined DNA strands
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and can be validated by straightforward junction-
spanning (quantitative) PCR assays, which facilitates
their applicability [8].
Somatic SVs are commonly detected with short-read,

paired-end next-generation sequencing (NGS). However,
as SVs can be very large, short reads are less suited for
SV detection [14–16]. Recently, long-read sequencing
techniques from Oxford Nanopore Technologies (ONT)
and Pacific Biosciences (PacBio) have emerged, and their
increased power for germline and somatic SV detection
has been extensively demonstrated [15–19]. Moreover,
ONT enables a short turnaround time and real-time
data analysis [20].
To enable rapid and cost-efficient identification of a

set of patient-specific somatic SVs for ctDNA moni-
toring, we developed a pipeline that leverages the
long-read and fast sequencing capabilities of nanopore
sequencing in combination with a computational
method that enables accurate selection of a subset of
somatic SVs from low coverage nanopore sequencing
data. The method detects a subset of genomic SVs
and can be applied to tumor tissue obtained from
(needle) biopsy or resection. The computational ap-
proach combines SV calling with random forest clas-
sification and germline SV filtering against a blacklist
to enrich for somatic SVs without the need of match-
ing germline sequencing data, which reduces the cost
and time of the assay. We were able to design SV-
specific PCR assays for ctDNA tracking within 3 days
after obtaining a tumor biopsy. We validated the
pipeline in multiple ovarian and prostate cancer sam-
ples. In addition, we demonstrate the clinical applic-
ability of our pipeline by retrospectively tracking the
identified somatic SVs in longitudinal cfDNA samples
of patients with metastatic prostate cancer, by using
digital PCR.

Methods
DNA isolation and nanopore sequencing
Several cohorts were used in this study: one melanoma
cell line (COLO829), one ovarian cancer organoid line
(HGS-3), one cohort of 4 patients with ovarian cancer,
and one cohort of 6 patients with prostate cancer.
COLO829 (ATCC® CRL-1974™) cell line was ob-

tained from the American Type Culture Collection
(ATCC) and grown according to standard procedures
as recommended by ATCC. DNA was isolated using
a phenol-chloroform protocol [21]. For some nano-
pore sequencing runs, DNA was sheared using g-
tubes (Covaris). DNA was size selected on the Pip-
pinHT (Sage Science). Library preparation was per-
formed using the Lib SQK-LSK109 kit (Oxford
Nanopore Technologies), and DNA was then se-
quenced in 49 separate runs using R9.4 flow cells

(Oxford Nanopore Technologies) on the MinION
(44), GridION (3), and PromethION (2) instruments
(Additional file 1: Table S1).
HGS-3 organoid line was generated from primary pa-

tient ovarian cancer tissue at the UMC Utrecht [22]
and cultured following the ovarian cancer organoid cul-
ture protocol [22]. DNA was isolated by using a
phenol-chloroform protocol [21]. DNA was size se-
lected on the PippinHT (Sage Science). Library prepar-
ation was performed using the Lib SQK-LSK109 kit
(Oxford Nanopore Technologies), and DNA was then
sequenced in 40 separate runs using R9.4 (23) and R9.5
(17) flow cells (Oxford Nanopore Technologies) on the
MinION (35) and GridION (5) instruments (Additional
file 1: Table S1).
Tumor DNA from 4 patients with ovarian cancer was

obtained in the UMC Utrecht [22] and isolated with the
Genomic-tip kit (Qiagen), following the manufacturer’s
protocol for tissue samples, similarly to [22]. DNA was
prepared for nanopore sequencing with the Lib SQK-
LSK109 (Oxford Nanopore Technologies). The library
from one tumor sample was loaded on one revD (Ova1)
or R9.4 (Ova2-4) flow cell (Oxford Nanopore Technolo-
gies). Sequencing was performed on a MinION (Ova2,
Ova4) or GridION (Ova1, Ova3) instrument (Oxford
Nanopore Technologies) (Additional file 1: Table S1).
Lymphocyte DNA for PCR validation assays was isolated
from blood with the DNeasy Blood & Tissue Kit (Qia-
gen). The blood was obtained in the UMC Utrecht.
Tumor and germline DNA from six patients with

prostate cancer were obtained in the Erasmus MC (Pros
1 and 3-6) and Franciscus Hospital, Rotterdam (Pros 2)
within the CPCT-02 study, from a fresh frozen core nee-
dle biopsy of a metastatic lesion and blood, respectively.
DNA was isolated on an automated setup with the Qia-
Symphony according to the supplier’s protocols (DSP
DNA Midi kit for blood and DSP DNA Mini kit for tis-
sue). In the context of the CPCT-02 study, WGS was
performed by the Hartwig Medical Foundation,
Amsterdam, The Netherlands [23]. Residual tumor DNA
(80–250 ng) was used for nanopore sequencing. DNA
was prepared for nanopore sequencing with the Lib
SQK-LSK109 (Oxford Nanopore Technologies). The li-
brary from one tumor sample was loaded on one R9.4
(Pros1), revD (Pros2,3), or high-sensitivity research
prototype (Pros4-6) flow cell (Oxford Nanopore Tech-
nologies). Sequencing was performed on a GridION in-
strument (Oxford Nanopore Technologies) (Additional
file 1: Table S1).

