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Abstract

Background: Gene copy number variations (CNVs) contribute to genetic diversity and disease prevalence across
populations. Substantial efforts have been made to decipher the relationship between CNVs and pathogenesis but
with limited success.

Results: We have developed a novel computational framework X-CNV (www.unimd.org/XCNV), to predict the
pathogenicity of CNVs by integrating more than 30 informative features such as allele frequency (AF), CNV length,
CNV type, and some deleterious scores. Notably, over 14 million CNVs across various ethnic groups, covering nearly
93% of the human genome, were unified to calculate the AF. X-CNV, which yielded area under curve (AUC) values
of 0.96 and 0.94 in training and validation sets, was demonstrated to outperform other available tools in terms of
CNV pathogenicity prediction. A meta-voting prediction (MVP) score was developed to quantitively measure the
pathogenic effect, which is based on the probabilistic value generated from the XGBoost algorithm. The proposed
MVP score demonstrated a high discriminative power in determining pathogenetic CNVs for inherited traits/
diseases in different ethnic groups.

Conclusions: The ability of the X-CNV framework to quantitatively prioritize functional, deleterious, and disease-
causing CNV on a genome-wide basis outperformed current CNV-annotation tools and will have broad utility in
population genetics, disease-association studies, and diagnostic screening.
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Background

Gene copy number variants (CNVs) are a type of struc-
tural variant (>50bp), characterized as duplications or
deletions of genomic segments in specific DNA regions
[1]. For humans, CNVs are more prevalent than single
nucleotide variants (SNVs) in terms of base-pair length.
On average, each individual carries approximately 1000
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CNVs. On aggregate, CNVs cover ~ 4 million bp across
the genome [2]. CNVs are believed to originate via di-
verse mutational mechanisms such as errors in replica-
tion, meiotic recombination, and repair of double-strand
breaks [2]. Evidence has mounted that CNVs make a sig-
nificant contribution to rare variants involved in rare
diseases [3—6] and more common diseases such as can-
cers [7, 8] and neurodevelopmental disorders [9-11].
Rapid advancements in emerging genomics technolo-
gies provide unprecedented breadth and depth to detect
single nucleotide variations [12—14] and complex struc-
tural variants such as CNVs [15-17]. Furthermore, glo-
bal collaborations established by large consortium efforts
have enhanced our understanding of the distribution
and functionality of CNVs across different ethnic groups
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[3, 18]. Consequently, a growing number of CNVs have
been identified and curated in genetic variant repositor-
ies [19-21]. Concurrent with the technical advances in
CNV identification, unraveling CNV pathogenicity re-
mains a significant challenge. Computational approaches
offer great opportunities to the scientific and clinical
communities to predict the phenotypic impact of CNVs.

Approaches for predicting CNV pathogenicity can be
divided into three types. In the first approach, aggrega-
tion of per-base single nucleotide polymorphism (SNP)
pathogenicity scores within CNV intervals are used to
determine the pathogenic effect of CNVs. One of the ex-
amples is SVscore [22], which calculates the pathogenic
impact for CNVs by combining the SNP pathogenicity
scores [23]. In the second approach, rule-based strategies
prioritize CNVs, related to their pathogenic effects. The
American College of Medical Genetics and Genomics
(ACMG) and the Clinical Genome Resource (ClinGen)
jointly proposed a guideline for the interpretation and
reporting of constitutional CNVs [24]. The guideline
suggested scoring metrics based on reported cases,
consistency of phenotype, the pattern of inheritance, and
the pathogenic mechanisms of variants to rate the CNV
pathogenicity for clinical utility. However, the imple-
mentation of the guideline depends heavily on individual
opinions. Clinical and genetics expertise is required, lim-
iting its application for large-scale DNA sequencing data
[25]. In the third approach, gene-based haploinsuffi-
ciency predictions are used to estimate the effect of
CNVs. In this, gene dosage sensitivity is a significant de-
terminant of the pathogenicity of genetic variants. Sev-
eral attempts to estimate the impact of CNVs based on
haploinsufficiency have been made [26-28]. For ex-
ample, Huang et al. [27] developed a linear discriminant
classifier to predict gene-based haploinsufficiency. The
model integrated genomic, evolutionary, functional, and
protein-protein interaction network-related features. A
haploinsufficiency score was proposed to discriminate
between pathogenic and benign CNV deletions, with the
aim of highlighting pathogenic CNVs that were more
likely to be clinically relevant. However, these features
employed in the developed models mainly focused on
protein-coding regions, overlooking the intergenic re-
gions. Moreover, no single available approach considers
the distribution of CNVs across ethnic groups to more
precisely predict likely CNV pathogenicity.

