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Abstract

Background: Human pancreatic islets are a central focus of research in metabolic studies. Transcriptomics is
frequently used to interrogate alterations in cultured human islet cells using single-cell RNA-sequencing (scRNA-
seq). We introduce single-nucleus RNA-sequencing (snRNA-seq) as an alternative approach for investigating
transplanted human islets.

Methods: The Nuclei EZ protocol was used to obtain nuclear preparations from fresh and frozen human islet cells.
Such preparations were first used to generate snRNA-seq datasets and compared to scRNA-seq output obtained
from cells from the same donor. Finally, we employed snRNA-seq to obtain the transcriptomic profile of archived
human islets engrafted in immunodeficient animals.

Results: We observed virtually complete concordance in identifying cell types and gene proportions as well as a
strong association of global and islet cell type gene signatures between scRNA-seq and snRNA-seq applied to fresh
and frozen cultured or transplanted human islet samples.

Conclusions: We propose snRNA-seq as a reliable strategy to probe transcriptomic profiles of freshly harvested or
frozen sources of transplanted human islet cells especially when scRNA-seq is not ideal.

Keywords: Transplanted human islets, Single-nucleus RNA-sequencing, Single-cell RNA-sequencing, Human B-cells,
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Background

Type 1 diabetes (T1D) and type 2 diabetes (T2D) are
both characterized by a progressive reduction of func-
tional mass of insulin-producing p-cells [1, 2]. Therefore,
restoring physiological numbers of endogenous p-cells,
improving B-cell functionality, or generating insulin-
producing [-like cells derived from stem cells for
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transplantation are promising strategies to resolve dia-
betes in patients. While the identification of factors able
to stimulate -cell proliferation [3—11] and the improve-
ment of differentiation protocols to generate functional
B-like cells [12—17] continue to evolve, gaining insights
into dynamic changes in the global transcriptome of -
cells, especially following manipulation in an in vivo en-
vironment (e.g., in transplanted islets in humanized
mouse models) is worth exploring.

One challenge when investigating the biology of pan-
creatic islets is the presence of at least five different
hormone-secreting endocrine cell types and non-
endocrine cells such as endothelial cells, glia, fibroblasts,
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pericytes, and immune cells (tissue-resident macro-
phages, mast cells, B cells, cytotoxic T cells) [18]. A mix-
ture of such diverse cell types can hinder precise
identification of cell-specific transcriptomes or exclusive
biological signals when bulk tissue analyses are per-
formed. To circumvent this limitation, over the past few
years, multiple groups have utilized single-cell RNA-seq
(scRNA-seq) methodologies on islet cells isolated from
mouse [19, 20] or human pancreas [21-24]. These stud-
ies have focused on dissecting the transcriptomic signa-
ture of endocrine cell types across different ages [25]
and to define differentially expressed genes in type 2 dia-
betic B-cells [26-29]. However, single-cell preparations
are also known to have limitations, including the need to
harvest live cells [30] which may inadvertently induce
stress responses [31, 32]. These aspects gain relevance
when identifying disease-related transcriptomic signa-
tures in tissues obtained from multiple human donors at
different time points that require immediate, although
usually varied, processing and individual analyses.

To overcome these limitations [31], single-nucleus
RNA-sequencing (snRNA-seq) has been employed in
studies on tissues composed of diverse cell types, includ-
ing the brain [33, 34], kidney [35-37], heart [38], skeletal
muscle [39, 40], stria vascularis [41], retina [42], liver
[43, 44], lung [45], or white [46, 47] and brown adipose
tissue [48, 49] obtained from mice or human donors.
Here, we report a side-by-side comparison between
snRNA-seq and scRNA-seq to validate the robustness of
the former as an alternative sequencing strategy. We
propose that snRNA-seq is a reliable approach to inter-
rogate the transcriptomic profiles of archived frozen tis-
sues that, to our knowledge, has not been applied
previously to pancreatic islets or engrafted tissues.

Methods

Animal studies

Healthy female 8—12-week-old non-obese diabetic (NOD)/
severe combined immunodeficiency (SCID)-y (NSG) mice
were used as human islet transplant recipients. We used 4
animals in total, where a single animal received human islet
preparation from a single donor. Animals were housed in
the Animal Care Facilities at Joslin Diabetes Center on a 12-
h light/12-h dark cycle with water and food ad libitum. Stud-
ies and protocols were approved by the Institutional Animal
Care and Use Committee of the Joslin Diabetes Center
(IACUC #05-01).

Human islet studies

Human islets were obtained from 5 non-diabetic brain-
dead donors. Islet preparations were generated by the
Integrated Islet Distribution Program or Prodo labora-
tories according to the standard procedures [50] (Add-
itional file 1: Table S1). All studies and protocols used
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were approved by the Joslin Diabetes Center’s Commit-
tee on Human Studies (CHS#5-05). Upon receipt, hu-
man islets were centrifuged, washed, transferred to Petri
dishes (2000-3000 human islets equivalents [IEQs]/
plate), and cultured with fresh Miami Media #1A (Cell-
gro) overnight at 37 °C and 5% CO,. Human islets from
one donor (N = 1) were processed to isolate nuclei and
obtain single-cell preparations as a common source for
the scRNA-seq and snRNA-seq procedures (detailed
below), while human islets from 4 donors (N = 4) were
used in the kidney capsule transplantation experiments
(detailed below).

Human islet transplantations

On the day of the experiment, 1000 hand-picked IEQs
from 4 separate human islet donors were transplanted
under the kidney capsule of 8-to-12-week-old male NSG
mice and the animals were followed for 4 weeks. At the
end of the follow-up period, mice were sacrificed by
cervical dislocation. Human islet grafts were rapidly dis-
sected under the microscope, snap-frozen, and stored at
- 80°C.