Illumina sequencing and analysis (COLO829 and HGS-3)
Short-read WGS was obtained for matched tumor and
normal DNA from the COLO829 cell line [24] and the
HGS-3 organoid line [22].
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SV calling was performed by using GRIDSS (v. 2.0.1)
[25] in joint calling mode (tumor+reference) for
COLO829 and HGS-3 separately. Somatic SV calls were
filtered as in [24] (https://github.com/hartwigmedical/
pipeline/blob/master/scripts/gridss_somatic_filter.R).

Benchmarking somatic SV calling from low coverage
nanopore sequencing data
Nanopore data from COLO829 was randomly subsam-
pled to 5x sequencing coverage three times independ-
ently with Sambamba [26]. SV calling was performed
with NanoSV (v. 1.2.4 ) [17] with a 2-read support
threshold: Sniffles (v. 1.0.12) [27] with parameters
“--report_BND --genotype -s 2” and NanoVar (v. 1.3.8)
[28] with default parameters. In all cases, 8 threads were
used and computational resources were measured with
GNU Time. True and false positives were calculated
using the short-read somatic SV callset described above.

SV calling and filtering pipeline
The SHARC pipeline is available through https://github.
com/UMCUGenetics/SHARC.
Mapping is performed in parallel for each FASTQ file

by using minimap2 (v. 2.12) [29] with settings “-x map-
ont -a –MD.” The reference genome used is version
GRCh37. Sorting and merging of BAM files was done by
using sambamba (v. 0.6.5) [26]. SV calling was per-
formed by using NanoSV (v. 1.1.2) [17]. Default NanoSV
settings were used except a minimum read count of 2
(cluster_count=2) and minimum mapping quality of 20
(min_mapq=20).
VCFs are filtered by using the command ‘awk ‘$7 ==

"PASS" && $1 !~ /(Y|MT)/ && $5 !~ /(Y|MT):/ && $5
!= "<INS>"’’ to select PASS calls and remove insertions
and SVs involving chromosomes Y or MT.
VCFs are then annotated with the distance to the

closest single repeat element in the reference genome
[30, 31], the closest gap element in the reference gen-
ome [31], and the closest segmental duplication elem-
ent in the reference genome [32]. These elements
were taken from the UCSC genome browser (http://
genome.ucsc.edu/) [31], using the GRCh37/hg19 gen-
ome version.
We trained a random forest (RF) model to filter out

false-positive SV calls from nanopore data, similarly
as previously described [17]. We expanded the selec-
tion of input features for the RF, by including read
length, SV calling features, and overlap with repeat
features in the reference genome (Additional file 1:
Table S3). We trained the classifier on the well-
characterized NA12878 Genome in a Bottle (GIAB)
sample [33–35], for which high-quality germline SV

call sets have been obtained by using Illumina [35],
PacBio [34], and Nanopore [33] sequencing. The
GIAB SV truth set was generated by intersecting
these three GIAB SV sets resulting in a set of 1515

germline SVs. We used 2
.
3
of the GIAB truth set as

a training set and 1
.
3
as a test set. We established a

precision-recall curve from 100 bootstrapping runs,
where the training data were split into 90%-10%
train-test subsets. Based on the precision-recall curve,
we defined an operating point of 96% precision and
99.5% recall. The final model was then re-trained on

the whole training set and tested on the 1
.
3
test set.

The performance on the test set was 95.1% precision
and 99.6% recall, representing an accuracy of 97.2%
(Additional file 2: Fig. S5). SV candidates are classi-
fied as “true” or “false” based on this RF model.
We set up two databases of SV calls: (i) SharcDB: con-

taining raw NanoSV calls from nanopore sequencing
data of 14 samples, 11 of which belong to this study
(COLO829, HGS-3, Ova1, Ova2, Ova3, Ova4, Pros1,
Pros2, Pros4, Pros5, and Pros6) and three more for
which we had SV calls from high coverage nanopore
data: COLO829BL (lymphoblastoid cell line, 50x sequen-
cing depth), VCAP (prostate cancer cell line [36]), and
the Genome in a Bottle SV calls GIAB [33]. For tests
performed with the samples included in this study, the
specific sample was excluded from blacklisting with
SharcDB; (ii) RefDB: containing germline calls obtained
from WGS short-read data of 59 controls: 19 blood con-
trols from patients with ovarian cancer [22], where
germline SVs were called with Manta (v. 1.0.3) [37] with
default parameters and 40 healthy individuals (biological
parents of individuals with congenital abnormalities)
[38] where germline SVs were called with Manta (v.
0.29.5) [37] with default parameters.
SV calls from tumor samples are overlapped with

those two databases by using VCF-explorer (https://
github.com/UMCUGenetics/vcf-explorer).
Only samples classified as “true” by the RF model and

that do not overlap with any sample in the databases
qualify for primer design.
Primer design for filtered SV calls is automatized by

using Primer3 (v. 1.1.4) [39] with a product size range of
30–230 bp.
SVs with a successful primer design are ranked based

on SV length, and the 20 largest are selected for PCR
validation. Insertions are filtered out early in the pipeline
since the inserted sequence cannot be accurately in-
ferred from the low coverage nanopore sequencing data.
Inter-chromosomal translocations are not present in the
Top20 ranked SVs because the final ranking is based on
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SV size and this cannot be determined for inter-
chromosomal SVs. However, they are available in the
final VCF file and primers are designed by default, so
they can be manually selected for PCR validation and
assay development.