Sequencing Quality Control Phase II (SEQC-II), led by
the U.S. FDA, is the most current initiative to develop
actionable best practices for sequencing data analysis
and to facilitate the clinical implementation of genomics
technologies [29]. As part of the FDA-led SEQC II effort,
here we introduce a novel computational framework X-
CNV for CNV pathogenicity prediction (www.unimd.
org/XCNV). X-CNV  encompasses four major
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components: (1) CNV data curation and normalization,
(2) model construction, (3) model evaluation, and (4)
model interpretation and application (Fig. 1). X-CNV in-
corporates the most comprehensive CNV data and an-
notations by integrating diverse publicly available
genetic variant repositories. To boost prediction power,
informative features such as genomics, genome region,
variation types, and population genetics were incorpo-
rated. More importantly, a meta-voting prediction
(MVP) score was proposed to measure quantitively the
CNV pathogenic effect. In contrast to any previous simi-
lar prediction models, we trained X-CNV on CNVs from
both gene and intergenic regions. The utility of X-CNV
was demonstrated using rare diseases, cancer predispos-
ition, and population genetics.

Implementation

Data curation

To curate benchmark CNV data for development of X-
CNV, we reprocessed high-quality CNV data from mul-
tiple sources including dbVar [30] (https://www.ncbi.
nlm.nih.gov/dbvar/), ClinGen [20] (https://
clinicalgenome.org/), DECIPHER v10.1 [31] (https://
decipher.sanger.ac.uk/), and Database of Genomic Vari-
ants [19] (DGV, http://dgv.tcag.ca/dgv/app/home). The
coordinates of the CNV regions were recalculated and
unified based on GRCh37/hg19 by using the UCSC gen-
ome browser liftOver tool (https://genome.ucsc.edu/cgi-
bin/hgLiftOver). Specifically, we collected 14,076,147
CNVs from DGV and dbVar. After removing the CNVs
with the same coordinates from dbVar and DGV, we ob-
tained 11,788,451 CNVs from 87,935 samples, which
were used for CNV unification. The population informa-
tion of those samples was collected from dbVar and
DGV and summarized into nine ethnic groups (Add-
itional file 1: Table S1): African/African American (AFR,
n = 1284), Latino/Admixed American (AMR, n = 889),
Ashkenazi Jewish (AS], n = 147), East Asian (EAS, n =
2114), Finnish (FIN, n = 103), Non-Finnish European
(NFE, n = 11,122), South Asian (SAS, n = 4537), other
(OTH, # = 390), and unknown (UKN, #n = 67,349). Fur-
thermore, CNVs shorter than 10 MB were used for
model development and validation, and those longer
than 10 MB were excluded since they were extremely
likely to be pathogenic. Ultimately, 5315 pathogenic and
14,260 benign CNVs in dbVar were retained for model
development (Additional file 1: Table S2), and 4893
pathogenic and 4073 benign CNVs curated from
ClinGen and DECIPHER were used for model validation
(Additional file 1: Table S3).

CNV unification
To merge CNVs that were potentially identical but were
from different platforms and bioinformatics pipelines,
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Fig. 1 Workflow of X-CNV model training and validation. The model was trained based on the XGBoost algorithm using 30 predictive features of
5315 pathogenic and 14,260 benign CNVs from dbVar and was validated in 4893 pathogenic and 4073 benign CNVs from ClinGen and DECIPHER.
The features were categorized into four types, including universal annotation, genome-wide annotation, coding annotation, and non-coding
annotation. The allele frequency (AF) of CNVs was calculated based on the unified CNVs from DGV and dbVar

we developed a novel strategy to identify CNVs with
close coordinates based on a maximal-clique algorithm.
Firstly, we divided CNVs into groups based on chromo-
somal location. Within each chromosome, the distance
between any two CNVs was calculated as below:

Di,j = max(’Si—Sj‘, |El—E1|) (1)

where S; and E; are the start and end positions of the
ith CNV, and D; ; denotes the distance between CNV;
and CNV;.

We defined 100 bp as a genomic window (GW), repre-
senting the lower limit distance that can distinguish be-
tween two CNVs. Given a 100 bp GW, the distance D;;
between CNV; and CNV; was converted to a binary
label:

. .0 D;;>100bp
Similarity; ; = { 1 D;; < 100bp ?

We then constructed an undirected CNV network by
connecting CNVs if their binary similarity label equals
one. It should be noted that the CNV network consisted
of one or more subnetworks. The challenge in looking
for identical CNVs was to identify the cliques in a given
undirected CNV subnetwork by an iterative method
(Fig. 2A). Specifically, for each loop, the maximal clique
was determined from the subnetwork. The remaining
nodes and edges by excluding the nodes within this

maximal clique were used to construct an updated sub-
network for the next loop. If CNVs within a subnetwork
are fully connected (i.e., cliques), it is indicated they are
identical. In this study, the maximal cliques were identi-
fied by R igraph package with graph_from_adjacency_
matrix and maximal.cliques functions, respectively.

