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Abstract

Background: Renal medullary carcinomas (RMCs) are rare kidney cancers that occur in adolescents and young
adults of African ancestry. Although RMC is associated with the sickle cell trait and somatic loss of the tumor
suppressor, SMARCBI, the ancestral origins of RMC remain unknown. Further, characterization of structural variants
(SVs) involving SMARCBT in RMC remains limited.

Methods: We used linked-read genome sequencing to reconstruct germline and somatic haplotypes in 15
unrelated patients with RMC registered on the Children’s Oncology Group (COG) ARENO3B2 study between 2006
and 2017 or from our prior study. We performed fine-mapping of the HBB locus and assessed the germline for
cancer predisposition genes. Subsequently, we assessed the tumor samples for mutations outside of SMARCBT and
integrated RNA sequencing to interrogate the structural variants at the SMARCBT locus.

Results: We find that the haplotype of the sickle cell mutation in patients with RMC originated from three
geographical regions in Africa. In addition, fine-mapping of the HBB locus identified the sickle cell mutation as the
sole candidate variant. We further identify that the SMARCBT structural variants are characterized by blunt or 1-bp
homology events.

Conclusions: Our findings suggest that RMC does not arise from a single founder population and that the HbS
allele is a strong candidate germline allele which confers risk for RMC. Furthermore, we find that the SVs that
disrupt SMARCBT function are likely repaired by non-homologous end-joining. These findings highlight how
haplotype-based analyses using linked-read genome sequencing can be applied to identify potential risk variants in
small and rare disease cohorts and provide nucleotide resolution to structural variants.
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Background

Renal medullary carcinomas (RMCs) are rare non-clear
cell renal cell carcinomas with poor clinical outcomes
that disproportionately affect young individuals of Afri-
can ancestry [1]. Previous studies have established an as-
sociation between RMC and sickle cell trait, but the
ancestral origins remain unknown [2—6]. More recently,
immunohistochemistry, fluorescence in situ
hybridization, sequencing following hybrid capture with
targeted bait panels, and whole-exome sequencing have
identified disruption of SMARCBI, a key component of
the SWI/SNF complex, in RMC [4, 5, 7, 8]. These stud-
ies raise several questions. First, it is unknown if RMC
arises from a founder population. Second, although
RMC is strongly associated with sickle cell trait, it is un-
clear if the sickle cell mutation (Glu6Val) is the germline
variant which confers risk for RMC or if there are other
cooperating germline alterations in RMC. Further, even
though disruption of SMARCBI is observed in patients
with RMC, the mutational processes that drive SMAR
CB1 loss in RMC remain poorly defined.

To address these questions, whole-genome sequencing
is typically applied. However, whole-genome sequencing
is unable to provide haplotype resolution information,
and this precludes the ability to determine if large
stretches of variants are occurring in cis or in tramns. In
contrast, both long-read and linked-read sequencing
methods offer the opportunity to resolve and phase
haplotype sequences [9, 10]. Linked-read genome se-
quencing uses barcoded high-molecular weight DNA to
provide long-range information from short-read sequen-
cing to phase germline and somatic alterations [11, 12].
This technology has been used to elucidate structural
variants (SVs) and the study of long-range haplotypes
[13, 14]. Here, we leveraged linked-read genome sequen-
cing of a cohort of adolescents and young adults diag-
nosed with RMC who enrolled on the Children’s
Oncology Group (COG) Renal Tumor Biology and Risk
Classification protocol to elucidate germline and somatic
alterations in RMC at the haplotype level.

Methods

Patient cohort

A total of 5863 patients with concern for childhood kid-
ney cancers were enrolled on Children’s Oncology
Group ARENO03B2 between 2006 and 2017. Centrally
reviewed pathology identified 26 patients with a diagno-
sis of renal medullary carcinoma. In addition, we had
previously generated cell lines from 2 patients not in the
COG cohort (CLF_PEDS0005 and CLF_PEDS9001) [6].
In total, samples from 15 patients’ tumor/cancer cell line
with 12 matched germline DNA and 15 tumor/cancer
cell line RNA samples were obtained from the COG Bio-
pathology repository (Columbus, OH) or from prior
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studies through IRB approved protocols at Dana-Farber
Cancer Institute and COG approved biology protocols,
AREN17B2-Q, and AREN21D1-Q. Linked-read sequen-
cing (10x Genomics) was performed on 15 tumor sam-
ples and 12 germline samples. RNA sequencing was
performed on 15 tumor samples. One tumor sample
(PAWMTU) failed quality control metrics for linked-
read sequencing and RNA sequencing.

