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Abstract

Vaccines are powerful agents in infectious disease prevention but often designed to protect against some strains
that are most likely to spread and cause diseases. Most vaccines do not succeed in eradicating the pathogen and
thus allow the potential emergence of vaccine evading strains. As with most evolutionary processes, being able to
capture all variations across the entire genome gives us the best chance of monitoring and understanding the
processes of vaccine evasion. Genomics is being widely adopted as the optimum approach for pathogen
surveillance with the potential for early and precise identification of high-risk strains. Given sufficient longitudinal
data, genomics also has the potential to forecast the emergence of such strains enabling immediate or pre-emptive
intervention. In this review, we consider the strengths and challenges for pathogen genomic surveillance using the
experience of the Global Pneumococcal Sequencing (GPS) project as an early example. We highlight the
multifaceted nature of genome data and recent advances in genome-based tools to extract useful information
relevant to inform vaccine strategies and treatment options. We conclude with future perspectives for genomic
pathogen surveillance.
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Background
Streptococcus pneumoniae (or pneumococcus) is a com-
mon opportunistic pathogen which causes a wide
spectrum of diseases. Infections can range from otitis
media to severe invasive pneumococcal disease (IPD) in-
cluding pneumonia, septicaemia and meningitis. Young
children in the first few years of life and elderly adults
are particularly susceptible to pneumococcal disease. In
2015, pneumococcal infections were estimated to have
caused 8.9 million disease cases, including over 317,000
deaths in children under 5 years old. The heaviest dis-
ease burden is in low- and middle-income countries
(LMICs) [1].

Pneumococcal disease is preventable by vaccination and
treatable using antimicrobials. In the early 2000s,
pneumococcal conjugate vaccine (PCV) was first rolled
out in high-income countries and then gradually in
LMICs via The Global Alliance for Vaccines and
Immunization (GAVI) [2]. Different from the previous
generation of pneumococcal polysaccharide vaccine
(PPV), PCV is immunogenic in infants and induces long-
term protection by inducing T cell-dependent immune re-
sponse. The global deployment of PCV has proven to be
very effective in reducing pneumococcal disease world-
wide. By 2015, deaths of children aged 1–59months due
to pneumococcal disease were estimated to have declined
by 51% [1], in comparison to 2000. PCV has also had a
positive impact on reducing antimicrobial resistance both
through the direct reduction of highly resistant strains tar-
geted by the vaccine and via a secondary effect through a
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reduction in febrile illnesses that often require antimicro-
bial use [3].
PCVs trigger an immune response in the host to target

the polysaccharide capsule surrounding the pneumococ-
cal cell [4]. To escape immune clearance, the capsule is
constantly under diversification, resulting in 100 cur-
rently recognised forms or serotypes [5]. Currently,
PCVs target up to 13 serotypes which account for most
of the disease in infants, especially those associated with
antimicrobial resistance. Incomplete vaccine coverage of
serotypes allows the pneumococcal population to evolve
and evade the vaccine [6]; there have been several re-
ports of increases in disease due to non-vaccine sero-
types [6–12]. Higher valency vaccines targeting up to 24
serotypes are under development [13] and should con-
tribute to reduction in disease caused by the emerging
serotypes not covered by 13-valent PCV (PCV13) and
continued surveillance is necessary to inform future vac-
cine strategies.
The Global Pneumococcal Sequencing (GPS) project

has been providing genomic surveillance since 2011 [14].
Here, we describe the biology of pneumococcal disease,
the genomic approach taken and lessons learned to
understand vaccine evasion mechanisms and to track
vaccine-evading strains, advances in genome-based char-
acterisation and future perspectives for genomic patho-
gen surveillance.