Feature calculation

The X-CNV used four categories of features, including
universal, coding region, noncoding, and genome-wide
features that were selected automatically during model
development (see Additional file 1: Table S4).

The universal annotation consisted of CNV length,
CNV type (gain or loss), and population-based allele fre-
quency (AF) for each CNV. The CNVs in the natural
population were collected from DGV [19] and dbVar
[30] databases. The population-based AF of each CNV
was calculated by comparing it to the curated CNVs in
the natural populations. If the queried CNV shared at
least 70% reciprocal overlap in size and location with the
curated CNV, we used the population-based AF infor-
mation of the curated CNV to represent that of the
queried one. We employed reciprocal overlap (RO) iden-
tify the common CNV regions. The RO cutoffs ranging
from 50% to 70% were used by previous studies [32—35].
In this paper, we used the stringent empirical value,
70%, as the threshold, in order to maximumly eliminate
the false positives. Otherwise, we assigned zero for the
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Fig. 2 Strategy to unify potentially identical CNVs and the general properties of the unified CNVs in a natural population. A Schematic diagram
depicting the use of maximal clique algorithm to unify CNVs. B Coverage of unified CNVs on the human genome. C The different lengths
between gain and loss, pathogenic and benign, intragenic, and intergenic CNVs. D Proportions of the samples in the subpopulations from DbVar.

E Population allele frequency (PAF) of gain and loss in the subpopulations

queried CNV as its population-based AF for model
development.

The coding annotation included various deleterious-
ness prediction scores from dbNSFP version 2.6 [36], a
database of functional predictions and annotations for
human missense and splicing SNVs (http://sites.google.
com/site/jpopgen/dbNSFP). The prediction scores con-
sist of Functional Analysis Through Hidden Markov
Models (FATHMM) [37], logistic regression (LR) [38],
likelihood ratio test (LRT) [39], MutationAssessor [40],
MutationTaster [41], Polymorphism Phenotyping-2
(PolyPhen2) [42], Radial Kernel Support Vector Machine
(RadialSVM) [38], Sort Intolerant from Tolerant substi-
tutions (SIFT) [43], and Variant Effect Scoring Tool
(VEST3) [44]. Furthermore, scores for evaluating the
haploinsufficiency, including probability of being loss-of-
function intolerant (pLI) score [28], Episcore, and GHIS
(genome-wide haploinsufficiency score) were also
employed and downloaded from ftp://ftp.broadinstitute.
org/pub/ExAC_release or the supplementary materials
of the publications [45, 46]. It is worth noting that LR
score was calculated using the logistic regression based
on nine deleteriousness prediction scores (SIFT [43],
PolyPhen-2 [42], GERP++ [47], MutationTaster [41],
Mutation Assessor [40], FATHMM [37], LRT [37], SiPhy
[48] and PhyloP [49]), and the maximal minor allele fre-
quency (MMAF) observed in diverse populations of the
1000 Genomes project [50]. All the functional deleteri-
ousness scores were built based on machine learning al-
gorithms such as hidden Markov models (HMM),
logistic regression, random forest, and support vector
machine (SVM). The functional deleteriousness scores
were downloaded using the 1jb26_all hgl9 version of
ANNOVAR [51]. Since the deleteriousness prediction
scores were calculated at locus-level, we then calculated
these scores for CNVs by dividing the sum of the scores
of the variants falling within the CNV regions by the
covered CNV length.

The non-coding features contained Context-
Dependent Tolerance Scores (CDTS, http://www.hli-
opendata.com/noncoding/) [52] and candidate cis-regu-
latory elements (cCREs) [53] including promoter-like se-
quence (PLS), proximal enhancer-like sequence (pELS),
distal enhancer-like (dELS), CTCF-bound, CTCEF-only,
and DNase-H3K4me3. CDTS calculates the absolute dif-
ference of the observed variation from the expected vari-
ation, representing the likelihood of a base mutation in
the human genome. The PLS was defined as sequences

falling with 200bp (center to center) of an annotated
GENCODE transcription start site (TSS) and having
high DNase and H3K4me3 signals. The pELS and dELS
referred to genomic regions with high DNase and
H3K27ac and a low H3K4me3 signals proximal (200—
2000 bp) and distal (> 2000 bp) to TSS. The CTCF bind-
ing sites with high DNase and CTCF signals and those
with low H3K4me3 and H3K27ac signals were defined
as CTCF-bound and CTCF-only, respectively. DNase-
H3K4me3 cCREs have high H3K4me3 signals but low
H3K27ac signals and do not fall within 200 bp of a TSS.
The CDTSs locating lower than 1% or 5% percentile
were used as the CDTS scores for CNVs. The cCREs
that mapped to hg38 were collected from SCREEN
(Search Candidate cis-Regulatory Elements by ENCODE,
https://screen.encodeproject.org/) database, and then
converted to an hgl9 version by UCSC genome browser
liftOver tool (https://genome.ucsc.edu/cgi-bin/
hgLiftOver). The scores of cis-regulatory elements were
calculated by dividing CNV length by the length of the
relevant regulatory regions.