Single-nucleus isolation

Frozen or freshly cultured or engrafted human islet sam-
ples were transferred to Dounce tissue grinder tubes
(D8938; Sigma) containing 0.5 ml ice-cold Nuclei EZ
lysis buffer (NUC-101; Sigma) and homogenized with
pestles A and B for 1 min each on ice. Samples were
transferred to clean 15 ml tubes and homogenizers were
rinsed with 1.5ml buffer followed by 2ml buffer and
transferred to the same 15 ml tubes to obtain a final vol-
ume of 4 ml. The tubes were vortexed briefly at moder-
ate speed and kept on ice for 5min for cell lysis. To
separate the nucleus and cytoplasm, the tubes were cen-
trifuged at 500xg for 5min at 4°C. Supernatants con-
taining cytoplasmic components were saved for later
analyses. The pellet containing nuclei was resuspended
in 0.5ml cold buffer by vortexing briefly at moderate
speed followed by the addition of 3.5 ml cold buffer. The
nuclear suspension was mixed by vortexing briefly and
set on ice for 5min. The tubes were centrifuged at
500xg for 5 min, the supernatant was saved for later ana-
lysis, and the pellet was resuspended in suspension buf-
fer (0.5ml PBS containing 0.01% non-acetylated bovine
serum albumin (BSA); Sigma and 0.1% RNase inhibitor;
2313A from Clontech). The nuclear suspension was pi-
petted ten times with a 1 ml tip, filtered through a 30-
pum pre-separation filter (130-041-407; Miltenyi Biotech);
cell number and cell viability were determined by cell
counter using 0.4% trypan blue stain. The average num-
ber of total nuclei obtained from one-half graft was
approximately 8.5 x 10° nuclei (1.7 x 10° cells/ml) with
5-10 um size and 93.3 + 1.1% dead cell rate (n = 32
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samples across three independent experiments). The
number of isolated nuclei was adjusted to 1000 nuclei/pl
with suspension buffer and 10,000 nuclei were immedi-
ately used for the generation of Gel Beads In-Emulsion
(GEMs) and barcoding. Leftover nuclei were saved for
subsequent analysis.

Human islet dispersion

Human islets were dissociated into single cells by Try-
pLE (12604-013; Thermo). Briefly, 1 ml TrypLE was
added to human islet pellets and incubated at 37 °C for
12 min by mixing the tube every 3—4 min. At the end of
incubation, TrypLE was neutralized by adding 9 ml cold
Dulbecco’s modified Eagle’s medium with high glucose
(DMEM HG, MT 10-017-CV; Corning) containing 10%
fetal bovine serum (FBS) (10437028; Gibco). Cells were
centrifuged at 1200 rpm for 3 min at 4°C, supernatant
was removed, and cells were resuspended in 0.5 ml Dul-
becco’s phosphate-buffered saline (DPBS) (14190250;
Gibco). The cell suspension was filtered through 30 pm
filter to remove aggregates and counted. A final concen-
tration of 1 x 10° cells/ml cells was used for DAPI/Phase
microscopy. For single-cell RNA-seq procedures, human
islet cell suspensions were filtered using a 30-pm filter
to remove any aggregates, and dead cells were excluded
using Dead Cell Removal Kit (Miltenyi Biotec). Cells
were counted and 10,000 cells were used for the gener-
ation of GEMs.

DAPI/Phase microscopy

Fifty thousand dispersed human islet cells (50 pl) or iso-
lated nuclei from frozen grafts were mixed with 50 pl of
4’,6-diamidino-2-phenylindole (double-stranded DNA
staining, DAPI) solution (D9564; Sigma) diluted 1000
times in DPBS. Stained cells (10 ul) were loaded onto a
Hemocytometer slide and imaged under a fluorescent
microscope. Digital images were taken at 40x magnifica-
tion with AXIO Imager A2 upright microscope equipped
with X-Cite series 120Q light source, Axiocam 512 color
camera. Bright field and fluorescent images were over-
laid using Image] Software to determine complete cell
lysis and nuclear integrity in isolated nuclear samples.

Immunohistochemistry

Paraffin-embedded human islet graft sections were im-
munostained using anti-insulin (1:400, ab7842; abcam),
anti-glucagon (1: 10,000, ab92517; abcam), and anti-
somatostatin (1:500, ab30788; abcam) antibodies using
previously described techniques [6, 51, 52]. Nuclei were
labeled using DAPI. Images were acquired using a Zeiss
LSM-710 Confocal Microscope and the Zen Black soft-
ware (Carl Zeiss).
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Western blotting

Nuclei or cell pellets were lysed in RIPA buffer (pH 7.4)
containing 100 mM NaF, 50 mM Hepes, 150 mM NaCl,
10% Glycerol, 1.2% Triton X, 1mM MgCl,, 1 mM
EDTA, 1mM NazVO,, protease inhibitor cocktail
(P8340; Sigma), phosphatase inhibitor 2 (P5726; Sigma),
and phosphatase inhibitor 3 (P0044; Sigma). The super-
natants collected after the first and second centrifuge
steps of nuclear isolation were used after adding prote-
ase and phosphatase inhibitors. Total protein concentra-
tion was determined by Pierce BCA Protein Assay Kit
(23225; Thermo). Lysates (50 ug protein) were run in 8%
SDS-PAGE and transferred to PVDF membrane (Milli-
pore). Membranes were blocked for 10 min at room
temperature with 5% milk and were incubated overnight
at 4 °C with antibodies against Lamin A/C (1:1000, 4777;
Cell Signaling Technology) or GAPDH (1:1000, 5174;
Cell Signaling Technology). After three washes (10 min),
the membranes were incubated for 1h at RT with anti-
bodies against rabbit IgG-HRP conjugate (1:1000, 170-
6515: Bio-Rad) or mouse IgG-HRP conjugate (1:1000,
170-6516, Bio-Rad). After three 10-min washes, signals
were visualized via Pierce ECL Western blotting sub-
strate (PI32106; Thermo).

RNA extraction and analysis

Cells were lysed in RLT buffer and RNA was extracted
using the Qiagen RNeasy kit according to the manufac-
turer’s instructions. RNA concentrations were measured
by Nanodrop (Thermo). RNA integrity was determined
by using Agilent RNA 6000 Nano Kit (5067-1511; Agi-
lent) according to the manufacturer’s instructions (Joslin
Genomics Core).