Generation of sequencing dataset

Samples from COG underwent AllPrep DNA and RNA
(Qiagen, Hilden, Germany) extraction based on TARGET
extraction protocols [15]. For cell lines and whole-blood
germline (CLF_PEDS0005 and CLF_PEDS9001) DNA ex-
traction, we used the HMW DNA extraction kit (Qiagen)
and used the protocols as outlined by 10x Genomics
(Document #CG00043 Rev B). RNA extraction for these
samples was performed using RNeasy (Qiagen).

Approximately 1pg of genomic DNA and 1ug of
tumor DNA were subjected to size selection when con-
centrations were above > 0.4 ng/uL. In cases where sam-
ples did not meet this threshold, no size selection was
performed. Samples were subjected to linked-read gen-
ome library preparation (10x Genomics, Pleasanton, CA)
and sequenced with a NovaSeq 6000 (Illumina, La Jolla,
CA). We achieved 43.3x mean coverage of normal sam-
ples and 82.6x mean coverage of tumor/cancer cell line
samples.

Approximately 0.5 pg of RNA was subjected to RNA
sequencing using TruSeq v2 chemistry and sequenced
on a NovaSeq (Illumina). Samples with >50 million
reads were used for subsequent analysis (13 of 15 pa-
tients) after alignment with STAR [16].

Conversion of BCL files to Fastq files

BCL files generated from the sequencing run were
demultiplexed and converted into fastq files using the
Long Ranger mkfastq tool (Version 2.1.6) provided by
10x Genomics (https://support.10xgenomics.com/
genome-exome/software/downloads/latest) [17]. This is
a wrapper program around the Bcl2fastq2 (version
2.17.1.14) program provided by Illumina. The longranger
mkfastq program was run with the parameters --ignore-
dual-index and --delete-undetermined to generate the
fastq files from the BCL files.

Long Ranger mapping and germline variant calling

The full Long Ranger pipeline was executed on the full
set of fastq files corresponding to each sample, using the
Long Ranger WGS program (version 2.2.2) provided by
10x Genomics with the command “longranger wgs.” The
Long Ranger-compatible GRCh38 reference genome
(GRCh38 Reference - 2.1.0; Sep 15, 2016) was obtained
from http://cf.10xgenomics.com/supp/genome/refdata-
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GRCh38-2.1.0.tar.gz [18] and used as a reference gen-
ome for alignment and germline variant calling. As mul-
tiple sequencing runs were used to sequence a single
sample, all runs corresponding to each sample were spe-
cified within the .mro configuration file. The following
parameters were also specified within the .mro configur-
ation file used in the Long Ranger run: “bc_in_read™ 1,
“bc_length”: 16 “sample_indices”: [“any”].

Generation of phased germline calls

Germline variant calling was performed with the gen-
omic analysis toolkit (GATK version 4.0.10.0) [19]
within the Long Ranger pipeline by specifying it as the
variant caller using the “vc_mode” argument in the .mro
configuration file. This enabled germline variants to be
phased into haplotype blocks based on sequence bar-
codes obtained by linked-read genome sequencing. De-
tected variants with a phase quality of > 23 were deemed
reliable for assignment into a single haplotype block.

Somatic single-nucleotide variation (SNV) calling

Somatic SNVs calling was performed as previously de-
scribed [20, 21]. MuTect (version 1.1.4) was used to
identify somatic SNVs in the 12 samples for which
matched tumor or cell line and germline DNA were
available [22]. Candidate sites with the “KEEP” tag were
then retained. In order to account for systematic arti-
facts caused by mapping, sequencing errors, and com-
mon germline SNPs, we used MuTect to generate a
Panel of Normals (PON) from the Long Ranger-aligned
normal samples in our study. Variant calling was per-
formed on all 12 normal samples in our cohort in the
“single sample mode,” using the parameter “—artifact_de-
tection_mode.”

We then applied a set of filters. First, we removed sys-
tematic artifacts found in > 2 samples in the PON. We
retained variants of allele frequency > 10% and with > 6
variant reads, as previously described [20, 21]. We subse-
quently removed variants present in the 1000 Genomes
or gnomAD databases at allele frequency > 0.1% [23,
24]. For the 3 samples lacking a matched germline sam-
ple, we used MuTect in the “—artifact_detection_mode”
to call possible somatic SNVs. Subsequent filters were as
for the matched samples.