The biology of pneumococcal disease
Colonisation is a prerequisite for disease
Understanding pathogen biology and disease mecha-
nisms is important to guide vaccine strategy. The
pneumococcus is a commensal coloniser of the human
nasopharynx, with person-to-person transmission neces-
sary to compensate for regular clearance from the niche
by host immunity [15] and competition within the naso-
pharyngeal microbiome [16, 17]. Therefore, variation
within the human nasopharyngeal niche is the main
driver of evolutionary change in the pneumococcal gen-
ome [18, 19]. In parallel, any systemic antimicrobial use,
regardless of its target pathogen, is a major driver of se-
lection [20]. Invasive disease is an evolutionary dead end
for the pneumococcus as it will lead to either clearance
by antimicrobials, clearance by host immunity or death
of the host.
Pneumococcal colonisation rates vary with geographical

location and age. The colonisation rates in young children
are usually lower in high-income countries [21–23] and
higher in LMICs [24–26]. Host immunity can also explain
the age-related variation, which is highest in infants and
declines with maturation of the immune system [27]. It is
widely accepted that the primary prerequisite for IPD is
prior asymptomatic colonisation with the disease-causing
strain, usually in the nasopharyngeal niche [28]. Trends in

disease rates roughly follow the age distribution of car-
riage prevalence though it could be affected by other dis-
eases that can compromise the human immune system
(e.g. HIV). In South Africa, a higher incidence rate of IPD
in adults > 25 years of age compared to those aged 10–24
years of age (Fig. 1) can be explained by the high burden
of HIV in adults > 25 years of age [31]. The incidence of
IPD in HIV-infected individuals is estimated to be 43
times higher than HIV-uninfected persons [32]. Interest-
ingly, some serotypes are associated with different age
groups [33] and HIV status [34].

The pneumococcal capsule
The pneumococcal capsule is a layer of cross-linked
polysaccharide covering the bacterial cell. One im-
portant function of the capsule is to protect pneumo-
coccal cells from phagocytosis [35]; pneumococci
without a capsule are usually unable to cause invasive
disease, but can cause non-invasive diseases [36]. The
capsule is also the basis of the typing scheme which
has historically been used to taxonomically separate
isolates into groups (serotypes) [37]. Sets of antisera
raised against reference “type” strains have been used
for over 80 years to serotype isolates, allowing an ap-
preciation of serotype prevalence and relative associa-
tions with disease [38]. By serotyping pneumococcal
isolates from disease and asymptomatic carriage, sub-
stantial variation amongst serotypes in their potential
to cause invasive disease was observed [39]. This vari-
ation in invasive disease potential is not completely
understood but may be linked to the basic biochem-
ical features of the capsule; serotypes with high inva-
sive disease potential tend to have thinner capsules
that enhance attachment and direct interaction with
epithelial cells [40–42] and are associated with shorter
carriage duration periods [43].
The capsule is encoded by a ~ 10–30-kb gene cluster,

known as cps for capsule polysaccharide synthesis [44].
The composition and sequences of capsular encoding
genes vary between serotypes. Analysing these genetic
variations paved the way for the development of DNA-
based serotyping methods using PCR [45], DNA micro-
array [46] and whole-genome sequencing (WGS) [47,
48]. These methods show high concordance with the
conventional method that is based on reaction to anti-
sera [49–51]. Genotypic methods provide some advan-
tages, including application to culture negative clinical
samples [45, 52], detection of multiple co-colonising se-
rotypes [50, 53] and the discovery of novel genetic varia-
tions in cps, which may indicate new serotypes [5, 54].
Capsular polysaccharide induces a serotype-specific

immune response [55] and has been the basis of
pneumococcal vaccination since the first clinical use of
two different hexavalent PPVs in 1947 [56]. The valency
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was expanded to 14-valent in 1977 and 23-valent in
1983, offering protection against a wider array of
disease-associated serotypes [55, 57]. Unfortunately, PPV
induces poor immunogenicity in infants because anti-
polysaccharide antibody response is associated with spe-
cific splenic B cell subsets that are not fully developed in
children under 2 years of age [51]. Additionally, PPV
solely elicits a T cell-independent immune response that
generates a limited duration of protective antibody level
[58, 59]. Considering the disease burden is mainly fo-
cused in the first 5 years of life, the above PPV limita-
tions motivated the development of pneumococcal
conjugate vaccine (PCV), which would better protect in-
fants. PCV is made by covalently linking capsular

polysaccharide to a carrier protein to improve the anti-
body response and induce long-term protection. PCV is
immunogenic in infants and some high-risk patients
who do not respond to PPV [60]. The global deployment
of PCV since 2000 has been associated with a decreasing
pneumococcal disease burden in both children [1] and
the indirect protective effect in adults worldwide [61].
Licensed PCVs and those under development, together
with 23-valent PPV, are summarised in Fig. 2. Amongst
them, the low-cost 10-valent vaccine (PNEUMOSIL)
that recently achieved WHO prequalification [62] offers
great potential for routine childhood immunisation in
LMICs. Although higher-valency PCVs, targeting up to
24 serotypes are under development, the pneumococcal