Single-nucleus and single-cell RNA-sequencing
procedures

Gel Bead In-Emulsion (GEMs) were generated using the
Chromium 3’ Single Cell Library Kit (v2, 10X Genomics,
CA) according to the manufacturer’s instructions and
adapting the adjustments for the cDNA and libraries
amplification steps, as recommended by 10X genomics
for snRNA-seq procedures. Briefly, 10,000 cells or nuclei
were combined with Single Cell Master Mix and encap-
sulated into the barcoded Gel Beads through the Chro-
mium™ Controller. After GEM-RT incubation, cDNA
samples were recovered, purified, and amplified through
a cDNA Amplification Reaction using a 14-cycle setting.
Quality controls on the undiluted amplified cDNA sam-
ples were performed using a High Sensitivity DNA Kit
(Agilent, CA) on a 2100 BioAnalizer (Agilent, CA) plat-
form. Libraries were then constructed following Frag-
mentation and Adaptor Ligation. Sample Index PCR was
performed adjusting the reactions at 15 cycles. Finally,
purified libraries were run on 2100 BioAnalizer (Agilent,
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CA) using a High Sensitivity DNA Kit (Agilent, CA) to
evaluate the quality of the ~ 400 bp fragments.

Next generation sequencing

Single-nucleus and single-cell libraries were sent for se-
quencing at GeneWiz or NovoGene laboratories. Sam-
ples were run in independent lanes on a HiSeq 4000
platform (Illumina, CA), using a coverage of 500,000
pair-ended reads targeted per cell.

Single-nucleus and single-cell RNA-seq data analysis

Both the single-nucleus (snRNA-seq) and single-cell
(scRNA-seq) RNA-sequencing datasets were produced
using cultured human islet samples obtained from the
same donor. In particular, we generated single-cell and
single-nucleus libraries using 4 technical replicates for
each method. Gene counts were obtained by Cell Ranger
(10x Genomics, CA) using the human reference genome.
To eliminate empty droplets and technical artifacts, we
applied Cell Bender [53]. Cell Bender concludes that
droplets are empty if the probability that they are empty
>50%, and then estimates ambient RNA among non-
empty droplets. We normalized each sample’s data using
sctransform [54], part of the Seurat toolkit, and detected
and removed doublets with DoubletFinder [55]. To
analyze the complete dataset, we combined the 4 sam-
ples, including genes that are detected in at least 3 cells
and including cells where at least 200 genes are detected.
From the combined dataset, we filtered out nuclei that
have more than 20% mitochondrial unique molecular
identifiers (UMI).

For the engrafted snRNA-seq, gene counts were gener-
ated by Cell Ranger (10x Genomics, CA) using the
human-mouse joint reference genome. To eliminate
empty droplets and technical artifacts, we applied Cell
Bender [53]. We normalized each sample’s data using
sctransform [54], part of the Seurat toolkit, and detected
and removed doublets with DoubletFinder [55]. To
analyze the complete dataset, we combined the 4 sam-
ples, including genes that are detected in at least 3 cells
and including cells where at least 200 genes are detected.
From the combined dataset, we filtered out nuclei that
have more than 20% mitochondrial UMI and more than
25% mouse UMI and removed all mouse genes in the
remaining nuclei. For each of them (ie., the engrafted
islet snRNA-seq, the scRNA-seq, or the snRNA-seq
from cultured human islets), we normalized the dataset
of combined samples with sctransform [54], part of the
Seurat toolkit; and then using Seurat, we identified clus-
ters and marker genes per cluster and plotted the data
as Uniform Manifold Approximation and Projection
(UMAP), heatmaps, and violin plots. For all datasets,
genes were considered expressed in a cell or nucleus if
they had at least one UMIL We evaluated gene
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expression levels between datasets per cell type by evalu-
ating the linear regression of one dataset’s mean natural
log of counts per gene against the other datasets for the
same gene and reporting the R* which is the square of
the Pearson correlation coefficient, and the p value.

Integration with published scRNA-seq datasets

The ability of Seurat [56] to integrate single-cell datasets
was demonstrated on publicly-available human pancre-
atic islet scRNA-seq datasets spanning 27 donors, four
laboratories, and five technologies: The datasets that
have been used in this article have been deposited in the
public Genomic Spatial Event Database (GSE) and in the
ArrayExpress Database at the EMBL-EBIL For InDrop,
accession number GSE84133 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE84133) [21]; for CelSeq2,
accession number GSE85241 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE85241) [23]; for SMART-
Seq2, accession number E-MTAB-5061 (https://www.
ebi.ac.uk/arrayexpress/experiments/E-MTAB-5061/)

[26]; for Fluidigm C1, accession number GSE86469
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE86469) [27]; and for CelSeq, accession number
GSE81076 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE81076) [57] were used. We followed Seurat
instructions to normalize these datasets with sctrans-
form [54], identify integration anchors (we used dimen-
sionality 25, consistent with the dimensionality we
applied in Seurat analysis of our datasets), and construct
our reference with Seurat function IntegrateData. We
then used Seurat to project this universal scRNA-seq
dataset, named “reference,” onto our datasets (i.e., the
engrafted islet snRNA-seq and the scRNA-seq and
snRNA-seq from cultured human islets) to harmonize
the data.