Copy number analysis

TITAN (version 1.15.0) was used to identify copy num-
ber alterations [25]. Each tumor-normal sample pair was
fed into the TITAN software where the coverage profile
information for each 10-kb bin was evaluated for each
bam file. SNP calling was performed on a list of sites
found in the dbSNP database [26] on the normal sample
to identify heterozygous sites. These heterozygous sites
were then used to calculate the B-allele frequency for

Page 3 of 13

the corresponding tumor sample. Following GC correc-
tion, coverage profile information and B-allele frequency
information were then fed into the TITAN statistical
model for inference of copy number state. Ploidy = {2,3}
and tumor clusters = {1,2} were used as default parame-
ters, to generate four possible solutions based on the
data. Each solution was manually curated to establish
the most reasonable parameters for each dataset. All
samples were found to be of ploidy = 2, and samples
with either 1 or 2 tumor clusters were detectable. For
the 3 samples lacking a matched germline sample, the
germline sample of CLE_PEDS0005 served as the match
normal. Each solution was manually curated, and the
copy number profile assessed for the presence of dele-
tions on chromosome 22 where SMARCBI resides.

Structural variant calling

We used SvABA (version 1.1.2) to identify somatic
structural variants [27]. Somatic SV calling was per-
formed using the bam files corresponding to each pair of
tumor and normal samples. Candidate somatic structural
variants with the “PASS” tag were retained for further
analysis. For the 3 samples lacking a matched germline
sample, SYABA SV calling was performed on the tumor
sample alone. A small fraction of SV calls related to
SMARCBI loss were rescued from the unfiltered list, as
they did not meet the default detection threshold of
SvABA. Notably, all structural variants associated with
SMARCBI loss events were manually curated in the In-
tegrative Genomics Viewer (IGV) to ensure call reliabil-
ity. Soft-clipped sequences found at each of the
breakpoints for the SV events were remapped using
BLAT in IGV to ensure accurate mapping to the other
breakpoint.

Annotation of variants identified

Annovar (version 2018-04-16) was used to annotate
all SNVs, indels and breakpoints corresponding to
structural variants [28]. Each variant was annotated
using the Annovar databases refGene, knownGene,
ensGene, dbnsfp35¢c, dbscsnvll, cosmic70, esp6500-
siv2_all, exac03, avsnp150, clinvar_20190305,
1000g2015aug_all, 1000g2015aug_afr, genomicSuperD-
ups, and gwasCatalog.

Inferring sex of patients from genome sequencing

To infer the sex of each patient in our cohort, the num-
ber of reads mapped to each chromosome was counted
using samtools idxstats [29]. The total read count for
each sample was obtained by tallying reads in chrl-22,
chrX, chrY, and chrM. These data were used to calculate
for each sample the percentage of reads arising from
each chromosome, and the ratio of chrX to chrY reads.
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We determined samples with chrX to chrY ratio of ~ 40:
1 to be female and 4:1 to be male.

1000 Genome Project phase 3 genotype calls

Genotype information or corresponding ancestry infor-
mation from the 1000 Genomes Project [24] database in
the hg38 coordinates (liftover) was downloaded from the
1000 Genomes Project website (http://ftp.1000genomes.
ebi.ac.uk/voll/ftp/release/20130502/supporting/GRCh3
8_positions/ and ftp.1000genomes.ebi.ac.uk/voll/ftp/
technical/working/20130606_sample_info/20130606_
sample_info.xlsx) [24]. Among the 1000 Genomes Pro-
ject cohort, 137 individuals were found to be heterozy-
gous for the sickle cell mutation (rs334). These samples
were subsequently used for the haplotype level analysis.

Analysis of ancestry for RMC patients

To establish the ancestry of each RMC patient, we com-
pared our samples to 2504 samples of defined ancestry
from the 1000 Genomes Project (phase 3) [24]. Germline
SNP calls for both 1000 Genomes Project samples and
RMC samples were converted from VCF format into
Plink .bed format and then merged. Principal compo-
nent analysis of these samples was performed with Plink
(v1.90b6.18) [30] using a list of 6,513,809 variants de-
tected in the RMC cohort, with a minor allele frequency
of > 0.05 and missing call frequency < 0.1 in the com-
bined cohort, similar to previous studies (https://github.
com/GerkeLab/TCGAancestry) [31]. We manually
inspected the first six principal components and found
that principal components 2 and 3 (PC2 and PC3, re-
spectively) can effectively separate the 1000 Genomes
Project samples into the five major populations. The an-
cestry of each RMC sample was then inferred based on
how it clustered with each of these five major popula-
tions in the PCA plot.