Genome-wide annotation includes the scores of Com-
bined Annotation Dependent Depletion (CADD) [54],
GERP [47], phyloP_100way [49], phyloP_46way [49], and
SiPhy-29way [48]. CADD integrates diverse genome an-
notations and scores any possible human single nucleo-
tide variant (SNV) or small insertion/deletion (indel)
event. The GERP [47], phyloP_100way [49], phyloP_
46way [49], and SiPhy-29way [48] were conservation
scores calculated by multiple alignments of vertebrate
species and measurements of evolutionary conservation
using Genomic Evolutionary Rate Profiling (GERP) [47],
phyloP [49], and SiPhy [48] algorithms, respectively.
These genome-wide annotation scores were also down-
loaded by using the ANNOVAR with 1jb26_all annota-
tion. The genome-wide features were calculated using
the sum of the base-wise scores within the CNVs divided
by the covered CNV length. For CNVs without over-
lapped regions with SNVs, we imputed the minimal
values of calculatable CNVs for model development.

X-CNV model development

CNVs from dbVar were used for X-CNV model develop-
ment (Additional file 1: Table S2), while those from DE-
CIPHER and ClinGen were used for model validation
(Additional file 1: Table S3). To evaluate model perform-
ance without information leaking, we excluded CNVs of
dbVar sharing at least 50% reciprocal overlap with
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ClinGen or DECIPHER. The CNV intersection was mea-
sured by using the bedtools with intersect operation. Ul-
timately, 5315 pathogenic and 14,260 benign CNVs in
dbVar were retained for model development.

The X-CNV was developed using the XGBoost, a gra-
dient boosting tree model, based on four different cat-
egories of features. The booster and learning algorithms
were two vital parameters in XGBoost and were deter-
mined by 100-time 10-fold cross validations. Three
boosters including gblinear, gbtree, and DART and
learning algorithms, including regression with squared
loss (reg:squarederror), regression with squared log loss
(reg:squaredlogerror), logistic regression (reg:logistic),
and logistic regression for binary classification (binary:lo-
gistic), were considered for parameter selection. The
models with the highest median of the area under a
curve (AUC) values were selected as the optimized
model. Receiver operation characteristic (ROC) analysis
was used to calculate the AUC value in an R ROCR
package. The classifier, feature importance, and cross-
validation were implemented in a R xgboost package
with xgboost, xgb.importance, and xgb.cv function, re-
spectively [55].

X-CNV model validation

The developed X-CNV model was validated using the
CNVs from ClinGen and DECIPHER (Additional file 1:
Table S3). As the CNV length and CNV type were two
important universal features in the X-CNV model, we
evaluated the X-CNV performance in CNVs with differ-
ent CNV lengths and types. Specifically, the CNVs in the
validation set were divided into four groups based on
the quartiles of CNV length. Furthermore, the perform-
ance of the X-CNV models was assessed by gain or loss
CNV types.

We used the probabilistic values yielded from the
XGBoost model as the meta-voting prediction (MVP)
scores to quantitatively measure CNV pathogenicity.
Furthermore, we employed a ROC-AUC analysis to de-
termine the cut-offs for MVP scores that could discrim-
inate benign, likely benign, uncertain, likely pathogenic,
and pathogenic CNVs by minimizing the absolute differ-
ence between sensitivity and specificity with the R cut-
pointr package [56].

To compare the X-CNV model to the state-of-the-art
approaches for CNV pathogenicity prediction, we used
three methodologies, including SVscore [22], AnnotSV
[57], and ClassifyCNV [58]. Specifically, for SVscore, the
CNVs in ClinGen and DECIPHER were first converted
to the VCF (Variant Call Format) file. Subsequently, the
CNVs were annotated by refGene gene annotation. The
sum, max, and mean of the CADD scores in the left,
right, and span breakends and the beginning of the left
and right breakends to the end of the truncated
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transcript of the CNVs were calculated for those CNVs.
For AnnotSV [57] and ClassifyCNV [58], both method-
ologies provided a score to categorize the CNV patho-
genicity into five classes, i.e., pathogenic, likely
pathogenic, variant of uncertain significance (VUS),
likely benign, and benign, based on ACMG classification
guidelines to assess CNV pathogenicity [24]. Here, we
considered the CNVs predicted to be pathogenic and
likely pathogenic as positives and the ones predicted to
be likely benign and benign as negatives. Subsequently,
we used six other performance metrics, including MCC,
accuracy, F1 score, Fowlkes—Mallows index, sensitivity,
and specificity for the model comparison, as shown in
the following formulas,