Breakpoint PCR
To validate SVs, breakpoint PCR with AmpliTaqGold
(Applied Biosystems) was performed according to the
manufacturer’s protocol. Ten nanograms of primary
tumor DNA (somatic) and 10 ng lymphocyte DNA
(germline) per primer pair were used as input. PCR
products were loaded and visualized on a 2% agarose
gel.

cfDNA isolation
cfDNA was isolated from ascites fluid of Ova2 (ovarian
cancer), obtained in the UMC Utrecht, by using the
QIAamp Circulating Nucleic Acid Kit (Qiagen) accord-
ing to the manufacturer’s protocol. Plasma samples from
4 patients with prostate cancer from Erasmus MC were
used for this study. Samples were obtained longitudinally
during treatment in 3 × 10 mL CellSave preservative
tubes (Menarini Silicon Biosystems, Huntingdon Valley,
PA, USA) and processed within 96 h as previously de-
scribed [40] in the Erasmus MC. For patient Pros1, 13
longitudinal cfDNA samples were obtained; for patient
Pros4, 9 longitudinal cfDNA samples were obtained; for
patient Pros5, 17 longitudinal cfDNA samples were ob-
tained; for patient Pros6, 6 longitudinal cfDNA samples
were obtained. Circulating DNA was isolated with the
QIAsymphony® DSP Circulating DNA Kit (Qiagen) ac-
cording to the manufacturer’s protocol with some minor
modifications [41]. All cfDNA samples were quantified
by QubitTM fluorometric quantitation (Invitrogen).

Quantitative PCR
As primer specificity is essential for reliable interpret-
ation of an end-point assay like digital PCR (dPCR),
primers for the detection of structural variants were vali-
dated by quantitative PCR (qPCR) on whole genome
amplified (WGA) tumor and germline DNA. In brief,
qPCR was performed by using the CFX96 Touch™ Real-
Time PCR Detection System (Bio-Rad Laboratories), and
the final reaction mix consisted of 10 μL SensiFASTTM

SYBR ® Lo-Rox mix (Bioline), 0.5 μM forward and re-
verse primers, and 10 ng of WGA DNA and Ultrapure
DNas/RNAse free H2O to bring up the reaction volume
to 20 μL. The Cycle conditions were as follows: 14 cycles
of 10s at 95°C and 30s at from 65 to 58°C (touchdown),
followed by 20–40 cycles of 10s at 95°C and 30s at 60°C.
In addition, a melt curve was generated from 56 to 95°C
to assess the generated PCR products. Based on qPCR
results, two primer sets for the detection of SVs in each

patient were selected for quantification by dPCR. Primer
sets were excluded from use with dPCR when one of the
following occurred: >1 PCR product, Cqgermline-Cqtumor

<5, and/or Cqtumor > 20.

DNA sonication and fragment size analysis
To mimic the length of cfDNA and improve DNA mol-
ecule partition, WGA DNA of both tumor and germline
were sonicated to a peak size of ~150 bp with the S220
Focused-ultrasonicator (Covaris) according to the manu-
facturer’s protocol. The sonication conditions were as
follows: 200–250 ng WGA DNA (concentration deter-
mined by QubitTM fluorometric quantitation) in 50 μL
Ultrapure DNas/RNAse free H2O, peak incident power
175 W, duty factor 10%, cycles per burst 200, treatment
time 280 s, temperature 7°C, and water level 12. After
sonication, DNA fragment sizes were analyzed with the
High Sensitivity DNA kit (Agilent Technologies) on the
Bioanalyzer (Agilent Technologies) and the sample con-
centration was re-quantified by QubitTM fluorometric
quantitation (Invitrogen, Life Technologies, Carlsbad,
CA, USA).

Design of digital PCR assays for absolute quantification of
SVs in cfDNA
To quantify SVs in cfDNA, dPCR was performed. First,
the exact position of the breakpoint as determined by
nanopore sequencing was validated. We used already
available sequenced Illumina data from the CPCT-02
study (Pros1, Pros4, Pros5, and Pros6), but Sanger se-
quencing of the particular qPCR product could be used
as well. To enable quantification of both mutant and
wild-type alleles, additional primers for the detection of
wild-type upstream (WT-U) allele and wild-type down-
stream (WT-D) allele of the breakpoint and fluorescent
probes for both mutant and wild-type alleles were devel-
oped by using the Primer Express Software v3.0 (Ther-
moFisher) and the online tool Primer3Plus [39]. All
primers and fluorescent probes (Additional file 1: Table
S4) were ordered from Eurogentec.