Haplotype principal component analysis of sickle cell
allele

To perform haplotype principal component analysis of
the region corresponding to the sickle cell allele, we used
the Long Ranger pipeline (version 2.2.2) provided by 10x
Genomics to phase germline calls and to generate haplo-
types. Specifically, we analyzed all variant alleles flanking
+100 kb of the sickle cell mutation in all 14 patient sam-
ples of African ancestry. For cases lacking the germline
sample (n = 3), we used germline calls from the tumor
samples. Only variants represented in the 1000 Genomes
Project database were analyzed to ensure comparability
of the variants in both the RMC and the 1000 Genome
cohorts and to remove sites with poor genotype calls
from the RMC samples. We also inspected the “PS” tags
of all variants within this 200-kb region to ensure the
calling of variants in this region as a single continuous
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haplotype. In two of these cases (PEDS0005T and
PAWMTU), single breaks were observed in the haplo-
types generated from the normal samples, though these
could be stitched together using haplotypes generated
from the matched tumor samples.

Having established the germline variants for analysis,
and the contiguity of the haplotypes in this 200-kb re-
gion for the RMC patient samples, the phased germline
calls of each RMC patient were defined as one of two
haplotypes, the sickle cell mutant haplotype or the wild
type haplotype, based on the presence or absence of the
HbS allele. Haplotypes obtained from the 1000 Genomes
Project (phase 3) [24] individuals with the sickle cell mu-
tation were similarly defined as mutant or wild-type
haplotype. These haplotypes of RMC patients and 1000
Genome patients were compiled, represented as vectors
of “zeroes” (reference allele) and “ones” (variant allele),
and merged into a single matrix.

We then performed principal component analysis
using R (version 3.5.0) on the haplotype vector (of
“zeros” and “ones”) corresponding to each sample and
for both the sickle cell mutant and non-mutant haplo-
types. The position of each haplotype was displayed on
the first two principal axes as indicated.

Fine-mapping of sickle cell haplotype

As the Long Ranger germline variant caller analyzes one
sample at a time and does not output phased genotype
calls for homozygous reference sites by default, sites
which are variant at one coordinate in a particular sam-
ple may not possess a genotype call in a different sam-
ple. Thus, the genotype states for a number of sites can
be missing when genotype calls from multiple samples
are merged together. Typically, most of these sites with
an absent genotype call are homozygous reference sites,
and can be imputed accordingly. Nonetheless, to ensure
the accuracy of genotype calls for our fine-mapping ana-
lysis, joint variant calling was simultaneously performed
on all samples using GATK (version 4.0.10.0) [32]. Joint
variant calling identified 1979 variants, of which 1715
(86.7%) were concordant with variants identified by per-
sample variant calling. Most non-concordant variants
were small indels that were difficult to assign to a single
genomic coordinate. The 1715 concordant variants were
then subjected to fine-mapping analysis.

Fine-mapping was performed to identify possible add-
itional candidate risk variants in linkage disequilibrium
with the sickle cell mutant allele. Specifically, the PS tag
was used to identify all variants in the same haplotype
block within the 200-kb region surrounding the sickle cell
mutation. The strong association between sickle cell trait
and RMC argued that the variant conferring risk for RMC
most likely resides within the haplotype encompassing the
sickle cell mutation, but not the corresponding wild-type
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haplotype at the same locus. Based on this principle, we
then searched for all variants significantly over-
represented in the sickle cell mutant haplotype as com-
pared to the wild-type haplotypes in the same patients.
This was done by enumerating the number of times each
variant was observed in the haplotype blocks containing
or lacking the sickle cell mutation. Significant over-
representation of any variant in the sickle cell haplotype
vs. the wild-type haplotype was tested by one-sided Fish-
er’s exact test using R (version 3.5.0).
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Identification of potentially deleterious germline variants

We first identified 952 candidate genes based on prior
studies of germline variants or genes affecting DNA re-
pair [33-35]. We used the germline Long Ranger output
based on GATK [19]. We filtered out poor-quality reads
and annotated these calls with reference to the 1000 Ge-
nomes Project or gnomAD [23, 24]. We then focused on
disruptive events (e.g., splice variants, frameshift indels
or deletions, and nonsense mutations) with population
allelic frequency < 0.1% and manually curated candidate
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germline variants presented in Fig. 1 using the Integra-
tive Genomics Viewer [36].

Identification of potentially relevant somatic variants

We searched the filtered list from the above SNV calling
methods for COSMIC-nominated mutations [37], non-
synonymous or stop-gain mutations that had a somatic
variant allele frequency (VAF) > 10% while having a
population allelic frequency (AF) < 0.1% in the 1000 Ge-
nomes Project African population. We then used
mSigDB to identify variants significant in cancer biology
[24, 38].