Results

Isolation of single nuclei from frozen human islets

To isolate nuclei from human islet preparations, we
tested the Nuclei EZ lysis buffer-based protocol. We
employed this isolation method because it was previ-
ously successfully used to isolate nuclei from frozen
compact tissues, such as tumor tissues [58, 59]. In our
hands, we validated that this protocol removes cytoplas-
mic content quickly and consistently. To test the efficacy
of this protocol, we used a frozen sample of non-diabetic
human islets (donor 1, Fig. 1A). Briefly, the archived hu-
man islet sample, consisting of 500 human islet equiva-
lents (IEQs) was subjected to homogenization using the
Nuclei EZ buffer. After a short incubation period, the
cytoplasmic fraction was removed by centrifugation, and
the pellet containing the nuclear fraction was washed to
remove cytoplasmic contamination. The nuclei were fil-
tered, counted, and tested in control assays including
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Fig. 1 Single nuclei isolation from frozen human islet samples. A Experimental workflow of isolation of nuclei from frozen cultured human islets
(donor 1) and human islet dispersion into single cells (donor 2). B Isolated nuclei from frozen human islets (donor 1) and dissociated human islet
cells from fresh intact islets (donor 2, whole cells) were imaged by DAPI/Phase microscopy. Left image: Intact nuclei stained in blue without
cytoplasm surrounding the isolated nucleus . Right image: Nuclei stained in blue surrounded by cytoplasm of human islet cells. Scale bar is

25 um. € Western blot analysis of human pancreatic islet cells (whole cell lysate; WCL, obtained from donor 2), supernatant collected after the
first centrifuge step (cytosolic fraction A; Cyt A) and second centrifuge step (cytosolic fraction B; Cyt B) of the nuclear isolation protocol, and
isolated nuclei (nuclear fraction; Nuc, obtained from Donor 1). LaminA/C is a nuclear marker; GAPDH is a cytoplasmic marker. D RNA was isolated
from islet cell nuclei and analyzed by Bioanalyzer. Representative electropherogram showing two major peaks (18S and 28S rRNA) indicates
minimal degradation of total RNA. The X-axis indicates the size of RNA fragments (nt: nucleotides) and the Y-axis represents the intensity of the
fluorescence signal (FU, fluorescence unit). E Yield (ug, left Y-axis, dots) and RNA Integrity Number (RIN, right Y-axis, squares) of RNA isolated from
six technical replicates across three independent experiments. Data are represented as mean + SEM

DAPI staining, protein, and RNA evaluation. To pre-
clude confounding factors such as the quality of the iso-
lation and the purity of the nuclear preparation we also
obtained whole islet cell samples by dispersing a fresh
sample of non-diabetic human islets, containing 500
IEQs (donor 2, Fig. 1A).

First, the quality of the isolation protocol was evalu-
ated by visualizing the nuclei samples obtained from fro-
zen human islets under phase-contrast microscopy and
by assessing cell integrity in comparison to intact cell
samples obtained by dissociating fresh human islets, col-
lected by a separate donor, into single cells (whole cells),
as previously described [60] (Fig. 1B). Phase-contrast im-
ages of isolated nuclei samples showed that the cyto-
plasm was depleted completely in all the cells, and the
nucleus was intact (Fig. 1B). Whereas, as expected, the
cytoplasm surrounding the DAPI-stained nucleus was
easily distinguished in the dispersed single islet cells
(Fig. 1B). Moreover, the lysis of the outer cell mem-
branes in the samples processed for nuclei isolation was
confirmed by assessing cytoplasmic (GAPDH) and nu-
clear (Lamin A/C) proteins in the samples collected dur-
ing and after the isolation process (Fig. 1C). Western
blot analysis of nuclei (Nuc), cytoplasmic fractions col-
lected after the first (Cyt A) and the second (Cyt B) cen-
trifuge steps, obtained by processing human islets from
donor 1, and the whole cell lysate (WCL) sample, ob-
tained by processing human islets from donor 2, showed
that the nuclear isolation process efficiently removed the
cytoplasm from nuclear samples, and preserved nuclear
integrity, consistent with the DAPI staining (Fig. 1B). In-
deed, we were able to isolate 8.32 + 1.6 x 10° nuclei
from ~ 500 IEQs consistent with previous reports [61].
The amounts of nuclei were adequate to perform
snRNA-seq—which required only 10,000 nuclei, as pre-
viously reported [48]—as well as for validation experi-
ments such as qRT-PCR.

Total RNA was isolated from the nuclear samples, and
the yield and integrity were evaluated using a Bioanaly-
zer [62] (Fig. 1D, E). We were able to isolate 3.3 + 0.7 ug
RNA from isolated nuclear samples (# = 6; three inde-
pendent experiments). The RNA vyield was in the

expected range, considering that a mammalian cell con-
tains 10—-20 pg of total RNA of which 20-30% resides in
the nucleus [63, 64]. RNA integrity evaluated by measur-
ing two major peaks representing 18S and 28S rRNA re-
vealed an average RNA integrity number (RIN) of 7.6 +
0.4 which indicates high quality with minimal degrad-
ation [62]. Based on the efficacy of the tested protocol
for obtaining pure high-quality nuclei from human islet
samples, we decided to use this methodology for subse-
quent single-nucleus RNA-seq experiments.

Side-by-side comparison of scRNA-seq and snRNA-seq
methods in cultured human islets

To compare the single-nucleus and single-cell RNA-
sequencing procedures (snRNA-seq and scRNA-seq, re-
spectively), we obtained human islets from a non-
diabetic donor and divided them into two groups: (1)
one to generate single-cell suspensions and (2) a second
to isolate single nuclei using the protocol described
above (Fig. 2A). We generated 4 technical replicates for
each group of 10,000 cells or nuclei and loaded them
into the 10X genomics Chromium Controller to obtain
Gel-beads in Emulsion (GEMs). Following the 10X gen-
omics standard protocol, we obtained single-cell and
single-nuclei libraries that were then sequenced using
next-generation sequencing (NGS). Following the appli-
cation of the quality check filters, including removal of
doublets and multiplets, we recovered 1277.2 + 234.2
and 976.2 + 82.0 (mean * SD) high-quality cells and nu-
clei per sample, respectively (Additional file 2: Table S2).
Although the number of reads and genes sequenced per
cell/nucleus was slightly higher in the scRNA-seq com-
pared to the snRNA-seq method (Fig. 2B, C), the dupli-
cation rate, indicating the ratio between usable vs.
sequenced reads, as a read-out of sequencing efficiency,
were similar between the two transcriptomic procedures
(Additional file 3: Figure S1C, Additional file 2: Table
S2). As confirmation of the high purity of the single-
nucleus preparations, the percentage of mitochondrial
genes sequenced in the nucleus-containing droplets was
lower than the cell-containing particles (2.7% and 4.2%,
respectively) (Fig. 2D, Additional file 2: Table S2). We
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Fig. 2 Side-by-side comparison of single-cell vs. single-nucleus RNA-sequencing in freshly cultured human islets. A Experimental design of the
workflow for generating single-cell RNA-seq (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq) datasets of cultured human islets. B-D Violin
plots representing B number of reads (UMI), C number of genes, and D proportion (expressed in %) of mitochondrial genes per cell/nucleus in
scRNA-seq (orange violins) and snRNA-seq (blue violins) datasets. Data are expressed in logarithmic scale (Y-axis). Statistical significance was
tested using a Wilcoxon rank-sum test. E, F UMAP plots representing the clustering of the high-quality E cells and F nuclei in the E scRNA-seq
and the F snRNA-seq datasets. Y-axis of plot in F is like the plot in E. G Global integrated UMAP plot representing the distribution of high-quality
cells (from scRNA-seq, orange dots) and nuclei (from snRNA-seq, blue dots)