Pre-amplification of cfDNA
To enable sensitive detection of multiple SVs in limited
amounts of cfDNA, two SVs per patient were pre-
amplified with 0.2–1 ng of cfDNA. Pre-amplified tumor
and germline DNA samples were used as respectively
positive and negative control. Pre-amplification was per-
formed by using 4 μL of TaqMan™ PreAmp Master Mix
(cat.no: 4488593, Life Technologies), 2 μL primer pool
(0.25 μM) consisting of SV forward (SV-F) and reverse
(SV-R) primers and upstream (WT-U) and downstream
(WT-D) wild-type primers, and 2 μL (cf)DNA for a total
volume of 8 μL. Pre-amplification cycle conditions were
10 min at 95°C followed by 14 cycles of 15 s at 95°C and
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4 min at 60°C and finally pause at 4°C. After the pre-
amplification reaction, 72 μL of Ultrapure DNase/RNAse
free H2O was added to each sample. Next, pre-amplified
cfDNA was diluted 40x per 1 ng input, used for the pre-
amplification, to prevent overloading of the dPCR chips.

Absolute quantification of SVs in cfDNA with digital PCR
For the quantification of SVs in (cf)DNA, dPCR was per-
formed with the Naica Crystal PCR system (Stilla Tech-
nologies) by using the following optimized reaction mix:
1 μL of diluted pre-amplified (cf)DNA sample, 5.6 μL
PerfeCTa Multiplex qPCR ToughMix (Cat.No: 733-
2322PQ, Quantabio). 0.25 μM probes (SVFAM, WT-
UHEX, WT-DCY5), 0.75 μM of the SV forward (SV-F)
and reverse primer (SV-R), 0.25 μM of the WT-U and
WT-D primers, and 0.1 μM Fluorescein (Cat.No: 0681-
100G, VWR) and Ultrapure DNAse/RNAse free H2O to
bring up the total volume to 28 μL. Samples were loaded
onto Stilla Sapphire chips (Cat.no. C13000, Stilla Tech-
nologies), and dPCR was performed with the same cycle
conditions as for the primer validation with qPCR. The
median number of analyzable droplets was 21,357, inter-
quartile range 19,837–22,736. dPCR reactions were opti-
mized with 10 ng sonicated tumor and germline WGA
DNA. When an SV could be detected in pre-amplified
cfDNA samples, a dPCR of all longitudinal cfDNA sam-
ples was performed on 5 ng of stock (no pre-
amplification) cfDNA to enable absolute quantification
of mutant molecules in plasma.

Statistics
qPCR experiments were analyzed with Bio-Rad CFX
Manager version 3.1. dPCR experiments were analyzed
with Crystal Miner™ software, version 2.1.6 (Stilla Tech-
nologies). Thresholds for positive fluorescence were de-
termined per primer pair based on positive and negative
controls. Variant allele frequency (VAF) was calculated
according to the following formula:
number of mutant molecules per μL in chip (as de-

fined by Crystal Miner™ software)/(number of mutant
molecules per μL in chip + number of wild-type mole-
cules per μL in chip) × 100%.
The absolute number of mutant molecules per milli-

liter plasma was calculated as follows: number of mutant
molecules per μL in chip × 28 μL (input in chip)/(used
eluate/total volume of eluate × volume of plasma used
for isolation).
To correct for zero values on a log scale, +1 was

counted to every value and axes were corrected with −1.
Spearman’s correlation coefficient was calculated for
comparisons of VAF based on upstream wild-type allele
vs downstream wild-type allele, two replicates, and pre-
amplified vs non-pre-amplified cfDNA samples. The

corresponding slope was calculated by using linear re-
gression analysis.

Results
Detection of somatic structural variations from low
coverage nanopore sequencing of tumor biopsies
The first step of our analysis involves low coverage
nanopore sequencing of genomic tumor-derived DNA
(Fig. 1a). A single nanopore run on the MinION or
GridION platforms typically generates between 5–15
Gbs of data [33], corresponding to 1.5–5x coverage of
the human genome. Next, the low coverage sequencing
data are mapped to the reference genome followed by
the detection of SV breakpoint junctions from split read
mappings (Fig. 1b) [17]. Subsequently, a classification
and filtering pipeline is applied to enrich for somatic SV
breakpoints irrespective of corresponding germline data
(Fig. 1b). Finally, PCR assays with mini-amplicons are
designed to validate the 20 most likely somatic SVs. SVs
are confirmed as either somatic or germline by break-
point PCR on tumor and corresponding lymphocyte
DNA (Fig. 1c). Successful breakpoint PCR assays for
somatic SVs can then be utilized as biomarkers for
ctDNA-based monitoring of treatment response and
disease recurrence (Fig. 1d).

Establishment of a somatic SV reference set
To verify the ability of our pipeline to detect somatic
SVs, we used genomic data from the melanoma cell line
COLO829 [42] and the ovarian cancer organoid line
HGS-3 [22]. We utilized short-read WGS data from
both lines (90x and 30x coverage for COLO829 and
HGS-3, respectively) and matching reference samples
(30x coverage in both cases) to establish two reference
sets of somatic SVs (“Methods” section). By using a
state-of-the-art somatic SV detection pipeline [43–46],
we detected 92 and 295 somatic SVs in COLO829 and
HGS-3, respectively. Additionally, we generated long-
read nanopore sequencing data for COLO829 and HGS-
3, reaching high coverages of 59x (COLO829) and 56x
(HGS-3) (Additional file 2: Fig. S1 and Additional file 1:
Table S1). To simulate low coverage long-read sequen-
cing of tumor genomes, we randomly subsampled the
nanopore sequencing reads to coverages of 4x, 3x, and
2x. The subsampling was performed 20 times independ-
ently for each case, to mitigate the effect of chance on
the subsampling and subsequent analysis.
Next, we tested our ability to detect SVs from high