Analysis of microhomology at DNA breaks

To assess the patterns of microhomology at each of the
translocation and large deletion events associated with
SMARCBI loss events, the fusion sequence for each SV
event was reconstructed based on the SV calls from
SVABA [27]. These sequences were then compared with
the reference sequences at both breakpoints to detect
any inserted sequences. Reference sequences at both
breakpoints were also searched for sequence microho-
mology close to the breakpoints.

Annotation of repeat elements at DNA breaks

The hg38 RepeatMasker track was downloaded from the
UCSC Genome Browser [39] using the Table Browser
functionality on the website (Group: Repeats, track:
RepeatMasker) in bed format. Using the “intersect” func-
tion in bedtools (v2.28.0) [36], we identified the potential
overlap between DNA breakpoint sites identified in our
study and repeat elements in the RepeatMasker database
[40].

RNA sequencing expression analysis

RNA was extracted with Allprep DNA and RNA as
above. Samples were sequenced with an average of 135
million reads per sample. Following sequencing, samples
were mapped, aligned, and quantified using the same al-
gorithms for the Cancer Cell Line Encyclopedia and
Genotype-Tissue Expression [41, 42]. From RSEM quan-
tified samples, DESeq2 was wused to perform
normalization and differential expression analyses of the
SMARCBI gene [43, 44].

Analysis of fusion transcripts at SMARCB1-related
breakpoints

Fusion transcripts associated with SMARCBI-related
breakpoints were identified by manual assessment of
each SMARCBI1-associated breakpoint in the Integrative
Genomics Viewer [36]. For each pair of breakpoints cor-
responding to a large deletion or translocation event, the
region retained subsequent to the structural variant
event was carefully examined for reads that were
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discordantly mapped or were soft-clipped in the RNA
sequencing dataset. Particular attention was paid to
genes which overlapped with the breakpoints of interest.
Any identified soft-clipped sequences were remapped by
BLAT to identify the partner region to which fusion
transcripts were linked [45]. All identified soft-clipped
sequences were mapped to the retained genomic region
on the other side of the breakpoint. Each such fusion
junction was carefully examined for the presence of the
5'-splice site (GT) and 3’-splice site sequence (AG) to
establish transcript orientation.

Results
Landscape of germline and somatic alterations in RMC
A total of 5863 children and adolescents with renal
masses in North America were enrolled in the COG
ARENO03B2 renal tumor biology study between 2006 and
2017. This represents an estimated 90% of all kidney
cancers seen in children and adolescents. The twenty-six
patients enrolled had a central pathology diagnosis of
RMC. From these 26 patients, 14 tumor samples and 12
germline samples representing 15 unique patients (13
male and 2 female) met the quality control metrics fol-
lowing linked-read genome sequencing (10x Genomics)
and RNA sequencing (Fig. 1, Additional file 1: Tables
S1-S2, the “Methods” section) [13]. Of these 15 patients,
10 had SMARCB1 immunohistochemistry performed
and described loss of SMARCBI (Fig. 1, Additional file
2: Fig. Sla, Additional file 1: Table S1). Notably, the
male bias we observed (87%) in our study is similar to
three prior studies (70-77%) on RMC [46-48]. We
achieved a mean sequencing coverage of 43.3x for the
germline samples and 82.6x for the tumor samples. Fur-
ther, germline and somatic variants were phased into
haplotype blocks with a median N50 phase block size of
2.2 Mbp for the normal DNA and 1.3 Mbp for the
tumor DNA in this study (Additional file 1: Table S3).
To establish whether there are any cooperating germ-
line alterations in RMC, we analyzed the germline vari-
ants (Fig. 1; Additional file 2: Fig. Slb). We first
compared our samples with populations from the 1000
Genome Project using principal component analysis
(PCA) to determine the ancestry. We found that 14 pa-
tients were of African origin and 1 patient was of Euro-
pean origin (Fig. 1, Additional file 2: Fig. Slc) [24].
Subsequently, we assessed genes implicated in cancer
predisposition syndromes [33, 34]. Notably, we had
chosen this candidate gene approach in the analysis of
germline variants due to the small cohort size of our
study (n = 15) which has inadequate statistical power to
perform a powered unbiased genome-wide search for
new candidate genes. We identified 7 heterozygous
germline alterations in the double-strand break, nucleo-
tide excision, and base excision repair pathways (Fig. 1,
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Additional file 1: Table S4). We then assessed alleles af-
fecting APOLI function which are associated with
chronic kidney disease (CKD) in African Americans
[49]. Four patients were heterozygous for GI1 alleles
(comprising two variants) or the G2 allele in the APOLI
gene while 1 patient (PAUFSN) was homozygous for the
G1 alleles (the homozygous state primarily confers in-
creased risk for CKD). Allelic frequency in African
Americans for the Gl alleles at chr22:36265860 is
0.2189 and at chr22:36265988 is 0.2204 while the G2 al-
lele at chr22:36265995 is 0.1357 [23]. Taken together,
we did not identify any recurrently mutated genes affect-
ing the DNA repair pathway or chronic kidney disease
in the germline of RMC patients.