Fig. 1 Incidence of invasive pneumococcal disease (red) [29] and carriage (blue) [30] across age groups in South Africa in 2011

Fig. 2 Serotype formulation of pneumococcal vaccines that are currently available and in development. Serotypes included in each vaccine are
coloured. Compared to PCV7 serotypes, the additional serotypes in other formulations are coloured in blue (PCV10), yellow (PNEUMOSIL), pink
(PCV13), green (PCV15), orange (PCV20), purple (PCV24) and in dotted pattern (PPV23). 1SII, Serum Institute of India; 2PPV23 is a pneumococcal
polysaccharide vaccine which is not immunogenic in children under 2 years of age
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population as a whole has been a moving target for
PCVs over the past two decades and the challenge of in-
complete coverage of pneumococcal serotypes remains.

Mechanisms of vaccine evasion
Recombination and pneumococcal evolution
The pneumococcus is naturally able to uptake naked
DNA from the surrounding environment. This charac-
teristic was first demonstrated by Frederick Griffith in
1928 [37] and later used by Avery, MacLeod and
McCarty to demonstrate that the ‘transforming principle’
was pure DNA [63]. In the nasopharyngeal niche, the
lysis of bacterial cells through normal turnover leads to
naked DNA available for uptake which can provide a
source of gene variants where different pneumococcal
strains are present. Imported DNA can be recombined
into the native genome, providing the pneumococcus
with a powerful mechanism for rapid evolutionary adap-
tation [18, 64]. The ability to recombine multi-gene seg-
ments of DNA has allowed the import of genetic
‘islands’ from outside of the species and the reassort-
ment of genes within the species, resulting in distin-
guishable pneumococcal lineages or strains [65].
Recombination enables strains to replace the whole or
partial cps and thus change serotype [66–68]; this is
commonly known as capsular switching. Any switch
from serotypes targeted by the vaccine (i.e. vaccine type,
VT) to serotypes not targeted by the vaccine (i.e. non-
vaccine type, NVT) can contribute to vaccine evasion.

Vaccine evasion via capsular switching and strain
replacement
Multiple capsule switch events have been characterised
in a genomic analysis of the globally prevalent PMEN1
strain [67]. Using ancestral phylogenetic reconstruction
and recombination analysis of a temporally and geo-
graphically broad collection of genomes, it was possible
to infer that the strain had likely emerged in Western
Europe in the 1970s before spreading globally over fol-
lowing decades. From the serotype 23F ancestor, 10 cap-
sule switch events were detected, some of which were
NVT. One notable switch was to serotype 19A which
manifested as an emerging cause of NVT disease in the
US, after the introduction of PCV7 in 2000 [69]. Ances-
tral reconstruction showed that the 23F>19A capsule
switch had occurred several years before the introduc-
tion of PCV7, indicating that the vaccine had created a
positive selection for capsule switch variants that were
outside of the vaccine coverage.
Pneumococci circulating in any specific geographic re-

gion form a multi-strain, multi-serotype population,
which is typically dominated by 6–13 strains that to-
gether represent > 60% of the population, along with a
background of minor strains [51]. PCV have varying

effectiveness in removing VTs from the population. The
roll-out of PCV tends to have little effect on overall
pneumococcal carriage rates, indicating that the NVT
portion of the population is able to expand to fill the
niche vacated by VTs [70]. After a period of perturb-
ation, the emergent post-vaccine populations appear to
have been shaped by the expansion of a combination of
capsule switch variants and strains already dominated by
NVTs [66, 71]. The relative contribution of these two
vaccine evasion mechanisms varies between countries, as
does antimicrobial-selective pressure, resulting in vari-
ation in post-PCV emerging NVTs. In general, NVTs
with high invasive disease potential (e.g. serotype 8, 12F,
24F) are more commonly seen in IPD after PCV13 intro-
duction [6, 8, 9, 71].