TP+TN-FP+FN
MCC = (3)
/(TP + EP)x(TP + FN)+(TIN + FP)x(IN + EN)
B TP + TN @
ACCUTASY ="Tp T TN + EN + EP
. B 2TP -
SO = TP L FP+ EN

Fowlkes - Mallows index

_\/ TP TP ®)
~ VTP+FP TP+ FN

P

sensitivity = m—m (7)
TN

specificity = m (8)

X-CNV application
To investigate the performance of X-CNV on the rare
disease and cancer predisposition gene (CPG), we
employed the 1666 pathogenic CNVs with a definite
phenotype from DECIPHER database were used for
(Additional file 1: Tables S5 and S6). To identify whether
pathogenic CNVs-related phenotype is rare disease-
specific, we employed Human Phenotype Ontology [59]
(HPO), which could be downloaded from Ontobee [60]
(http://www.ontobee.org/). The HPO constructed a “Hu-
man Phenotype Hierarchy Structure” (HP-HS) with 14
layers based on the hierarchical relationship between the
phenotypes (ontology terms). Notably, the term “pheno-
typic abnormality” is used as ancestors of all the terms
in the HP-HS. The second layer of HP-HS contains the
information of disease categories. Subsequently, the
pathogenic CNV-related phenotypes (HPO terms) from
the DECIPHER database v10.1 were mapped onto the
second layer of the HP-HS to extract rare disease-related
phenotypes.

The cancer predisposition genes (CPGs) used were
collected from a previous study [61], which curated 58
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CPGs shared between two studies [62, 63]. The patho-
genic gains harboring oncogenic CPGs and losses har-
boring tumor-suppressing CPGs in DECIPHER database
were used to calculate their MVP scores by the X-CNV
model. The 4893 pathogenic and 4073 benign CNVs cu-
rated from ClinGen and DECIPHER (the validation data-
set) were used for the case study about population
genetics (Additional file 1: Table S3). We first calculated
the MVP scores for those CNVs and assigned them one
of the five pathological categories based on the opti-
mized probabilistic cut-off value. The allele frequency
within a specified ethnic group was calculated as the
percentage of samples carrying the CNV within this eth-
nic group.

Webserver construction

We utilized the Apache HTTP server as a web server,
developed by PHP (Version: 7.0.12, https://www.php.
net/) programming. Data interaction was implemented
by HTMLS5, JavaScript, jQuery. All data in XCNV are
stored and managed in MySQL database (Version:
5.7.17, https://www.mysql.com/). Data analyses were
mainly carried out by the R (Version 3.6.0, https://www.
r-project.org/) or python (Version 3.7.6, https://www.
python.org/) script.

Results

Genome-wide benchmarking of CNVs

The breakpoint resolutions of the same CNVs vary in
different genomics technology platforms and variation
calling pipelines. To eliminate the discordance of the
breakpoints among potentially identical variants, we de-
veloped a strategy to unify virtually identical CNVs with
different breakpoint resolutions based on the maximal
clique algorithm [64] (Fig. 2A, see the “Implementation”
section). Over 14 million CNVs curated in dbVar [30]
and DGV [19] were unified using this strategy. Conse-
quently, we obtained a total of 557,892 unified CNVs for
the analysis. To investigate the coverage of the unified
CNVs across the human reference genome, we mapped
these unified CNVs onto different chromosomes. The
unified CNVs covered over 93.7% of the autosomal chro-
mosomes (except chromosome Y), suggesting CNVs
were prevalent genetic variants across the human refer-
ence genome (Fig. 2B and Additional file 1: Table S7).
Notably, chromosome 17 was covered by the most
CNVs (99.76%), while chromosome Y had the lowest
coverage of CNVs (49.16%). One possible reason for this
low coverage of CNV could be the euchromatic regions
of human chromosome Y, which are not transcribed in
healthy populations [65]. Furthermore, the average
length of CNVs was greater in 1. gain versus loss, 2.
pathogenic versus benign and 3. intragenic versus inter-
genic comparisons (Fig. 2C).
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It is well-recognized that the allele frequency of gen-
etic variants underpins phenotypic diversity [66—-69]. We
assigned 87,935 samples with population information
from the dbVar [30] and DGV [19] to nine ethnic
groups (Additional file 1: Table S1): African/African
American (AFR, n = 1284), Latino/Admixed American
(AMR, n = 889), Ashkenazi Jewish (AS], n = 147), East
Asian (EAS, n = 2114), Finnish (FIN, » = 103), Non-
Finnish European (NFE, n = 11,122), South Asian (SAS,
n = 4537), other (OTH, n = 390), and unknown (UKN, #n
= 67,349). Particularly, the number of CNVs in NFE,
SAS, EAS, AFR, and AMR subpopulations occupied over
1% of the total CNVs (Fig. 2D). We further calculated
the allele frequency of the CNVs in each ethnic group.
The average allele frequency in deletions was consist-
ently higher than that in gains across the nine ethnic
groups (Fig. 2E). The larger CNVs are more likely to be
gene-disruptive. Our observation that gains have a larger
size than deletions in the natural population may indi-
cate that larger deletions are subjected to stronger puri-
fying selection than larger gains been removed from the
population. Therefore, the deletions that evolve under
neutral evolutionary pressure tend to be small to
medium-sized and have higher allele frequencies than
the gains. A similar observation was also reported by
Itsara et al. [70].