We then assessed the landscape of somatic alterations
in RMC by integrating copy number analysis, structural
variant calling, indel analysis, and SNV calling in 11 tu-
mors with matched germline samples and in 3 tumors
without matched germline samples (Fig. 1, the
“Methods” section). We found an average of 39.2 exonic
somatic SNVs and a mutation rate of 1.14 per Mbp in
RMC samples (Additional file 2: Fig. S2a). We identified
copy number loss on chromosome 22q in 11/11 samples
with matched germline samples and 2/3 without
matched germline samples (Additional file 2: Fig. S2b-c).
The next most common copy number alteration was
copy number gain on chromosome 8q in 3/11 samples
with matched germline samples and 0/3 samples without
matched germline samples. Powered by linked-read gen-
ome sequencing, we found that 100% of evaluable tu-
mors had bi-allelic somatic disruption of the SMARCBI
gene on both parental haplotypes (Fig. 1, Additional file
1: Table S5). We identified somatic variants (VAF ran-
ging from 0.11 to 0.42) involving DNA repair and repli-
cation, the SWI/SNF complex (ARIDIA), and other
cancer-related genes, but none were recurrently altered
(Fig. 1, Additional file 1: Table S6). Together, our data
suggests that the genomes of RMC have few alterations
and that there are no other high-frequency recurrently
mutated genes beyond SMARCBI in RMC.

The HbS allele in RMC patients is derived from multiple
ancestries

We then assessed the sickle cell mutation allele (HbS;
Glu6Val) to determine the sickle cell mutation status of
patients with RMC. Fourteen of 14 individuals of African
ancestry had sickle cell trait whereas the individual of
European ancestry did not harbor the HbS mutation
(Fig. 1, Fig. 2a, Additional file 2: Fig. S1c and Additional
file 1: Supp. Table S7). We then searched the HbVar
database for alterations in other hemoglobin genes [50].
We did not identify co-occurrence of alpha thalassemias,
but we found several variants of unknown significance in
HBE, HBM, and HBQI in 2 patients (Additional file 1:
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Table S8). Thus, our results suggest that the majority of
RMC patients are carriers of the sickle cell mutation
without a cooperating hemoglobinopathy.

To evaluate for a possible founder population in RMC
given the association with the sickle cell trait, we asked if
we could observe a shared haplotype among these unre-
lated RMC patients at the sickle cell locus. We recon-
structed the haplotype in the 200-kb region surrounding
HBB using linked-read sequencing. For comparison, we
included phased haplotype calls of individuals with sickle
cell traits from the 1000 Genomes Phase 3 Project [24].
We performed haplotype-level PCA for these two groups.
We found that the haplotypes containing the HbS muta-
tion were divided into three distinct groups unrelated to a
diagnosis of RMC (Fig. 2b). These groups were tightly
clustered within themselves suggesting that the haplotypes
in each cluster were shared within each group. Moreover,
these groups represent three major geographic regions in
Africa, namely West Africa (top-right cluster—GWD and
MSL), West-Central Africa (left cluster—ESN and YRI),
and East Africa (bottom-right cluster—LWXK). In contrast,
these differences were not observed in the corresponding
wild-type HBB haplotype (Fig. 2b). We performed PCA
using unphased genotype data for different region sizes
around the sickle cell mutation and found that these sub-
population-specific differences extended to 2 Mbp (Add-
itional file 2: Fig. S3a-c). These results suggest that the risk
allele underlying RMC arises from diverse ancestries ra-
ther than a founder population.