Genomic surveillance to inform global vaccination
strategies
Motivation and scope of the Global Pneumococcal
Sequencing (GPS) project
PCV7 was designed to target the serotypes most fre-
quently causing invasive disease in the US. Vaccine
coverage was 83% in children aged < 5 years and it was
successful in reducing overall IPD by 45% for all age
groups over 7 years [72]. In LMICs, PCV was made
more affordable through an innovative finance mechan-
ism, the pneumococcal Advance Market Commitment
(AMC), initiated by GAVI [2], along with the World
Bank and other donors globally in 2009. This mechan-
ism has accelerated the roll-out of PCV to millions of
vulnerable children worldwide. However, pneumococcal
serotype surveillance indicated that PCV7 would have
much lower coverage in many high disease burden
LMICs [73, 74]. With this in mind, in 2011 the Bill and
Melinda Gates Foundation (in partnership with Emory
University, US Centers for Disease Control and Preven-
tion, and the Wellcome Sanger Institute) initiated the
GPS project [14] with the primary goal of applying gen-
omics to understand pneumococcal evolution in re-
sponse to vaccine introduction in LMICs. At that time,
GPS was a pioneering project with little precedent to fol-
low, but, 10 years on, lessons have been learned and new
directions plotted. The project began with Founding
Partners in three African countries (The Gambia,
Malawi and South Africa) and the ambition to add
partners to achieve wide geographic coverage, prioritis-
ing LMICs eligible for GAVI support for PCV rollout.
By March 2021, the GPS project sequenced 26,100
pneumococcal genomes representing 57 countries.
Initially, the GPS project prioritised sequencing of iso-

lates from IPD in children under 5 years old, collected
pre- and post-PCV introduction. The Founding Partners
were from well-resourced institutions, each with a strong
track record in pneumococcal surveillance, so were
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easily able to satisfy the preferred sampling criteria. This
was not the case for many other countries and the com-
promises, such as inclusion of samples from asymptom-
atic colonisation rather than IPD, were necessary.
Allowing such compromises emphasised the importance
of careful curation of sample metadata. It was imperative
that reliable metadata were collected for every se-
quenced sample so that specific analytical questions
were powered by as many samples as possible; for ex-
ample, if samples did not have information on whether
they were from healthy carriers or IPD, they could not
be used in an analysis of genetics associated with viru-
lence. To maximize the utility of the GPS database, no
sample was sequenced unless metadata was submitted in
advance, thus ensuring that all sequencing effort gener-
ated genomic data of enhanced analytical value. The
minimal metadata requirement for GPS samples was set
simply as ‘date’ and ‘geography’ of isolation, with a range
of clinical and microbiological data also typically re-
corded (see Table 1 for further details). On average, iso-
lates had entries for 37 metadata fields which were
linked to the output of genome-derived analyses (e.g. in
silico serotype, genotype and antimicrobial resistance de-
terminants). Thus, the GPS provides a rich, public data-
base that has supported a number of data-driven and
hypothesis-driven sub-studies with a central theme of
pneumococcal disease prevention [75, 76].

Challenges and solutions for genomic surveillance in
LMICs
Isolation of S. pneumoniae from suspected cases of IPD
can be very challenging and may often not be attempted
in some countries, necessitating clinical decision making
based on other available evidence (e.g. symptoms and
prescribing guidelines). Major barriers to pneumococcal
isolation from IPD cases include lack of microbiological
expertise, lack of correct microbiological reagents (e.g.
sheep’s blood rather than human blood) and patient
self-administration of antimicrobials prior to presenting
to the healthcare provider. Whilst the microbiological
barriers can be addressed with training and supply of re-
sources, the issue of uncontrolled antimicrobial access is
much more challenging. In countries where culture of
IPD isolates is not likely, collecting isolates from the
nasopharynx of healthy carriers can be a viable alterna-
tive method to evaluate the vaccine impact on pneumo-
coccal population [66] potentially predicting the
emerging serotypes/strains post-vaccine using mathem-
atical modelling [77]. However, some serotypes that are
frequently found in IPD cases are rarely observed in car-
riage (e.g. serotype 1), and vice versa [39, 51], so inter-
pretation can be limited.
A fundamental challenge of any global surveillance