Model construction

The pathogenic annotations of CNVs were assigned to
pathogenic, likely pathogenic, uncertain, likely benign,
and benign categories. Since the effect categories likely
pathogenic, uncertain, likely benign are often ambiguous,
we only employed CNVs annotated as pathogenic and
benign for model development. We utilized the 5315
pathogenic and 14,260 benign CNVs from dbVar [30] as
a training set (Additional file 1: Table S2). X-CNV uses
a total of 30 predictive features that are divided into four
types: universal-based features (4), coding region-based
features (13), noncoding region features (8), and
genome-wide-based features (5). The features could also
be categorized as variant- and gene-level terms. The de-
tailed feature information and their categories were
listed in Additional file 1: Table S4.

X-CNV uses an XGBoost classifier to distinguish
pathogenic from benign CNVs. The hyperparameters of
XGBoost were optimized using 100-time 10-fold cross
validations. Consequently, the XGBoost model with the
gbtree booster and logistic regression yielded the highest
AUC (0.9740 + 0.0058), indicating the best performance
(Fig. 3A). We used the optimized hyperparameters to
develop the XGBoost model with the whole training set,
yielding an AUC value of 0.96. Furthermore, we used an
independent validation set to further verify the devel-
oped XGBoost model, which consisted of 4893
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pathogenic and 4073 benign CNVs curated from
ClinGen and DECIPHER [31] (Additional file 1: Table
S3).

To further compare the developed X-CNV and other
the-state-of-art structural variation pathogenicity perdi-
tion approaches, we employed the SVScore [22],
AnnotSV [57], and ClassifyCNV [58]. The highest AUC
values (0.94) were achieved by developed X-CNV, show-
ing an improvement of 3.5% ~ 33.7% compared to the
SVScores [22] (Fig. 3B). X-CNV outperformed the
AnnotSV and ClassifyCNV in five of six performance
metrics, i.e.,, MCC, accuracy, Fowlkes—Mallows index, F1
score, and specificity, except sensitivity across all CNVs,
CNV gain, and loss (Table 1). For example, X-CNV
achieve a MCC of 0.65, improving 140.7% and 912.5%
over AnnotSV and ClassifyfCNV, respectively. The
AnnotSV yielded the highest sensitivity (i.e., overall 0.96,
gain 0.92, and loss: 0.98). However, the lowest specificity
(i.e., overall 0.21, gain 0.13, and loss 0.35) indicated that
the AnnotSV tends to predict the pathogenicity of

queried CNV pathogenic or like pathogenic. The X-
CNV provided the most balanced sensitivity and specifi-
city, demonstrating its superior ability to distinguish
false positives and negatives.

Important features of the X-CNV

To enhance the X-CNV model explainability, we ex-
tracted the top ten predictive features from the opti-
mized XGBoost model (Fig. 4A). The top ten most
predictive features consisted of 4 coding features (LR
score, VEST3 score, FATHMM score and pLI), 3 univer-
sal features (CNV type, length, and loss-PAF), 2 noncod-
ing features (PLS and CTCF-bound), and 1 genome-
wide feature (CADD). The logistic regression (LR) score
contributed to over 50% of the performance of the
XGBoost model. Since the LR score integrates diverse
information from nine deleteriousness prediction scores,
it is not surprising that the LR score substantially con-
tributes to the model performance. CNV length and type

Table 1 Model performance of X-CNV, AnnotSV, and ClassifyCNV on the independent validation set

Metrics X-CNV AnnotSV ClassifyCNV

All Gain Loss All Gain Loss All Gain Loss
MCC 0.65 0.41 0.70 0.27 0.06 046 - 0.08 - 024 0.01
Accuracy 0.83 0.75 0.88 0.62 0.38 0.79 048 0.34 0.57
F1 score 0.84 0.58 0.92 0.73 049 0.88 0.56 0.32 0.68
Fowlkes—Mallows index 0.84 0.58 0.92 0.76 0.56 0.87 0.56 0.34 0.68
Sensitivity 0.85 0.52 0.96 0.96 0.92 0.98 0.62 047 0.68
Specificity 0.8 0.86 0.70 0.21 0.13 0.35 0.31 0.28 0.34
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were also two prominent universal features of X-CNV
model performance.