To assess whether the association between RMC and
sickle cell trait is due to the HbS allele or to another vari-
ant in strong linkage disequilibrium with it, we performed
fine-mapping of the sickle cell locus (Fig. 2c). We hypoth-
esized that if another candidate variant exists, then it
should be significantly over-represented in the HbS haplo-
type compared to the wild-type haplotype. We see that
the sickle cell mutation was the most significantly (p-value
= 25 x 107°) over-represented in the HbS haplotypes
among the 14 patients of African ancestry. The next three
most highly over-represented variants (p-value = 4.9 x
107°) were common variants (> 18% in the African popu-
lation), and all three were observed in cis with HbS in gno-
mAD or the 1000 Genomes Project [23, 24]. Notably,
these intergenic variants did not co-localize with
H3K27Ac peaks or DNase I peaks, suggesting that they
are unlikely to reside in enhancer elements affecting HBB
or other genes [51]. Taken together, our results provide
evidence to suggest that the sickle cell mutation is a germ-
line variant that confers risk for RMC.

Patterns of structural variants driving SMARCBT loss in
RMC

We assessed the spectrum of alterations by which
SMARCBI was disrupted. We found structural variant
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1000

(SV) events in 22 of 26 alleles from 13 patients (85%)
(Fig. 1). Fourteen SVs were deletions (median deletion
size of 3.5 Mbp), 8 were balanced translocations, and the
remainder were either chromosome/arm losses (n = 3)
or a stop-gain mutation (n = 1) (Additional file 1: Table
S5). Among the 8 SMARCBI translocations, 5 occurred
within the first intron. Four of these SMARCBI break-
points were found in close proximity (< 100 bp) to each
other suggesting that these sites might represent hot-
spots of DNA breakage (Fig. 3a). However, we did not

identify recurrent partner translocations (Additional file
2: Fig. S4a-b). We further identified several instances of
kataegis occurring on chromosome 22 where SMARCBI
resides (Additional file 2 Fig. S5a-c) [52]. In summary,
the loss of SMARCBI in RMC is driven primarily
through SVs.

We then assessed genomic features of SVs associ-
ated with SMARCBI loss. Analysis of the 24 evaluable
fusion events (deletions and translocations) showed
these SVs had either blunt end assembly (12/24) or
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1-bp microhomologies (7/24) (Fig. 3b, Additional file
1: Tables S9-S10). This suggests that these sites were
repaired by classical non-homologous end joining (c-
NHE]) [53, 54]. We next assessed for repeat elements
at the breakpoints. We found these events were rare,
with 5 harboring a L1/L2 repeat element and 4 with
an Alu element. In addition, 26/34 breakpoints oc-
curred in genic regions suggesting a possible relation-
ship between transcription and acquisition of DNA
breaks. We then looked at the genes involved in these
breakpoints and found that 3 occurred in the
calcineurin-binding protein gene, CABINI. Two add-
itional breakpoints were found in the breakpoint clus-
ter region gene, BCR. We further noted that in the
PARSBL sample, a pair of breakpoints occurred in
GGT1 and GGT2 (sequence identity = 97%) suggest-
ing a relationship between homologous gene se-
quences and the occurrence of a SV. Together, our

findings highlight a range of genomic features that
may be involved in driving SMARCBI loss in RMC.

We then asked if these SV events associated with
SMARCBI loss might also be driving the formation of
fusion transcripts. We found fusion transcripts in 3 of 9
deletion events and in 4 of 7 translocation events. Four
of these 7 fusion transcripts were generated either in the
sense-to-antisense orientation of annotated genes, and
the remainder were generated in the sense-to-intergenic
orientations suggesting that these would not lead to a
functional fusion protein. Together, our work indicates
fusion transcripts are frequently generated as by-
products of SMARCBI loss events and are unlikely to
promote tumorigenesis.

Discussion
The sickle cell trait has been associated with renal me-
dullary carcinoma and has been proposed as a risk locus
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for this disease [2]. It has remained unproven if another
variant in this region could predispose a patient to RMC
or if the HbS allele is the sole germline risk allele. Here,
we used linked-read genome sequencing to reconstruct
the haplotypes surrounding the hemoglobin locus. We
found that the HbS allele in patients with RMC derives
from three sub-populations within Africa suggesting that
there is not a founder effect from the sickle cell muta-
tion. Furthermore, fine-mapping of this region did not
identify another allele associated with RMC. Rather, the
sickle cell mutation is the strongest candidate in this re-
gion. We then expanded our search to the germline and
did not find recurrent alterations in cancer predispos-
ition genes or genes affecting kidney injury. For instance,
although 3 of 12 (25%) and 2 of 12 assessable patients
(17%) had the G1 and G2 APOLI alleles, respectively,
the frequencies of these alleles which are linked to the
risk of kidney damage [49] were not elevated in com-
parison with the general African American population
(22% and 14%, respectively). Taken together, our study
provides further evidence to support the concept that
sickle cell mutation is the main germline risk factor
underlying RMC.