system, particularly one prioritising LMICs, is variation

in local infrastructure and resources, which often also
impacts on the level of engagement that an individual
project partner is able to commit to. Accordingly, it is
important to recognise the motivations and limitations
for each partner in order to maximise mutual benefit.
Some engagements may be relatively passive, with part-
ners being content to simply contribute culture samples
to the project, in the knowledge that analysis of their
samples will be reported back to them in the context of
regional and global analyses. Others may be more ac-
tively involved in developing local genomics capacity
and wish to generate and analyse data locally in a way
that can be integrated with the global database. Such
variation requires flexibility in the global system and fail-
ure to provide the necessary flexibility would likely lead
to partner disengagement and weakening of the surveil-
lance data captured. In view of such variations, the GPS
project devises bespoke support for project partners to

Table 1 An example of the Global Pneumococcal Sequencing
(GPS) project metadata

Categories Fields Example

ID Public name GPS_ZA_0001

Geographical location Country South Africa

Region Gauteng

City Johannesburg

Facility where collected Hospital A

Submitting institute NICD

Time Year 2010

Month Aug

Clinical data Gender F

Age (years) 0

Age (months) 1

Age (days) 0

Clinical manifestation Meningitis

Source Cerebrospinal
fluid

HIV status Negative

Other underlying
conditions

No

Microbiological data Phenotypic serotype
method

Quellung

Phenotypic serotype 19A

Multilocus sequence type ST81

Antimicrobial
susceptibilitya

Method Broth dilution

Antimicrobial (e.g.
penicillin)

2 mg/L

Selection Random selection Y
aAntimicrobial susceptibility profile of 17 antimicrobials including penicillin,
amoxicillin, cefotaxime, ceftriaxone, cefuroxime, meropenem, chloramphenicol,
cotrimoxazole, erythromycin, clindamycin, linezolid, levofloxacin, ciprofloxacin,
synercid, tetracycline, rifampin and vancomycin
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cater for different needs in training, data analysis and
interpretation.

Models of sequence data generation: from central to local
Generation of high-quality genome sequence is funda-
mental to any genomic surveillance system. In the last 2
decades, genome sequencing has progressed from a some-
what cumbersome technology, restricted to a few well-
resourced specialist institutions, to become a relatively
routine molecular biology tool. In recent years, the se-
quencing technology companies have developed a greater
variety of hardware catering for a variety of uses and bud-
gets. This, coupled with a drive toward genomics as a rou-
tine technology for disease surveillance, has led to an
expansion in the availability of sequencing hardware in
LMICs. In the first phase of GPS (2011–2019) nearly all of
the genome sequence data was generated at the Sanger In-
stitute. In the next phase, we have placed a strong em-
phasis on decentralising data generation in the hope of
creating a long-term sustainable genomic surveillance net-
work. It must be acknowledged that the introduction of
any new technology takes time, particularly in a resource-
limited setting but there are already several high-quality
genomics laboratories (e.g. NICD in South Africa [78]) in
LMICs and growing networks of national and regional
training providers (e.g. MRC unit The Gambia [79] and
H3ABionet [80]) so the outlook is positive.
Where data generation is centralised, the movement of

samples (bacterial cultures or DNA extracts) presents a
significant challenge, often including the need for legal
documentation such as material transfer agreements. As-
suming decentralised data generation can be achieved,
such sample logistic challenges are replaced by data
sharing challenges. With the centralised model, out-
wards data sharing can be relatively straightforward be-
cause it emanates from a single uniform data source that
has been generated and quality checked. With a decen-
tralised model, there may be variations in data gener-
ation so systems need to be developed to enable the data
to be harmonised within a unifying data platform. Such
systems will need to account for variations in local in-
formatics infrastructure and requirements for legal
documentation on data sharing agreements. Data shar-
ing platforms should also be built on open-source soft-
ware so that the entire stakeholder community can
engage in development.