We further examined X-CNV model performance in
CNVs with different lengths and CNV types. The CNVs
in the validation set were divided into four groups 0~10
kb, 10kb ~100kb, 100kb ~ 1 Mb, and 1 Mb ~ 10 Mb.
The AUCs were over 0.85 for all four groups indicating
that the X-CNV model could achieve high performance
in CNVs with different lengths, although longer CNV
length tended to predict more precisely (Fig. 4B). X-
CNV achieved AUCs of 0.85 and 0.89 for both small and
medium-sized CNVs (i.e., 0~10kb, 10kb ~ 100kb),

indicating that the X-CNV model could achieve a good
performance on small to medium-sized CNVs. Further-
more, the X-CNV model yielded a higher AUC for CNV
losses (0.92) compared with CNV gains (0.89) (Fig. 4C).

MVP score for quantitatively measuring CNV
pathogenicity

To quantitatively measure the relationship between
CNV and pathogenicity to support potential clinical ap-
plications, we developed a meta-voting prediction
(MVP) score based on probabilistic values generated
from XGBoost algorithms (see the “Implementation”
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section). Specifically, we applied X-CNV to a total of
31,942 CNVs with pathologic effect annotations from
ClinGen and DECIPHER (Additional file 1: Table S3).
The probabilistic values of X-CNV could distinguish the
different pathologic effects with statistical significance
(Fig. 5A). We further employed ROC-AUC analysis to
define the optimized probabilistic cutoff value for each
pathological category. We found high AUC values in all
the pathological categories with optimized probabilistic
cutoff values (Fig. 5B). Consequently, MVP scores were
more than 0.76, between 0.46 and 0.76, between 0.16
and 0.46, between 0.14 and 0.16, and below 0.14 for
pathogenic, likely pathogenic, uncertain, likely benign,
and benign, respectively.

Case study 1: rare diseases

Rare and recurrent CNVs have been associated with
various types of rare diseases [3]. We investigated how
the developed X-CNV may be useful in distinguishing
CNV pathogenicity in different types of rare diseases.
Specifically, the 1666 CNVs with a definite phenotype
from DECIPHER database were categorized into 22 nor-
malized rare disease types based on Human Phenotype
Ontology (HPO) [71]. The X-CNV predicted 1408 of
1666 CNVs (84.51%) as pathogenic/likely pathogenic.
The 25% quantiles of MVP scores for all the rare disease
types were more than 0.46, suggesting CNVs are likely
to be predicted as pathogenic or likely pathogenic by
X-CNV model (Fig. 5C and Additional file 1: Table
S5). Of 22 rare disease types, more than 85% CNVs
of 19 categories are predicted pathogenic or likely
pathogenic, indicating the pathogenicity of CNVs
could be highly distinguished in these rare disease
types. About 17% of CNVs (4/23) in one rare disease
type (Abnormality of the breast) were uncertain
(MVP score: 0.16 ~0.46). We further check the 4
CNV based on ACMG guidance lines. As a result, 3
of the 4 CNVs are considered pathogenic, and one
CNV is deemed to be uncertain based on the ACMG
guideline, suggesting further clinical evidence is
needed to verify the pathogenicity of these CNVs.

Case study 2: cancer predisposition genes (CPGs)

Germline mutations in cancer predisposition genes
(CPG) confer high or moderate increased risks of cancer
[72]. We next considered how the X-CNV could identify
the pathogenic CNVs located in CPGs. We curated 32
CNV losses with a definite phenotype from DECIPHER
(Additional file 1: Table S6), located in 8 tumor-
suppressing CPGs, including APC, CDKN2A, CHEK?2,
NF1, NF2, RB1, TP53, and TSC2 [61]. Notably, all these
CNVs were predicted as pathogenic or likely pathogenic
(MVP score > 0.46, Fig. 5D). Furthermore, we associated
the CPGs harboring CNVs with the phenotypes
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annotated in DECIPHER (Additional file 2: Fig. S1). We
observed that some of these phenotypes, such as aden-
omatous colonic polyposis, cystic renal dysplasia, and
hemangioma, were also associated with malignant tu-
mors as reported in previous studies [73-75].