Our study of samples from the 11-year COG experi-
ence of children and adolescents with RMC confirms
that the tumor suppressor gene, SMARCBI, is primarily
disrupted through structural variants such as deletions
and translocations. These results add to the growing
body of literature reporting an array of mechanisms by
which SMARCBI is disrupted in RMC [4, 5, 8, 55] and
in other cancers [56—58]. Using linked-read genome se-
quencing, we found that these structural variants likely
are repaired by c-NHE], concordant with SVs observed
in other cancer types [53]. While an issue with DNA
damage repair might help drive the occurrence of SMAR
CB1 associated SVs, we did not identify any recurrent
germline alterations in the double-strand break and
NER/BER pathways nor recurrent somatic alterations in
genes related to DNA repair and replication. Our find-
ings of a predisposing and potentially causal allele in pa-
tients with cancer of low somatic mutation burden raise
questions around the environment of the precursor cells.
For example, nicotinic acetylcholine receptor risk alleles
are associated with increased tobacco smoking and in-
crease the carcinogenic risk to precursor lung cells [59].
Similarly in RMC, the HbS allele may confer replication
stress or chronic inflammation which may lead to an in-
creased risk of double-stranded breaks in precursor kid-
ney cells [60, 61].

Our results also illustrate how germline alleles confer-
ring disease risk such as the HbS allele can be identified
in rare diseases using linked-read genome sequencing in
unrelated individuals. While co-segregation and genetic
linkage in families and relatives of a specific cancer are
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typically applied to identify the genes responsible for
cancer predisposition, difficulties in collecting these
samples have prevented these approaches from being ap-
plied in the context of rare diseases like RMC. Nonethe-
less, unrelated individuals with the same disease often
also share long tracts of genetic material in the region
responsible for disease risk. By applying this principle,
identity-by-descent (IBD) mapping has identified major
loci for serum triglycerides, schizophrenia, multiple
sclerosis, BRCAI, and a founder population with TP53
R337H [62-68]. However, accurate reconstruction of
haplotypes normally requires related individuals [69].
Absent a related cohort, statistical-based approaches
have been used but may miss rare variants [30, 70-75].
Furthermore, some of these approaches require large co-
horts to achieve adequate statistical power while others
require a representative panel of reference haplotypes.
Therefore, our study illustrates how linked-read genome
sequencing can overcome these challenges and identify
potential predisposition loci in rare cohorts.

Our study however has a few limitations. While the
HbS allele has been identified as a strong risk allele for
RMC patients in our study, it has not been demon-
strated experimentally that this allele plays a causative
role in RMC. One approach to consider would be to
evaluate RMC development in large cohorts of HbS mu-
tant mice in combination with other genetic alterations
and/or cancer-promoting environments. While a strong
association of RMC with individuals of African ancestry
was observed, our study is unable to confirm if this is
driven purely by genetics (e.g., the HbS allele) or due to
epidemiologic, environmental, and/or other ethnicity-
specific differences. It should nonetheless be noted that
all patients in our cohort were obtained from North
America, where environmental and epidemiologic differ-
ences are likely minimized. We also observed 10.3-fold
(p = 4.87 x 107'°) more individuals with sickle cell trait
in RMC patients of African ancestry than we might ex-
pect by chance among African Americans. Thus, while
ethnicity-specific epidemiologic and environmental dif-
ferences might contribute in part to the incidence of
RMC, ethnicity-specific genetic differences likely play an
important role in RMC. Finally, due to low tumor purity,
we did not identify mutations or deletions/translocations
in the SMARCBI gene despite the loss of SMARCBI1 by
immunohistochemistry in PAWMTU and PAXBXE.

Conclusions

We have shown here that technologies such as linked-
read genome sequencing can significantly enhance our
ability to resolve the genetic basis underlying rare dis-
eases. Specifically, we find that the HbS allele is likely
the germline allele conferring risk for RMC and does
not arise from a single founder population. We further
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show at nucleotide resolution that the disrupting SVs
observed in disrupting SMARCBI is likely repaired by
non-homologous end-joining. The combined analysis of
germline and somatic genome alterations in cancer, to-
gether with haplotype-resolved sequencing, may also re-
veal links between the impact of germline mutations
such as HbS that create a cancer-promoting tissue envir-
onment and mutations in genes such as SMARCBI that
arise in this environment.
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