obtained estimates of ambient RNA within the cell-/nu-
cleus-containing droplets by applying Cell Bender [53],
with averages of 5.87 + 1.76 % and 1.42 + 0.72 % (mean
+ SD) among the four single-cell and four single-nucleus
library replicates, respectively (Additional file 2: Table
S2, Additional file 3: Figure S1A,B).

We clustered the data with Seurat, shown as UMAP
plots of recovered cells (Fig. 2E) and nuclei (Fig. 2F). In
particular, we were able to identify 10 clusters of cells
and nuclei. Cells and nuclei expressing high levels of INS
gene (natural log of counts > 3) were distributed in clus-
ters #3, while GCG-enriched cells/nuclei were distrib-
uted in clusters #1 (Fig. 2E, F; Additional file 3: Figure
S1D-@). Interestingly, cluster #7 was enriched in low
INS-expressing nuclei and GCG-expressing nuclei, but
not cells (Fig. 2E, F; Additional file 3: Figure S1D,E).
Specimens expressing high levels of SST (natural log of
counts >3) were also found in clusters #3, while cells
and nuclei expressing high levels of PPY (natural log of
counts > 1.5) were distributed in clusters #1 and #3 (Fig.
2E, ' Additional file 3: Figure S1H-K). In addition, clus-
ter #0 in both the scRNA-seq and snRNA-seq sets com-
prised of cells and nuclei expressing low levels of all the
endocrine cell marker genes (Fig. 2E, F; Additional file 3:
Figure S1D-K). These findings suggest that the snRNA-
seq protocol allows the identification of endocrine
marker gene-expressing nuclei in a manner that is simi-
lar to scRNA-seq methods.

Comparison of gene expression signatures of human islet
cells using scRNA-seq and snRNA-seq

To determine whether snRNA-seq would represent a reli-
able transcriptomic method to identify human islet cell
types, we compared our snRNA-seq and scRNA-seq data-
sets with the publicly available scRNA-seq datasets. We
chose five published scRNA-seq datasets of human
pancreatic islets spanning 27 donors, four laboratories,
and five technologies for harmonizing with Seurat
[21,23,26,27,57]. We used this harmonized dataset as a
“reference” (Fig. 3A) upon which to integrate our data,
allowing for correspondence of cells and clusters. Indeed,
when we compared the cultured human islet scRNA-seq
and snRNA-seq datasets we had generated to the refer-
ence, we were able to identify all the major islet endocrine
(ie., a-cells, B-cells, PP-cells, 8-cells) and non-endocrine

(endothelial cells, stellate cells, Schwann cells, acinar cells,
and ductal cells) cell types previously reported using
established scRNA-seq methodologies, suggesting that
snRNA-seq protocols did not hinder the characterization
of any islet cell type, including the low abundance PP-cell
population (Fig. 3A, Additional file 4: Table S3). We then
undertook one-to-one comparisons of global and cell
type-specific gene expression profiles between (a) the
scRNA-seq and the reference datasets and (b) between the
scRNA-seq and the snRNA-seq datasets we had gener-
ated. We observed an almost total overlap (99.9 %) of the
genes detected between the reference (10,497 genes) and
our scRNA-seq (11,694 genes) and between the scRNA-
seq and the snRNA-seq (11,692 genes) datasets (Fig. 3B,
C). We tested the association of gene expression levels be-
tween datasets within the major islet cell types (a-cells, -
cells, PP-cells, and &-cells) and observed positive correla-
tions within a-cells, B-cells, PP-cells, and §-cells between
scRNA-seq and the reference (Fig. 3D). In addition, such
correlations were driven by cell type-specific genes, such
as GCG for a-cells, INS for B-cells, and so forth, an aspect
that was absent in all the other correlations between a
given islet cell type from the scRNA-seq dataset and a dif-
ferent one from the reference output (Additional file 3:
Figure S2A). Notably, the positive correlations of the gene
signatures were also evident within a-cells, B-cells, PP-
cells, and 8-cells in the scRNA-seq and snRNA-seq dataset
comparisons (Fig. 3E).

