Gujar et al. Genome Medicine (2021) 13:130

https://doi.org/10.1186/513073-021-00946-3 Ge nome M ed |C| ne

?.)

Check for
updates

Characterizing DNA methylation signatures
and their potential functional roles in
Merkel cell carcinoma

Hemant Gujar', Arjun Mehta?, Hong-Tao Li', Yvonne C. Tsai', Xiangning Qiu®, Daniel J. Weisenberger?,
Miriam Galvonas Jasiulionis*, Gino K. In°" and Gangning Liang"

Abstract

Background: Merkel cell carcinoma (MCCQ) is a rare but aggressive skin cancer with limited treatment possibilities.
Merkel cell tumors display with neuroendocrine features and Merkel cell polyomavirus (MCPyV) infection in the
majority (80%) of patients. Although loss of histone H3 lysine 27 trimethylation (H3K27me3) has been shown during
MCC tumorigenesis, epigenetic dysregulation has largely been overlooked.

Methods: We conducted global DNA methylation profiling of clinically annotated MCC primary tumors, metastatic
skin tumors, metastatic lymph node tumors, paired normal tissues, and two human MCC cell lines using the
[llumina Infinium EPIC DNA methylation BeadArray platform.

Results: Significant differential DNA methylation patterns across the genome are revealed between the four tissue
types, as well as based on MCPyV status. Furthermore, 964 genes directly regulated by promoter or gene body DNA
methylation were identified with high enrichment in neuro-related pathways. Finally, our findings suggest that loss
of H3K27me3 occupancy in MCC is attributed to KDM6B and EZHIP overexpression as a consequence of promoter
DNA hypomethylation.

Conclusions: We have demonstrated specific DNA methylation patterns for primary MCC tumors, metastatic MCCs,
and adjacent-normal tissues. We have also identified DNA methylation markers that not only show potential
diagnostic or prognostic utility in MCC management, but also correlate with MCC tumorigenesis, MCPyV expression,
neuroendocrine features, and H3K27me3 status. The identification of DNA methylation alterations in MCC supports
the need for further studies to understand the clinical implications of epigenetic dysregulation and potential
therapeutic targets in MCC.
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Background

Merkel cell carcinoma (MCC) is a rare but aggressive
neuroendocrine cancer of the skin with a high risk for
recurrence and metastasis, often within 2-3years after
initial diagnosis [1]. While there are approximately
3000-3500 cases diagnosed per year in the USA, the in-
cidence of MCC has tripled in the USA over the past
four decades [2] and doubled in recent years [3]. MCC
mostly affects elderly populations with a median age of
diagnosis at 75-80 years old. In addition, MCC patients
show overall poor outcomes with a 5-year overall sur-
vival rate of 64%. Risk factors for MCC include advanced
age, exposure to UV light, fair skin, and immunosup-
pression (e.g., hematologic malignancy, HIV/AIDS, and
solid organ transplant) [2, 4—6].

Up to 80% of MCC cases are associated with the
dsDNA containing human polyomavirus 5 (HPyV5), also
known as the Merkel Cell polyomavirus (MCPyV) [7, 8].
MCC tumors infected by MCPyV express the viral onco-
proteins, small and large T antigen, but lack a UV-
derived mutation signature [9]. On the contrary,
MCPyV-negative tumors display a UV-derived mutation
signature and a higher overall mutation burden [9]. Both
the MCPyV-positive and negative tumors are highly im-
munogenic and express tumor neoantigen and viral anti-
gens [10]. One half of all MCC tumors express PD-L1
and demonstrate the presence of tumor-infiltrating leu-
kocytes; interestingly, these patients may have improved
survival as compared to PD-L1-negative MCC patients
[11].

The clinical management of MCC is challenging.
MCC tumors are asymptomatic or have a benign ap-
pearance at initial presentation, leading to missed or late
diagnoses [12, 13]. Pathological diagnosis requires im-
munostaining for neuroendocrine markers in addition to
hematoxylin eosin staining [10, 14, 15]. For patients with
early-stage disease, surgery and radiation are recom-
mended to achieve local regional disease control. For pa-
tients with advanced or metastatic disease, immune
checkpoint inhibition targeting the PD-1/PD-L1 pathway
leads to improved survival [16—18]. However, there is no
standard approach for patients who develop resistance
or relapse, thus representing a large gap in clinical
management.