and low coverage nanopore sequencing data. First, we
compared the performance of the SV callers NanoSV
[17, 19], Sniffles [27], and NanoVar [28] to detect som-
atic SVs in COLO829 data (Additional file 2: Fig. S2). As
NanoSV and Sniffles had similar performance with small
differences in true- and false-positive rates, we decided
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to use NanoSV, a previously validated nanopore SV
caller [17, 19], to call SVs from the nanopore sequencing
data. To maximize sensitivity, we performed SV calling
using lenient settings on high and low coverage
COLO829 and HGS-3 Nanopore datasets (Additional
file 1: Table S2). Based on the overlap with the somatic
short-read reference set, raw SV calls were classified as
somatic (true positives) or non-somatic (false positives).
As expected, the vast majority of the raw SV calls in all

the different coverage datasets were non-somatic, on aver-
age 99.84% (range 99.81–99.9%, COLO829) and 99.55%
(range 99.4–99.74%, HGS-3) (Fig. 2a). In the high cover-
age Nanopore datasets, we validated 84 (91% of the short-
read reference set) and 219 (74% of the short-read refer-
ence set) true-positive somatic SVs for COLO829 and
HGS-3, respectively, representing a small fraction of the
total number of raw SV calls (Fig. 2a and Additional file 2:
Fig. S3A). Similarly, we identified an average of 23 (25% of

Fig. 1 Schematic overview of SHARC. a (Needle) biopsy or resection from a tumor as well as blood is obtained from a patient at initial diagnosis.
Germline DNA (red) and cfDNA (blue) isolated from blood and tumor DNA (brown) from tumor material. Tumor DNA is sequenced on one ONT
flow cell. b Tumor-specific SV detection and filtering is performed with the bioinformatic SHARC pipeline. c SV-specific breakpoint-spanning
primers are designed. Breakpoint PCR with SV-specific primers is performed on germline and tumor DNA to confirm somatic SVs. d Somatic SVs
are used as biomarkers and traced within cfDNA from a patient to monitor disease dynamics in a longitudinal manner
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Fig. 2 Detection of somatic SVs with the SHARC pipeline based on high and low coverage nanopore data. High coverage nanopore sequencing
data from COLO829 (melanoma cell line) and HGS-3 (ovarian cancer organoid) were subsampled to low coverages. Outer circles represent the
high coverage sets (59x for COLO829 and 56x for HGS-3) and inner circles represent low coverage subsets (4x, 3x, 2x). The following filtering
steps were applied in a cumulative manner in the order displayed. a Median percentage of non-somatic (red) and somatic (blue) breakpoints in
the raw NanoSV calls for COLO829 (top) and HGS-3 (bottom). b Median percentage of non-somatic (left) and somatic (right) SV calls kept (green)
or removed (brown) in the pre-filtering step for COLO829 and HGS-3. c Median percentage of non-somatic (left) and somatic (right) SV calls kept
(green) or removed (brown) by the random forest SV classifier for COLO829 and HGS-3. d Median percentage of non-somatic (left) and somatic
(right) SV calls kept (green) or removed (brown) by the database filtering for COLO829 and HGS-3. e Median percentage of non-somatic (red) and
somatic SV (blue) calls in the complete SHARC output (left) and top 20 largest SVs (right) for COLO829 and HGS-3. f Total number of non-somatic
(red) and somatic (blue) SV calls at each step of the pipeline for both COLO829 and HGS-3. In low coverage subsets, all data points are shown
and the square box represents the median value. RF, random forest; DBFilter, database filter
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the short-read reference set) and 53 (18% of the short-
read reference set) somatic SV breakpoints in each of the
low coverage Nanopore sequencing datasets for COLO829
and HGS-3, respectively (Fig. 2a). Altogether, these data
underscore that based on lenient SV calling of high and
low coverage Nanopore sequencing data with NanoSV,
somatic SVs can be identified.

Enrichment for somatic SV calls from nanopore
sequencing data
Since the somatic SVs identified among the SV call sets
of the Nanopore data represent only a small fraction of
the total raw SV calls, we implemented a panel of cumu-
lative filtering steps to enrich for somatic SVs. Firstly,
we selected only “PASS” SV calls (based on default
NanoSV filter flags [17], “Methods” section). Secondly,
we excluded calls involving chromosome Y or the mito-
chondrial genome. Finally, we removed all insertions,
since the exact inserted sequence cannot be accurately
defined from low coverage nanopore sequencing data,
thus hampering the final PCR assay development at a
later step. As a result of these filtering steps, 72.6%
(COLO829) and 76.2% (HGS-3) false-positive calls were
removed in the high coverage sets (Fig. 2b and Add-
itional file 1: Table S2). For the low coverage sets, the fil-
tering removed on average 50.9% (COLO829) and 49.9%
(HGS-3) of false-positive calls (Fig. 2b and Additional
file 1: Table S2). In contrast, the vast majority of true-
positive somatic SV calls were maintained following SV
filtering (on average 76.9% in COLO829 and 93.9% in
HGS-3, Fig. 2b).
To further reduce the number of false-positive SV