We then analyzed the fractional overlap of increas-
ing N number of top genes (N = 100, 200, 500, and
1000 top genes) within cell types between the scRNA-
seq and the reference and between the snRNA-seq
and the scRNA-seq datasets (Fig. 3F). In particular, a
significant proportion (~ 72%) of the top 100 tran-
scripts was shared by the major islet cell types (a-
cells, B-cells, and &-cells) between the reference and
the scRNA-seq datasets (Fig. 3F, Additional file 3:
Figure S2B-E). Similar levels of fractional overlap of
an increasing number of top genes were also observed
in the scRNA-seq vs. snRNA-seq comparison (Fig.
3F). Curiously, the §-cell groups displayed the highest
overlap, reaching 95% in the top 100 and 85% in the
top 1000 cell type genes (Fig. 3F). These results sup-
port the notion that snRNA-seq identifies genes
expressed in the least as well as the most abundant
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Fig. 3 Comparison between snRNA-seq and scRNA-seq datasets following harmonization on reference dataset. A Global UMAP plots and cell type prediction
in the scRNA-seq (middle panel) and snRNA-seq (right panel) following harmonization on the reference dataset generated by integrating five published scRNA-
seq datasets of cultured human islets [21, 23, 26, 27, 57] (left panel). Y-axis is similar in all three panels. B Venn diagram of detected genes in the reference (pink
circle) and in our scRNA-seq dataset (blue circle). C Venn diagram of detected genes in our scRNA-seq (blue circle) and in our snRNA-seq dataset (green circle).
D, E Scatter plots of harmonized cell type-specific gene expression in a-cells, 3-cells, PP-cells, or 6-cells D between the reference and the scRNA-seq datasets
and E between the scRNA-seq and the snRNA-seq datasets. X-axis and Y-axis represent the expression levels in natural log of counts in the indicated datasets.
The blue line in each plot represents the regression line, whose fit is indicated by the R” value (the square of the Pearson correlation coefficient). The P and R
values are provided for each correlation. F Fractional overlap expressed in percentages (%, Y-axis) of increasing numbers (100, 200, 500, and 1000, X-axis) of top

confidence in snRNA-seq compared to scRNA-seq (snRNA-seq enriched genes)

genes within a-cells (yellow bars), 3-cells (green bars), PP-cells (blue bars), or &-cells (red bars) in reference vs. scRNA-seq (upper panel) and in scRNA-seq vs.
snRNA-seq (lower panels) datasets following harmonization to the reference. G Pie chart representing proportions of biotypes of genes detected with higher

endocrine cells, providing confidence that snRNA-seq
is a reliable approach for identifying genes expressed
in the various islet cell types.

To evaluate whether snRNA-seq would allow identification
of specific types of genes which are covered with higher con-
fidence compared to scRNA-seq, we analyzed the biotypes of
the genes detected in the snRNA-seq dataset with a signifi-
cantly higher (> 1.5-folds) percentage of detection compared
to the scRNA-seq dataset. Among the 1896 genes which
were covered in the snRNA-seq with a higher confidence
compared to the scRNA-seq method, 7.5% accounted for
long non-coding RNAs (IncRNAs), whereas 92.1% were pro-
tein coding genes (Fig. 3G). Importantly, IncRNA genes were
also among the top genes detected in snRNA-seq with higher
confidence compared to scRNA-seq protocols. Indeed, the
proportions of detection of cytochrome ¢ oxidase assembly
factor heme A:farnesyltransferase (COX10) antisense RNA 1
(COX10-AS1) and minichromosome maintenance complex
component 3 associated protein (MCM3AP) antisense RNA
1 (MCM3AP-ASI) genes in snRNA-seq were 15.5-fold and
13.7-fold higher than scRNA-seq, respectively (Additional file
5). In addition, nuclear paraspeckle assembly transcript 1
(NEATI) and maternally expressed 3 (MEG3), also IncRNA
genes, were detected in the snRNA-seq dataset with a pro-
portion of 70% and 26.9%, respectively, whereas their detec-
tion rates in the scRNA-seq dataset were 35.5% and 7.0%,
respectively (Additional file 5). These data suggested that the
snRNA-seq method allows for detecting nuclei-enriched
IncRNA genes with a higher confidence compared to
scRNA-seq. The ability of the nuclear transcriptomic analysis
to detect genes enriched in non-coding RNAs provides an
important resource for studying the epigenetic regulatory
mechanisms in human islets.

snRNA-seq of transplanted human islets

To reveal the transcriptomic signature of frozen engrafted
human islets, we undertook snRNA-seq experiments as
depicted in Fig. 4A. We used the immunodeficient NSG
mouse model which is a widely utilized in vivo model for p-
cell regeneration studies [6, 8, 10, 65]. Human islets (1000
IEQs) obtained from 4 different donors were transplanted in-
dividually under the kidney capsule of 8-to-12-week-old male

mice and followed up for 4 weeks. At the end of 4 weeks,
grafts were removed carefully and divided into two equiva-
lent parts (~ 500 IEQs each) that were subsequently snap fro-
zen. On the day of nuclei isolation, frozen graft fractions (~
500 IEQs) were placed in ice-cold lysis buffer individually
and homogenized immediately to obtain pure nuclei as de-
scribed above (Fig. 1) and single-nucleus cDNA libraries
were generated by using the Chromium Single-Cell 3" Li-
brary Kit (Fig. 4A) [41]. Similar to the analyses of cultured
islet snRNA-seq, the engrafted islet snRNA-seq data were
initially analyzed using quality check pipelines in order to re-
move low-quality nuclei, including those with a total number
of reads (UMI) < 1000, a total number of expressed genes <
500, and a proportion of mitochondrial genes >20%, in line
with previous reports [35, 36, 38] (Additional file 2: Table S2,
Additional file 3: Figure S3A-C). It is worth noting that the
percentage of expression of mitochondrial genes per nucleus
was < 2% of the whole transcriptome (Additional file 2: Fig-
ure S3C), in line with the in vitro snRNA-seq results, sug-
gesting a high efficiency of nuclear isolation method and
allowing for a greater confidence to interpret and analyze the
snRNA-seq data [36]. In addition, by aligning the recovered
reads to the murine genome (GRCm38), we filtered out nu-
clei containing > 25% mouse-specific UMI (Additional file 3:
Figure S3D). Finally, Cell Bender estimated ambient RNA
contamination levels at 4.6 + 1.3 % (Additional file 2: Table
S2; Additional file 3: Figure S3E) within nucleus-containing
droplets. With this approach, we recovered 3565 (891.2 +
409.6 per sample) high-quality nuclei, which is comparable
with previous studies using a similar [35] or different plat-
forms [35, 42, 66, 67].