Increasing evidence suggests that epigenetic dysregula-
tion drives cancer progression in MCC [19-22]. Gen-
omic analyses of MCC have revealed frequent mutations
in genes regulating chromatin modification [20, 23-25].
Specifically, recent studies have demonstrated global loss
of histone H3 lysine 27 trimethylation (H3K27me3) or
loss of polycomb repressive complex 2 (PRC2) activity in
the development of Merkel cells, although the mechan-
ism remains unknown [20, 26]. Loss of H3K27me3 has
been shown in pediatric brain tumors and may be
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influenced by overexpression of the PRC2 inhibitory
protein EZH Inhibitory Protein (EZHIP) and/or KDM6B,
an H3K27me3 demethylase [27-29].

While some DNA methylation-based biomarkers have
been identified for in other aggressive skin cancers (e.g.,
melanoma) [30], only a small number of hypermethy-
lated genes have been described in MCCs, namely CpG
islands located at the RASSFIA promoter in 50% of pa-
tients [19] and CDKN2A%P*RE) (encoding tumor sup-
pressor pl4) in 42% of patients [31]. DNA
hypermethylation modulates expression of both of these
genes in MCC [19, 31, 32]. Negative regulation of PD-LI
expression by DNA hypermethylation of its gene pro-
moter region has also been recorded in many cancers
[33-37]. Early studies show that epigenetic dysregulation
also contributes towards immune escape and poor prog-
nosis in MCC, including MHC class I and PD-L1 down-
regulation and decrease in immune cell populations
[38—41]. Furthermore, preclinical studies show that epi-
genetic therapy with histone deacetylase (HDAC) inhibi-
tors to reverse silencing of HLA class-1 antigen
processing machinery (APM) and MHC class I chain-
related proteins A and B using in vitro and mouse xeno-
graft MCC model [39, 40].

An increased understanding of the epigenetic dysregu-
lation of MCC biology is needed to help improve the
clinical management of this rare but aggressive disease.
Investigation of DNA methylation profiles in MCC may
provide diagnostic and therapeutic utility in clinical
management. In this study, we sought to describe the
global DNA methylation landscape of MCC and
characterize potential links between DNA methylation,
gene expression, and MCC tumorigenesis. We have
identified DNA methylation markers specific for MCC
diagnosis, MCPyV status, and expression, as well as
DNA methylation-based driver genes related to MCC
tumorigenesis, neuroendocrine-related gene pathways,
and H3K27me3 status. Our findings support further
studies to understand the clinical implications of epigen-
etic dysregulation in MCC.

Methods

Sample collection

Tumor samples from 11 patients treated at the Univer-
sity of Southern California Keck School of Medicine and
USC Norris Comprehensive Cancer Center from 2016 to
2018 were retrospectively identified and collected. All
patients underwent surgical resection of primary MCC
tumors, regional lymph nodes, and/or in-transit skin me-
tastases as standard of care. Patients included nine males
and two females, six non-Hispanic white patients, and
five Hispanic patients; the median age was 66 (range 49—
88) years old. MCC tumor samples included eight pri-
mary tumors, four lymph node metastases, and three
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skin metastases. Adjacent-normal tissues from five pa-
tients were used as controls. Among the 11 patients,
there was one patient who was immunocompromised
(history of prior kidney transplantation), while two pa-
tients were noted to have a history of second malignancy
(one with metastatic breast cancer, one patient with
monoclonal gammopathy of unknown significance). Sta-
ging was conducted per AJCC 8™ edition TNM staging
system; there was one patient with stage I disease, three
with stage II disease, and seven with stage III disease.
Among all 11 patients who underwent surgical resection,
five had recurrent disease, three remain alive and disease
free, and three were lost to clinical follow-up. Additional
clinical characteristics are listed in Table 1. In addition,
two commercially available Merkel cell carcinoma cell
lines, MS-1 and MCC13, were obtained from Millipore
Sigma (St. Louis, MO) and were cultured as recom-
mended by the supplier. This study was reviewed and
approved by the institutional review board (IRB) of the
University of Southern California following written in-
formed consent from all patients.

Data collection and submission

In a prospectively collected institutional review board
(IRB)-approved database, MCC tumor samples were
pathologically reviewed and confirmed by a certified der-
matopathologist. Immunohistochemistry testing for
MCPyV was performed using the CM2B4 mouse mono-
clonal antibody clone [42] (Santa Cruz Biotechnology,
Santa Cruz, CA). Genomic DNA from MCC cell lines
and FFPE tissues was extracted as described in Chopra