Database and data sharing
The database is an important element of a genomic
surveillance system. It serves as a data hub in which
a collection of data from multiple sources is orga-
nised for users to view, search, download and share.
Designing, building and maintaining a database are
equally important and all three stages require

informatics infrastructure and support. In a surveil-
lance system that involves a network of partners, da-
tabases should also be designed to facilitate both
individual access to one’s own data and data sharing
between partners (Fig. 3).
Data generated from genomic surveillance has great

potential value beyond the original purpose so should be
publicly accessible. To maximise utility, open data, open
software and open access publications are essential and
have become strict requirements for many funders [81,
82]. Whilst the availability of open data continues to in-
crease, sharing the benefit arising from the utilisation of
these genetic resources in a fair and equitable way is im-
perative to maintain the virtuous cycle of data produc-
tion. To this end, the Nagoya Protocol was initiated on
12 October 2014. It provides legal certainty and a trans-
parent benefit-sharing framework for both the genetic
resources provider and users [83].

Data analysis
Translating large amounts of data from a genomic sur-
veillance system into meaningful information to guide
public health decisions requires accurate data analysis
and interpretation. Over the last decade, a variety of ana-
lysis tools have been developed that are robust and gen-
eric for application across species. From a pneumococcal
genome, we can quickly and reliably extract public
health-relevant information, including serotype [47, 48],
genotype [84, 85], and antimicrobial resistance profile
[86–88]. Such tools are being adapted to be run as appli-
cations within websites so formal bioinformatics expert-
ise is not required. For example, Pathogenwatch [89]
offers in silico detection and characterisation of genome
data for a wide range of microbial pathogens. By simple
‘drag-and-drop’ of sequence data files into a browser
window, users can quickly obtain public health-relevant
information [90].
Genome data is also powerful in answering key

questions, such as the genetic and geographical origin
of vaccine evading strains. By calculating substitution
rate, we can extrapolate when and where a pneumo-
coccal strain emerged and/or acquired the genetic
variation that conferred resistance to the vaccine or
antimicrobials [67, 91]. In the first phase of the GPS
project 26,100 genomes were sequenced. These data
allowed the systematic definition of 621 circulating
strains (referred to as Global Pneumococcal Sequence
Clusters (GPSCs) and detection of all genomic varia-
tions within, including identification of strains con-
taining up to 15 different serotypes [51]. The dataset
is dominated by 35 strains (> 100 genomes each) that
represent 62% of the dataset; several of these are glo-
bally disseminated and associated with multidrug re-
sistance. The GPSC strain definition lays the
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foundation for understanding pneumococcal popula-
tion changes after roll-out of PCV. In a GPS study of
~ 3000 pneumococcal isolates from laboratory-based
surveillance programmes in six countries collected be-
fore and after PCV [71], VTs were replaced by NVTs,
as expected [8, 29, 92–94]. Using GPSC, we observed
that the expansion of NVTs was mainly mediated by
a shift in the balance of serotypes within globally
spreading strains, with a smaller impact due to in-
creases of strains that exclusively express non-vaccine
serotypes. However, this observation varies amongst
countries, as do the prevalent serotypes and GPSCs
post-PCV. Such variations can partly be explained by
the differences in the pneumococcal population prior
to the vaccine roll-out and the variation in antimicro-
bial selective pressure amongst countries. These data
have also enabled the discovery of nine putative novel
serotypes [54] and previously unrecognised resistance
determinants [95].