Next, clustering with Seurat yielded 7 major clusters
(Fig. 4B). Notably, we observed a cluster of nuclei
enriched in a-cell-specific genes, namely cluster 1; a nu-
clear cluster enriched in SST and PPY genes, namely
cluster 2; and a high INS and MAF bZIP transcription
factor A (MAFA)-expressing nuclear cluster (natural log
of counts > 5), namely cluster 3 (Fig. 4B-D). Interest-
ingly, other B-cell marker genes, including ATP binding
cassette subfamily C member 8 (ABCC8) and solute car-
rier family 30 member 8 (SLC30AS), were also expressed
in cluster 0, which displayed low levels of INS expression
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(natural log of counts < 5) (Fig. 4B-D). In addition, clus-
ter 0 was enriched in endocrine cell-specific genes, such
as paired box 6 (PAX6), suggesting that such clusters
likely included B-cells in a different maturity state. How-
ever, low INS expression levels were also found in nuclei
belonging to cluster 2 (Fig. 4B-D). Regarding the exo-
crine cell marker gene expression, a cluster of nuclei
enriched in ductal cell genes—including CF transmem-
brane conductance regulator (CFTR), SRY-box transcrip-
tion factor 9 (SOX9), and keratin 19 (KRTI19), was
identified in cluster 4, whereas the acinar cell-specific
genes were virtually absent (Fig. 4B,C). Finally, we har-
monized the in vivo snRNA-seq to the reference dataset
to evaluate an unsupervised prediction of the cell type
identity. Strikingly, all the endocrine and non-endocrine
islet cell types were identified following harmonization,
indicating the efficacy of the snRNA-seq approach to re-
cover virtually all islet cells from transplanted samples
(Additional file 4: Table S3, Additional file 3: Figure
S3F). Taken together, these data indicate that snRNA-
seq of human islet grafts reveals the presence of genes
marking all islet cell types, and as expected, a virtual ab-
sence of exocrine cell genes.

The presence of nuclei with high SST-expression and
low INS-expression in cluster 2 prompted us to under-
take immunofluorescence studies to validate polyhormo-
nal expression at the protein level. To this end, we
immunostained a-cells, B-cells, and 8-cells in graft sec-
tions following transplantation of human islets from the
same donors used for the in vivo transcriptomic analysis.
We observed overlap between SST and INS protein im-
munostaining in transplanted human islets, suggesting
that, indeed, cell fate transition occurs over the 4-week
in vivo engraftment period, as previously observed [51,
52, 68] (Additional file 3: Figure S4).

Comparison of in vitro vs. in vivo single-nucleus RNA-
sequencing methods

To determine the reliability of the snRNA-seq dataset
generated from transplanted human islets, we compared
the transcriptomic profiles of the snRNA-seq output ob-
tained from cultured (in vitro) with that from trans-
planted (in vivo) human islets. The genes detected in
each dataset showed a significant overlap (99.9%; dia-
gram Fig. 5A). Testing the association of the islet cell
type gene expression profiles revealed a positive correl-
ation in «-cells and 8-cells (Fig. 5B, E) that was stronger
in B-cells and PP-cells between in vitro and the in vivo
snRNA-seq datasets (Fig. 5C, D). These data confirm the
similarity of transcriptomic profiles between freshly cul-
tured and frozen engrafted human islets and highlight
the ability of snRNA-seq procedures to interrogate gene
expression of human islet cells.
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Discussion

Over the last few decades, the research community is in-
creasingly utilizing human islet studies with the long-
term goal of developing novel translational strategies to
counteract diabetes [69]. Moreover, the establishment of
avant-garde technologies for studying biological pro-
cesses at the single-cell resolution have provided new
tools for exploring human islet cells in physiological
conditions and their defects during diabetes disease pro-
gression [25-28, 70]. While such studies were commonly
conducted on cultured human islets in vitro, the tran-
scriptome of frozen human islet cells after transplant-
ation in mouse models remains largely unexplored and
provides an opportunity to study archived tissues. Ana-
lyzing the transcriptomic signatures of human islet cells
at the single-cell level represents a state-of-the-art tool
for gathering insights into dynamic molecular mecha-
nism(s) in response to diverse stimuli, including mito-
gens, differentiating factors, or stimulators of hormone
secretion. In this context, human B-cell proliferation, dif-
ferentiation/transdifferentiation, or neogenesis have all
been topics of investigation in the context of physio-
logical (e.g., pregnancy) or pathophysiological (e.g., insu-
lin resistance/T2D) states. Nevertheless, there continues
to be an urgent need for new tools to reliably study ar-
chived human or mouse tissues. Here we present single-
nucleus RNA-sequencing (snRNA-seq) for interrogating
the human islet transcriptome that is especially relevant
for small samples that have been frozen following
in vivo manipulation.

It has been established that the isolation of nuclei has sev-
eral advantages over single-cell isolation [35, 67, 71]. First,
this method can be simultaneously applied to multiple sam-
ples that are collected at different time points, reducing the
potential variations introduced by sample handling. The sec-
ond advantage is that the nucleus isolation method is effi-
cient and requires fewer steps compared to the single-cell
protocol. For example, snRNA-seq does not require enzym-
atic digestion to dissociate tissues into single cells which
often results in decreased viability and cell loss [72]. Finally,
rapid isolation of nuclei compared to tissue dissociation and
isolation of single cells minimizes changes in the transcrip-
tome during the isolation process [31]. Such considerations
are important, especially when the volume of tissue available
for studies is necessarily limited, such as human islet grafts.