calls, we employed a random forest (RF) machine learn-
ing approach (“Methods” section), similarly as previously
described for SV calling of nanopore data [17]. We ap-
plied the RF classifier to the filtered high and low cover-
age subsets of COLO829 and HGS-3. For the high
coverage sets, the RF labeled 84% (COLO829) and 81.3%
(HGS-3) of false-positive SV calls as false (Fig. 2c). For
the low coverage sets, on average, 70.6% (COLO829)
and 68% (HGS-3) of false-positive SV calls were labeled
as false (Fig. 2c). In addition, in the high coverage sets,
81.25% (COLO829) and 97.88% (HGS-3) of true-positive
somatic SV calls were labeled as true. Similar percent-
ages of true-positive SV calls were labeled as true in the
low coverage sets, on average 73.7% (COLO829) and
98.6% (HGS-3) (Fig. 2c).
These results show that the RF classifier filters out

the majority of non-somatic breakpoints, while main-
taining true-positive somatic SV calls. However, germ-
line SV calls are also maintained at this step,
requiring further filtering to enrich for somatic SVs
(Additional file 2: Fig. S3B).

To reduce the number of germline SVs, we imple-
mented a blacklist filtering step. Therefore, the
remaining SV calls were overlapped with two databases
(DBFilter) as panel-of-normal (PON) filtering: (i)
SharcDB, containing SV calls from nanopore sequencing
of 14 different samples, and (ii) RefDB, containing germ-
line SV calls from 59 control samples previously se-
quenced using Illumina WGS in our group (“Methods”
section). Following this filtering step, 100% of true-
positive somatic SV calls from both the COLO829 and
HGS-3 high and low coverage sets were retained
(Fig. 2d). In contrast, 88.6% (COLO829, high coverage),
76.2% (HGS-3, high coverage), and on average 89.9%
(COLO829, low coverage) and 84.5% (HGS-3, low cover-
age) of remaining false-positive SV calls were filtered out
(Fig. 2d). Due to this filtering, the fraction of true-
positive somatic breakpoints among the remaining SV
calls increased to 6.6–18.7%, for the low and high cover-
age Nanopore datasets of COLO829 and HGS-3 (Fig. 2e
and Additional file 2: Fig. S3A).
To further enrich for somatic SVs, we implemented a

ranking method, based on the observation that large SVs
are more likely to be somatic than germline SVs (Add-
itional file 2: Fig. S4). This increased the percentage of
true-positive somatic SVs to 85% (COLO829) and 65%
(HGS-3) in the high coverage sets and to on average
43% (COLO829) and 64.1% (HGS-3) in the low coverage
sets (Fig. 2e).
Altogether, our SV filtering pipeline strongly enriches

for true-positive somatic breakpoints and filters out the
majority of false positives and germline SVs. We demon-
strate a total enrichment of true-positive somatic SV
calls from 0.1% in the raw calls to 85% in the final
Top20 ranked calls (17/20, COLO829, high coverage),
0.26 to 65% (13/20, HGS-3, high coverage), on average
0.18 to 41.7% (8.3/20, COLO829, low coverage sets), and
on average 0.49 to 64.2% (12.8/20, HGS-3, low coverage
sets) (Fig. 2f). Of note, despite low coverage sequencing,
each of the somatic SV calls identifies breakpoints at nu-
cleotide resolution, providing immediate access to break-
point PCR testing.

Validation in tumor tissue from patients with ovarian and
prostate cancer
Next, we tested the pipeline on four high-grade ser-
ous ovarian cancer (Ova1-4) and six prostate cancer
(Pros1-6) samples. We sequenced tumor DNA on one
nanopore flow cell per sample. The ovarian cancer
samples and three prostate cancer samples (Pros1-3)
were sequenced on commercial ONT flow cells. For
the ovarian cancer samples, we started library prepar-
ation with minimally 1 μg of DNA. For the prostate
cancer samples, limited material was available, and we
started library preparation with 250 ng of DNA. For
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one sample (Pros3), not enough sequencing data was
produced to confidently detect somatic SVs and this
sample was therefore excluded from all subsequent
analyses (Additional file 1: Table S1). Three additional
prostate cancer samples (Pros4-6) were sequenced on
ONT research prototype flow cells with higher se-
quencing sensitivity, thus requiring less DNA input
material. In these cases, library preparation was
started with an average of 108 ng (80–128 ng) of
DNA and an average of 10 ng of library was loaded
for sequencing (Additional file 1: Table S1). We ob-
tained an average sequence coverage of 2.3x (range
1.8–4.0) (Fig. 3a and Additional file 1: Table S1) and
average read lengths of 7.8 Kbp (range 4.2–16.3 Kbp)
(Fig. 3b and Additional file 1: Table S1). The sequen-
cing throughput was not affected by the lower DNA
input when using the high-sensitivity prototype flow
cells (Additional file 1: Table S1).
Following the lenient SV calling, pre-filtering, RF clas-

sification, database filtering, and ranking steps, an aver-
age of 2.8% (range of 1.0–4.4%) of SVs per sample were
retained (Fig. 3c). We performed breakpoint PCR assays
on lymphocyte and tumor DNA for the Top20 ranked
SVs and validated an average of 10 (50%, range 25–80%)
somatic SVs per sample (Fig. 3d). Therefore, despite not
having enough sequencing depth to provide a complete
genome construction, we were able to identify several