Data visualisation and interpretation
Visualisation of analysed data is a key step for interpret-
ation of large, complex datasets which typically derive
from genomic surveillance systems. Visualising genetic
relationships between isolates on a phylogenetic tree, to-
gether with associated metadata, is a powerful approach.
Popular examples of visualisation software include
Microreact [96] and NextStrain [97]. The GPS project

uses Microreact to make fully analysed datasets easily
accessible including snapshots of country-specific [98]
and strain-specific studies [99] within project web re-
sources [100, 101]. GPS also uses the Phandango soft-
ware for visualisation of data specific to gene content
variations such as mutation, recombination and pan-
genome variations [102, 103].
Interpretation of analysis output requires a certain

level of knowledge in bioinformatics and the pathogen
studied. In most microbiology laboratories or surveil-
lance networks in LMICs, bioinformatics is a relatively
new expertise that requires training and hands-on ex-
perience. Together with the sister project JUNO [104],
GPS is developing a learning portfolio [105, 106] to suit
different partners’ needs informed by a survey that was
conducted amongst partners in the GPS and JUNO
projects.

Conclusions and future directions
The GPS project has clearly demonstrated the added
value of genomics in pathogen surveillance over the past
decade by identifying the emerging serotypes and
vaccine-escaping strains, thus providing evidence basis
to inform future vaccine strategies. The project also
highlighted the data gap and the need to build a more
sustainable surveillance system to optimise disease pre-
vention strategies.

Fig. 3 Input and output of the Global Pneumococcal Sequencing (GPS) database. The input is highlighted in light orange whilst output is in grey
with downward arrow symbol
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Filling important data gaps in countries with a high
burden of disease
In a 2018 study of the global burden of pneumococcal
disease, Wahl et al. showed that approximately half of all
pneumococcal deaths in 2015 occurred in just four
countries: India, Nigeria, Democratic Republic of Congo
and Pakistan [1]. However, when that study was pub-
lished, those four countries represented only 5% of the
GPS database. This mismatch was largely due to the dif-
ficulty in accessing appropriate samples, with each coun-
try having a unique set of economic, technical and
political challenges which put them beyond the reach of
the initial GPS model. However, there is no lack of cap-
able and motivated stakeholders in those countries and
it is hoped that, with a decentralised model and suffi-
cient support for capacity development, those data gaps
can be filled. With more representative data, genomic
analyses have the potential to give a clear picture of
pathogen evolution and risk in the context of regional
and global spread.

Combating multiple pathogens with a generic genomic
surveillance system
GPS has already been successful in generating a rich
knowledge base for informing future pneumococcal dis-
ease control strategy and is making good progress in de-
veloping global infrastructure for ongoing genomic
surveillance, but there is still much work to be done to
achieve a self-sustaining system. Systems for global gen-
omic surveillance of other vaccine-preventable bacterial
pathogens are also being established with many solutions
likely to be generic across different pathogen species. The
most obvious parallels with GPS would be for endemic
bacterial pathogens that have similar population structure
and incomplete-coverage vaccines. One example is Neis-
seria meningitidis where a variety of vaccine formulations
are available but none with complete species coverage. In
Africa, where the meningococcal disease burden is high-
est, widespread use of conjugate vaccine targeting the ser-
ogroup A polysaccharide capsule has seen a dramatic
reduction in serogroup A disease but also an increase in
disease due to other serogroups, most notably serogroup
X for which there is currently no licenced vaccine [107].
Meningococcal disease epidemiology in the ‘meningitis
belt’ of Africa is characterised by epidemic waves and suc-
cession of dominant strains [97]; genomics has great
potential for creating a clear understanding of meningo-
coccal population dynamics and creating preparedness for
future epidemic waves.

Enhancing capacity building in LMICs with high disease
burden
Genomic surveillance of vaccine-preventable pathogens
will only be sustainable through local data generation

and analysis which currently places a great emphasis on
capacity building in countries with high disease burden.
Fortunately, there is a growing wealth of initiatives for
training in genomics, including both wet-lab and bio-
informatic expertise, with a strong emphasis on the
‘train-the-trainer’ philosophy to ensure sustainability.
The supply of sequencing hardware and consumables is
improving in many parts of the world that were previ-
ously poorly served. Also, advocacy campaigns are rais-
ing awareness of the value of genomics with national
policy-makers to bring genomics into national disease
control strategies. Furthermore, the importance of gen-
omics capacity building in high burden countries is be-
ing prioritised by multiple major global health funders.
Other fundamental challenges remain. Mechanisms for
transfer of funds to the places where they are needed,
and protocols for data sharing, need to be made more
efficient whilst being sensitive to the needs of the diverse
stakeholders. However, by exploiting the universal na-
ture of DNA sequencing and integrating the need to
apply genomics to a range of endemic and epidemic
pathogens in high burden countries, it should be pos-
sible to develop sustainable pathogen genomics surveil-
lance capacity that will have both local and global
benefit for infectious disease prevention.