To test the reliability of snRNA-seq in comparison to
the well-established scRNA-seq procedures, we under-
took a direct comparison between the two methodolo-
gies by analyzing the transcriptomics of freshly isolated
cells and nuclei obtained from the same human islet
donor. Despite the differences in terms of sequenced
reads and detected genes per specimen between the two
sequencing procedures, likely due to the lower RNA
content in the nucleus compared to the cytosol [63], the
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sequencing efficiency was similar between scRNA-seq
and snRNA-seq procedures, consistent with reports on
other metabolic tissues [35, 67, 71]. We also generated a
reference dataset by harmonizing 5 previously published
scRNA-seq datasets in human islets in order to compare
our transcriptomic results in an unsupervised fashion
[56]. This approach indicated that snRNA-seq allowed

for the identification of all the pancreatic islet cell types,
including the least abundant, such as the PP-cells. The
data also showed an almost total overlap in global gene
expression (99.9%) between the two methodologies
highlighted by positive correlations of gene signatures,
mainly driven by cell-specific genes, between each of the
islet cell types. Furthermore, the ability to identify genes
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whose percentage of detection in snRNA-seq was > 1.5-
fold higher than scRNA-seq indicated those genes were
detected by snRNA-seq with a higher confidence in
comparison to scRNA-seq. The fact that ~7.5% of the
snRNA-seq enriched genes were IncRNAs suggested that
snRNA-seq represented a potential tool for identifying
non-coding RNAs in human islets that would be useful
to examine chromatin remodeling, post-transcriptional
modifications, and crosstalk with other RNA species.

We then applied snRNA-seq to archived human islet
graft samples. As demonstrated for the cultured islet
samples, single-nucleus preparations from transplanted
human islets allowed the identification of all the islet cell
types with a coverage that is comparable to single-cell
profiling. Notably, the global and the islet cell-specific
single-nucleus transcriptomics of cultured versus trans-
planted human islet were highly concordant, confirming
that snRNA-seq represents a reliable strategy to analyze
the gene signature of human islets in vivo at single-cell
resolution. Finally, the transcriptome of polyhormonal
islet cell clusters, e.g., cluster 2 expressing INS and SST,
could be recapitulated at the protein level by immuno-
fluorescence. Although other in situ hybridization
methods, such as RNA-scope, would be more appropri-
ate to validate transcriptomic results, the validation at
the protein level provides an important functional per-
spective to the snRNA-seq data.

Conclusions

We propose snRNA-seq as a reliable tool to explore the
transcriptomic profile of human islets especially from
frozen archived samples which may not be ideal for
single-cell procedures.
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Additional file 1: Table S1. Characteristics of human islet donors and
human islet preparations used for single-cell or single-nucleus transcrip-
tomic analysis.

Additional file 2: Table S2. Number of different types of droplets,
reads and genes generated by scRNA-seq and snRNA-seq in cultured or
transplanted human islets.

Additional file 3: Figure S1. Ambient contribution and islet cell gene
marker UMAP and violin plots in scRNA-seq and snRNA-seq in cultured
human islets. (A,B) Box plots representing the levels of ambient RNA con-
tamination in droplets of (A) scRNA-seq and (B) snRNA-seq datasets. (C)
Violin plot representing the duplication rate in scRNA-seq (orange plot)
and snRNA-seq (blue plot) methodologies. The rate was calculated by
normalizing the average number of UMI per cell/nucleus on the average
number of reads per cell/nucleus. (D, F, H, J) UMAP plots displaying ex-
pression levels of (D) GCG, (F) INS, (H) PPY, and (J) SST within the global
distribution in scRNA-seq (left panels) and snRNA-seq (right panels). Ex-
pression levels are indicated as natural log of counts and range from 0
(gray) to 5 (purple). (E, G, I, K) Violin plots representing expression levels
(natural log of counts, Y-axis) of (E) GCG, (G) INS, (I) PPY, and (K) SST within
each cluster (X-axis) identified in sScCRNA-seq (orange plots) or snRNA-seq
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(blue plots) datasets. Figure S2. Correlation plots and fractional overlap
estimation of islet cell types from scRNA-seq dataset with those from the
reference dataset. (A) Scatter plots representing correlation of gene ex-
pression levels between scRNA-seg-derived (Y-axis) a-cells (first row from
top), B-cells (second row from top), PP-cells (third row from top), and &-
cells (fourth row from top) and reference-derived (X-axis) a-cells (first col-
umn from left), 3-cells (second column from left), PP-cells (third column
from left) or &-cells (fourth column from left). X-axis and Y-axis represent
the expression levels in natural log of counts in the indicated datasets.
The blue line in each plot represents the regression line, whose fit is indi-
cated by the R’ value (the square of the Pearson correlation coefficient).
The red circles indicate the islet cell specific marker genes driving the
correlation between the same cell type from the two datasets. The red
dotted squares highlight the correlation plots used in the main Fig. 3D.
(B-E) Fractional overlap expressed in percentages (%, Y-axis) of the (B) top
100, (C) 200, (D) 500, or (E) 1000 genes between the indicated islet cell
types from the reference dataset (X-axis) and the a-cells (yellow bars), 3-
cells (green bars), PP-cells (blue bars), or 6-cells (red bars) from the
scRNA-seq dataset. Figure S3. Quality check parameters in the trans-
planted human islet snRNA-seq dataset. (A-D) Violin plots of (A) number
of genes, (B) number of reads, (C) proportion of mitochondrial genes,
and (D) proportion of mouse genes per nucleus across the 4 transplanted
human islet samples in the snRNA-seq dataset. (E) Box plot of the levels
of ambient RNA contamination in droplets of the in vivo snRNA-seq data-
set within each human islet graft. (F) UMAP plot of nuclear cluster distri-
bution and cell type prediction of in vivo snRNA-seq dataset following
harmonization to the reference dataset. Figure S4. Islet cell type valid-
ation in human islet graft sections by immunofluorescence. Representa-
tive images of human islet cells identified as a-cells, B-cells or &-cells
according to the glucagon (GCG, green), insulin (INS, red) and somato-
statin (SST, white) labeling. Nuclei are stained in blue. Scale bar is: 50 um.

Additional file 4: Table S3. Number of endocrine and exocrine
pancreatic cell types predicted in scRNA-seq or snRNA-seq of cultured or
transplanted human islets following harmonization.

Additional file 5. List of top 20 snRNA-seq enriched genes ordered by
fold change of percentage of detection (upper table) or percentage of
detection (lower table) compared to scRNA-seq.
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