Case study 3: population genetics

Studies of CNV in healthy populations provide a basis
for comparison when studying the types of CNVs that
are most likely to be pathogenic and are more likely to
have no appreciable clinical effect tailored to a specific
population. To address this, we further examine the
power of our proposed X-CNV to differentiate the CNV
pathogenicity in the nine ethnic groups as mentioned
above. We observed that predicted pathogenic CNVs
showed much lower frequencies than the predicted be-
nign CNVs from the validation set (Fig. 5E and Add-
itional file 1: Table S3, the average frequency of
pathogenic CNVs vs. benign CNVs, P value <0.05),
which is consistent with the epigenetic finding that the
pathogenic variants were extremely rare in healthy pop-
ulations due to purifying selection [76].

Discussion

X-CNV has a unique ability to integrate diverse human
genome information towards a quantitative measure of
CNV pathogenicity on the whole genome-scale. X-CNV
created a curated benchmark CNV list by combining
publicly available CNV resources to generate the most
comprehensive list of feature-related CNV pathogenicity.
The X-CNV vyielded an outstanding performance and
provided a “one-stop” solution for CNV pathogenicity
estimation. To assist with clinical application, the meta-
voting prediction (MVP) scores based on probabilistic
values generated from XGBoost algorithms could distin-
guish pathogenic/likely pathogenic, uncertain, and be-
nign/likely benign CNVs with AUC values of only 72.9%
and 81.83%. MVP scores were successfully applied to
rare diseases and inheritable cancers. In population gen-
etics, the pathogenic CNVs showed much lower fre-
quencies than benign CNVs, suggesting that pathogenic
CNVs were rarely prevalent in a healthy population due
to purifying selection.

It is worth considering additional investigations to fur-
ther improve the model performance and confirm the
findings from this study: (1) comparing X-CNV and the
other three state-of-the-art CNV pathogenicity predic-
tion approaches (i.e., SVscore, AnnotSV, and Classi-
fyCNV) were based on only one independent validation
set. We highly recommended further evaluation with
more accumulated annotated CNV pathogenicity in the
future. It may be a good solution to investigate the com-
bined power of these CNV pathogenicity approaches for
an enhanced prediction power. (2) Considering the
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Fig. 5 The separating capability of the meta-voting prediction (MVP) score in the pathological categories and its application to rare disease,
hereditary tumor, and population genetics. A Distribution of MVP scores in the five pathological categories. The points above the boxes represent
the outliers. B AUC values and cutoffs of the meta-voting prediction (MVP) scores to separate the five pathological categories. C The distribution
of MVP scores in the pathogenic CNVs of 22 rare disease types. D The number of CNVs harboring cancer predisposition genes and being
predicted as pathogenic or likely pathogenic (MVP > 0.46). E The allele frequency distribution of the CNVs categorized by the MVP scores. The
average and 95% confidence intervals of population allele frequency of the CNVs categorized by the MVP scores within the ethnic groups

limited annotated CNV pathogenicity data in the non-
coding regions, we could not perform a comprehensive
assessment of X-CNV performance on the CNV located
in the non-coding regions. It may explain the reason that
noncoding features contributed very little to the X-CNV
model. (3) In the current version of X-CNV, we
employed 30 different genome/gene and variant-related
features. The predictive power of the X-CNV model may
be improved by adding some noncoding features like
EIGEN [77] and LINSIGHT ([78] at variant-level and
coding features at gene-level such as RVIS [79], Multinet
[80], MSC [81], and GDI [82]. (4) We employed the
XGBoost algorithm to develop the X-CNV model. Fur-
ther investigations on other machine learning, especially
deep learning algorithms, may improve performance.

To facilitate the real-world application of our proposed
X-CNV model, we developed a user-friendly web server to
encourage submissions from users. Following ACMG
(American College of Medical Genetics) guidelines [24],
predicted CNVs were classified into five categories based
on the proposed MVP score, including most likely patho-
genic, likely pathogenic, uncertain, likely benign, and most
likely benign. Furthermore, we characterized CNVs by in-
tegrating various database resources and curated informa-
tion using text mining techniques, such as pathogenicity
annotations assigned by CNV-related databases, clinical
evidence, CNV-associated clinical phenotypes, and allele
frequencies in different ethnic groups and experimental
data from knockout mouse models. The comprehensive
characterization enables users to associate CNVs with spe-
cific phenotypes and other underlying mechanisms.

Another key feature is that the X-CNV model can be
updated as new data and knowledge on CNVs emerge,
serving as a complementary tool for prioritizing CNV
pathogenicity in a clinical setting. As emerging genomic
technologies for accurately detecting CNVs and clinical
evidence on pathogenicity of CNVs accumulate, we en-
visage that X-CNV will become a valuable tool in con-
necting complex genetic traits with a disease, offering a
positive impact for promoting public health.

Conclusions

In summary, X-CNV can quantitatively prioritize func-
tional, deleterious, and disease-causing CNV on a
genome-wide basis and has broad utility in population

genetics, disease-association studies,

screening.

and diagnostic
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