Optimising vaccine formulation
The WHO lists vaccines “available” for nine bacterial
pathogens with differing disease patterns (endemic, epi-
demic, opportunistic) and differing recommendations for
implementation, with some more commonly used in re-
sponse to outbreaks [108]. In some cases, the vaccine anti-
gen is generally invariant and gives good coverage across
the species (e.g. diphtheria, pertussis, tetanus, typhoid). In
these cases, low-density genomic surveillance would be
valuable in characterising cases of vaccine failure to
understand the mechanism of vaccine evasion and to pre-
dict whether it is likely to be an emerging threat. In cases
where the vaccine antigen is highly variable and the spe-
cies coverage is partial, it is likely that currently, effective
vaccines will need to be periodically reformulated in a
manner analogous to the seasonal influenza vaccine. The
reformulation cycle may not need to be as rapid as for in-
fluenza (annual) and would vary in turnover rate between
species. However, having a longitudinal genomic record of
pathogen evolution would be enormously valuable in de-
signing new vaccines and potentially forecasting the po-
tential risk/benefit of their use.
Mathematical modelling has provided useful tools for

predicting infectious disease risk. Incorporating evolu-
tionary parameters for bacterial pathogens has been a
challenge, particularly due to the complexity created by
horizontal gene transfer in multi-strain species, leaving
model outputs with a high degree of uncertainty. Recent
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models attempt to take advantage of the detailed evolu-
tionary knowledge provided by availability of longitu-
dinal population genomics datasets. Models based on
the balancing of individual gene frequencies across a
pathogen species population, termed ‘negative
frequency-dependent selection’, have been applied to
provide plausible, high-resolution explanations for popu-
lation responses to vaccines [77] and emergence of
pathogenic strains [109]. This approach has also been
applied to hypothesise PCV formulations that could be
tailored to the extant population and provide better dis-
ease prevention [110]. A key strength of this approach is
that it could allow for region-specific vaccine design, ad-
dressing the reality that pathogen populations can vary
significantly across the world and that ‘one size fits all’
global vaccines may not be the optimum approach. The
WHO also lists a number of ‘pipeline’ vaccines and
many others are in early design stages. Population gen-
omics is increasingly prioritised in vaccine design and is
further employed as the foundation of other powerful
‘omics’ approaches, such as surveying potential immuno-
genicity across complete proteome arrays [111].

Potential application of genomics in clinical microbiology
laboratories
Genomic technologies have the potential to provide so-
lutions for the inherent challenge of isolating the patho-
gen in cases of disease. Failure to culture the live
pathogen from a clinical sample is not uncommon and
molecular techniques are being developed that aim to
extract and analyse the pathogen DNA directly rather
than relying on the presence of viable pathogen cells. If
these techniques can be honed to enrich whole genomes,
then clinical pathogen genomic protocols for some spe-
cies could become ‘culture-free’. Another potential bene-
fit of genomics comes from the correlation and
derivation of important pathogen phenotypes that are
normally determined through an array of wet-lab tech-
niques, often with species-specific protocols and each re-
quiring maintenance of lab infrastructure and spend on
consumables. A number of studies have shown a high
degree of concordance for deriving such phenotypes dir-
ectly from genomic data and many public health labs are
choosing genomics as their main, or only method for
their determination [112, 113].
In conclusion, overcoming the above challenges re-

quires multi-disciplinary expertise, support from the
government and sufficient funding. The approach taken
and lessons learned from the GPS project discussed in
this review—surveillance priority and infrastructure, col-
laboration models, portfolio of capacity building and
bioinformatics training, solutions to challenges in
LMICs, recent advances in genomics—may guide generic
surveillance networks at national and international level.
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