Table 1 Detailed characteristics of samples used in this study
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et al [43]. Following bisulfite treatment (Zymo Research
Corporation EZ DNA Methylation kit), DNA methyla-
tion data was generated using the Illumina Infinium
MethylationEPIC BeadChip array at the USC Norris
Molecular Genomics Core Facility [44, 45]. BeadArrays
were scanned using Illumina iScan scanners and .idat
files were used as input for data extraction and process-
ing. Summarized methylated and unmethylated inten-
sities, beta values (5 values), and detection p values were
generated using minfi in R computing language, and
background correction and normalization was per-
formed using the “noob” function in minfi. Data points
with detection p value > 0.05 were masked as “NA”.
RNA extraction was performed as per the instructions
from the Qiagen RNeasy Mini Kit according to the user
manual (qiagen.com). The DNA methylation and gene ex-
pression data from this study can be obtained from the
Gene  Expression  Omnibus  GSE160878  and
PRJNA671514. Published epidermis and dermis DNA
methylation data from apparently healthy individuals
above the age of 50 were obtained from GEO (GSE51954)
for cell type DNA methylation comparisons [46]. DNA
methylation data were obtained for primary small cell lung
carcinomas (SCLCs )[47], normal lymph node DNA
methylation data from GEO (GSE73549) [48], normal tib-
ial neuron from ENCODE (ENCSR551DKY, ENCS
R729VBL, ENCSRO6INRX, ENCSR039CGW), epilepsy
brain tissues from GEO (GSE111165), lung carcinoids
from GEO (GSE118133), pancreatic cancer from GEO
(GSE117852), pediatric high-grade glioma (pHGG) from
E-MTAB-5552, and prostate cancer from GDC.

Patient Sample_Name Status Site Age Recurrence RACE Gender Stage MCPyV (IHC)
1 MCC_s1 Normal Skin 58 No HISP M No
MCC_s2 Metastatic (LN) LN 58 No HISP M 1l No
2 MCC_s3 Primary Skin 82 No WHITE F | Yes
3 MCC_s5 Metastatic (Sk) Skin 53 Yes WHITE M Ml Yes
MCC_s6 Primary Skin 53 Yes WHITE M 1l Yes
4 MCC_s7 Metastatic (Sk) Skin 72 Yes WHITE M Il Yes
MCC_s8 Normal Skin 72 Yes WHITE M Yes
MCC_s9 Primary Skin 72 Yes WHITE M 1l Yes
5 MCC_s10 Normal Skin 49 Yes HISP M Yes
MCC_s11 Metastatic (Sk) Skin 49 Yes HISP M Il Yes
6 MCC_s12 Primary Skin 66 No HISP M | No
7 MCC_s14 Primary Skin 82 Yes WHITE M 1l No
MCC_s15 Primary Skin 82 Yes WHITE M 1l No
8 MCC_s16 Primary Skin 51 No HISP M Il Yes
9 MCC_s17 Primary Skin 88 Yes WHITE F Il Yes
10 MCC_s18 Normal Skin 86 No WHITE M No
MCC_s19 Metastatic (LN) LN 86 No WHITE M 1l No
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DNA methylation analysis

We removed primary tumor samples containing higher
than 50% white blood cell contamination using the
LUMP (leukocytes unmethylation for purity) assay [49].
Probes with mean DNA methylation -values less than
0.05 (5%) across the entire sample set were considered
as background noise and removed from the analysis.
Probes with DNA methylation associated with gender
and age, as well as those related to polymorphisms, were
also removed from our analysis [50, 51]. Student’s ¢ test
was performed to identify significantly different methyla-
tion B-values of each probe between MCPyV-positive
and MCPyV-negative samples. P-value correction (false
discovery rate, FDR) was performed using the p.adjust
function in R [52]. Probes with mean methylation (-
value difference of > 0.4 or < - 0.4 between two sample
groups (i.e., MCPyV-positive vs MCPyV-negative) at
FDR <0.05 were selected. Probes with the greatest -
value deviation between adjacent-normal, primary
tumor, metastatic skin tumor and metastatic lymph node
tissues were selected with ANOVA p-value <0.05 and
standard deviations (SD) of the mean of groups > 0.25.
Heatmap representation was generated using the R
package ComplexHeatmap [53]). The utility of these
probes in differentiating tumor samples was shown using
principle component analysis graph with generic R func-
tions prcomp and ggplot2 [54].

Probe annotations and pathway analyses

We identified EPIC DNA methylation probes located in
promoter and gene body regions and classified the
remaining probes as intergenic. Probe annotations were
obtained from the Infinium MethylationEPIC manifest
(illumina.com). Hypergeometric test for determining the
enrichment of probes in promoters, gene body, and
intergenic regions was performed using the phyper func-
tion in R. GO annotation was performed using the R
package RDAVIDWebService or enrichGO [55], and data
were presented using the R package clusterProfiler [56].