somatic SV biomarkers in each of the tumor samples. It
should be noted that the annotated ranked VCF with all
the breakpoints, prior to Top20 selection, is also
reported in case the user wants to manually select other
breakpoints and their corresponding primers for
validation.
We investigated the recall of validated somatic SVs at

different timepoints during the sequencing run. We
found that, on average, 81.6% (range 50–100%) of vali-
dated somatic SVs were already detected within the first
24 h of sequencing (Additional file 2: Fig. S6). This offers
the opportunity to reduce the sequencing time, acceler-
ating tumor biomarker discovery with 1 day.

Detection of somatic SVs in cfDNA from patients with
ovarian and prostate cancer
To show the applicability of the pipeline to detect clinic-
ally relevant biomarkers, we next tested if we could de-
tect the validated somatic SVs in cfDNA of patients.
Ascites fluid, which is known to contain cfDNA and
ctDNA [47], was available for Ova2 at the time of dis-
ease recurrence. We extracted cfDNA from the ascites
and tested the 16 validated somatic SVs out of the
Top20 by PCR. One hundred percent of somatic SVs
could be detected within the cfDNA from ascites
(Additional file 2: Fig. S7), and not in the germline or
water controls. Next, we tested whether validated SVs

Fig. 3 SHARC identifies and validates tumor-specific SV biomarkers from low-pass nanopore tumor sequencing data. Plots showing the
distribution of a coverage and b read length for the nine tumor samples sequenced on one flow cell each. Dashed lines represent averages for
each sample. c Total number of somatic SVs present at each of the steps throughout the SV calling and filtering pipeline. RF, random forest;
DBFilter, database filter. d The Top20 ranked breakpoints for each sample were tested by breakpoint PCR using tumor and germline DNA. The
graph depicts the number of breakpoints validated as somatic (blue), germline (green), or breakpoints that could not be validated (red)
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could be detected in cfDNA from blood. Therefore, we
selected two patient-specific SVs for four prostate cancer
patients (Pros1, 4, 5, and 6) based on a high signal to
noise ratio observed in qPCR assays for SV breakpoints
(Fig. 4a and Methods).
To enable sensitive and quantitative detection, we

designed digital PCR (dPCR) assays for the eight selected
SVs (Fig. 4b). For each SV, we aimed to design a probe
for both wild-type alleles (up- and downstream) and for
the mutant allele (across the breakpoint junction). For
five SVs, we could design an assay that quantified both
the upstream and downstream wild-type allele. For the
three other SVs, primers/probes for only one of the
wild-type alleles were designed, as appropriate primer
design for the other allele was hindered by repetitive

sequences at the target site. As the amount of cfDNA
within one liquid biopsy is limited, we used a conditional
breakpoint detection approach: (i) if dPCR on pre-
amplified cfDNA (input pre-amplification, 0.2–1 ng
cfDNA) confirmed the presence of the SV within cfDNA
and (ii) then subsequent dPCR on non-pre-amplified
cfDNA (stock cfDNA) (input dPCR, 5 ng cfDNA) was
performed. The latter enabled calculation of both the
variant allele frequency (VAF) and the number of mu-
tant molecules per milliliter plasma (MM/mL plasma).
First, we selected two timepoints per patient, one at
baseline and one at the progression of the disease, and
confirmed the presence of all eight SVs with dPCR on
pre-amplified cfDNA (Additional file 2: Fig. S8). There-
after, dPCR on the stock cfDNA successfully detected all

Fig. 4 dPCR-based quantification of SVs in blood. a Schematic overview of quantification of tumor-specific SVs, identified by SHARC, in cfDNA
from blood by using qPCR and dPCR. b Primer and probe design for dPCR. The wild-type upstream and wild-type downstream alleles share each
one primer with the mutant allele. Three probes with different fluorescents were designed to specifically detect the mutant allele or one of the
wild-type alleles. c Detection of two tumor-specific SVs in cfDNA from blood from four patients with prostate cancer at baseline and at the
progression of disease with dPCR. Shown are VAF and d mutant molecules per milliliter plasma. e Quantification of SVs in longitudinal cfDNA
samples from blood of patient Pros1. The graph depicts VAFs of SVs, treatment, laboratory parameters (prostate-specific membrane antigen (PSA),
alkaline phosphatase (ALP)), and clinical progression of disease (PD)
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SVs in the four patients, both in baseline and progres-
sion samples (Fig. 4c, d). Despite the fact that the VAF
in pre-amplified cfDNA correlates to the VAF in stock
cfDNA (rs = 0.928), they should be considered two sep-
arate outcome measurements (regression coefficient =
0.72 ≠ 1) (Additional file 2: Fig. S9A). Moreover, VAF
based on the wild-type upstream allele was highly similar
to VAF based on the wild-type downstream allele in
stock cfDNA (rs = 0.996, regression coefficient = 1.05)
(Additional file 2: Fig. S9B), suggesting no significant
imbalances between the two sides of the breakpoint.

Monitoring treatment response in patients with prostate
cancer
In addition to the detection of SVs in cfDNA at baseline
and progression of the disease, we explored the capacity
to use SVs to monitor treatment response over time. To
enable reliable response monitoring, measurements
should be accurate and repeatable. As VAFs are ratios
and in principle not influenced by technical variations
between timepoints, we chose to report VAFs only. To
verify the accuracy of dPCR, we performed two technical
replicates for all pre-amplified samples of Pros5 and
Pros6 and confirmed a high correlation of VAFs between
the replicates (rs = 0.987, regression coefficient = 0.918)
(Additional file 2: Fig. S9C). Finally, we quantified the
eight SVs of the four prostate cancer patients in the lon-
gitudinally collected samples from before, during, and
after treatment. For Pros1, SV-A shows the potential to
improve response evaluation as its dynamics correspond
to the expected response to treatment with cabazitaxel
and increases towards the end of treatment, resulting in
the highest levels at clinical progression of disease
(Fig. 4e). These changes also seem to correlate with
other blood biomarkers, including prostate-specific
membrane antigen (PSA) and alkaline phosphatase
(ALP). In addition, SV-B in Pros1 similarly correlates
with response to treatment (Fig. 4e). Also, for Pros5,
both SV-A and SV-B show clear changes over time cor-
relating with clinical parameters, and Pros4 and Pros6
have less compelling dynamics of the detected SVs
(Additional file 2: Fig. S10A-C).

Discussion
Recent studies have utilized somatic SVs for tracking
tumor burden from liquid biopsies [7–10]. Although
these studies showed the potential of this method-
ology, they lacked sufficient turnaround time to pro-
vide personalized biomarkers before the initiation of
patient treatment. This is due to lengthy short-read
WGS approaches for SV detection and an associated
substantial number of false-positive somatic SVs, re-
quiring laborious testing to validate SVs. To over-
come these limitations, we utilized the real-time and

long-read capabilities of nanopore sequencing com-
bined with a machine learning approach to efficiently
identify a set of somatic SVs from tumor tissue
within 3 days. The rapid and simple workflow offers
great potential for routine monitoring of cancer dy-
namics. We illustrate the applicability of our method
to measure tumor burden by using a series of longi-
tudinally gathered blood samples from metastatic
prostate cancer patients.
Obtaining enough tumor material for DNA isolation

is often a limiting factor for next-generation sequen-
cing assays. We show that nanopore sequencing and
somatic SV detection are possible from limited
amounts of DNA that can be extracted from a meta-
static tumor needle biopsy, which is an important
requisite for clinical viability. DNA input can be de-
creased even further to as little as 80 ng when using
flow cells with increased sensitivity for DNA (research
prototype flow cells provided by ONT).
Long-read sequencing is an excellent method for the

detection of SVs at nucleotide resolution, even at low
sequencing depth, because each long read that bridges a
breakpoint junction provides direct information on the
breakpoint position and sequence [17]. Sequencing of a
tumor sample on a single GridION/MinION nanopore
flow cell generates insufficient sequencing data to accur-
ately establish a complete genomic profile. However,
using the pipeline developed here, we efficiently
enriched for patient-specific somatic SV events—irre-
spective of their functional impact on tumor biology.
Despite the very low coverage, the computational
method functions independently of corresponding
germline sequencing data. These assets make our pipe-
line a cost-efficient assay for the detection of personal-
ized somatic SV biomarkers. Furthermore, on average,
50% of the detected SVs are somatic, which minimizes
the hands-on effort needed for validation purposes. For
all analyzed tumors, we identified at least five somatic
SV biomarkers per patient, an amount within the range
of biomarkers used to trace ctDNA in previous work [7,
9, 48]. With expected increases in sequencing through-
put from ONT sequencing, the performance of the
pipeline will improve significantly. Furthermore, the
use of cheap disposable flow cells (Flongle) could re-

duce assay costs to 1
.
5
of the current sequencing price

of 800€ [49]. The minimal costs of this assay would en-
able the broader application of such individualized SV
monitoring in cancer patients.
We retrospectively traced levels of ctDNA with two

SVs per patient for four prostate cancer patients and
compared tumor dynamics to clinical biomarkers such
as PSA and ALP. The quantitative measurement of SVs
in ctDNA suggests that VAFs of SVs correlate with
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tumor load (Pros1 and Pros5). Moreover, the SVs would
have indicated progression of disease earlier than PSA
did in some patients (Pros1 and Pros 4). Even though we
only tested two SVs per patient, this clearly illustrates
the potential clinical utility of quantifying ctDNA with
SVs to monitor response to treatment. The assay could
be optimized by not only identifying the tumor-specific
SVs, but also SVs that represent the dominant disease
clone and upcoming, targetable subclones. In addition,
larger prospective studies should confirm that indeed
measuring SVs improves clinical decision-making in pa-
tients with metastatic prostate and other cancer types.

Conclusions
Clinicians are well aware of the dynamic response of
cancer to treatment but lack the tools to monitor these
changes in real time and thus generally respond to alter-
ations too late for true treatment success. We present a
method to overcome these limitations and provide a so-
lution to immediate individualized disease monitoring.
This approach could increase the sensitivity of disease
monitoring to such levels that more intelligent treatment
approaches could be envisioned.
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