RNA sequencing (RNA-seq)

Total RNA was extracted, and RNA libraries were pre-
pared using the TruSeq Stranded Total RNA kit accord-
ing to the manufacturer’s recommended protocol
(illumina.com). Total RNA sequencing was performed
on the NextSeq 500 instrument (Illumina). Single- or
paired-end sequencing reads of ~75bp in length were
obtained and were cleaned using trimmomatic [57].
Cleaned reads were aligned to human genome hg38
using STAR aligner [58]. Count data was generated
using featureCounts [59] and normalized using EdgeR
[60]. Two cell line replicates were performed. Expression
data from cell lines was compared with normal whole
skin  RNA expression (GSE130955). The relative
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expression in cell lines was compared with relative DNA
methylation in MS1 and MCCI13 cell lines with respect
to normal skin.

Data access

GSE160878 for DNA methylation and PRJNA671514 for
gene expression (this study). GSE51954 for published
epidermis and dermis DNA methylation data from ap-
parently healthy individuals over the age of 50 [46].

GSE73549 for normal lymph node DNA methylation
data [48].

ENCSR551DKY, ENCSR729VBL, ENCSRO61NRX, and
ENCSR039CGW for tibial neuron DNA methylation
data.

GSE111165 for epilepsy brain tissue DNA methylation
data.

GSE118133 for lung carcinoid DNA methylation data.

GSE117852 for pancreatic cancer DNA methylation
data.

GDC for prostate cancer DNA methylation data.

E-MTAB-5552 for pediatric high-grade glioma
(pHGG) DNA methylation data.

GSE130955 for gene expression in normal skin tissues
[61, 62].

Results

DNA methylation profiles in MCC specimens and
differentially methylated loci involve multiple pathways
DNA methylation changes of only a limited set of genes
have been identified in MCC [38]; thus, we investigated
genome-scale DNA methylation profiling of primary
MCC specimens, including primary tumors, adjacent-
normal tissues, metastatic skin tissues, and metastatic
lymph nodes across 11 patients, using the Illumina
MethylationEPIC DNA methylation BeadArray system
(Additional file 1: Figure S1). The DNA methylation data
were filtered to remove data from probes that are (1)
linked to known polymorphisms, (2) located on the X-
and Y-chromosomes, and (3) related to aging (Add-
itional file 1: Figure S1). In addition, the data from two
metastatic lymph nodes were omitted as these were
shown to have <50% purity after testing for infiltration
of normal cells or leukocytes caused by inflammation
using LUMP assay (Additional file 1: Figure S2 and the
“Methods” section).

We performed ANOVA-based multiple comparison
testing of the remaining 700,268 probes to find differen-
tially methylated probes across the sample collection
(Table 1). A total of 181,429 probes were significantly
differentially methylated (p <0.05) between the four
sample groups. Probes showing the highest variation of
DNA methylation between the four groups were
retained. Using a standard deviation (SD) of the four
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Fig. 1 Differential DNA methylation and related pathways in MCC. A lllumina Infinium MethylationEPIC BeadChip revealed DNA methylation
profiles in the four groups (Cluster 1-4) by comparing Normal, Primary, Metastatic_Sk (Sk for skin), Metastatic_LN (LN for Lymph Node). DNA
methylation in these groups was compared using ANOVA. Using P < 0.05 and SD of the mean > 0.25, we obtained 24,497 probes. Using
hierarchical clustering of probes, four clusters were identified B PCA plot showing that the selected probes separated samples in three groups:
Normal, Metastatic lymph node (LN), and Primary and Metastatic_Sk. C Differentially methylated genes in clusters 1-4 were annotated using GO
terms for biological process. GO analysis for biological terms using the R function RDAVID was performed and GO terms were reported

means greater than 0.25, 24,497 probes were selected
(Fig. 1).

Unsupervised clustering of the 24,497-probe set re-
vealed four clusters. Cluster 1 (n = 5502 probes) showed
cancer-specific DNA hypermethylation in all tumor tis-
sues (primary, metastatic skin, and metastatic lymph
node) compared to adjacent-normal tissues. Cluster 2 (n
= 7053 probes) showed DNA hypomethylation in pri-
mary tumors and metastatic skin tissues, but not in
metastatic lymph nodes when compared to adjacent-
normal tissues. Cluster 3 (1 = 5478 probes) showed
DNA hypermethylation only in metastatic lymph nodes
in comparison to the other three sample groups. Cluster
4 (n = 6464 probes) displayed DNA hypomethylation in
metastatic skin and primary tumors (Fig. 1A). PCA ana-
lysis demonstrated separation of tissue samples into
three groups: primary tumors (red) with metastatic skin
tissues (orange), adjacent-normal tissues (green), and
metastatic lymph nodes (blue) (Fig. 1B).

The unique Cluster 3 DNA hypermethylation profiles
found in metastatic lymph nodes let us to question
whether this might be due to tissue-specific DNA
methylation patterns in lymph nodes or was derived

from primary tumors. To address this, we re-clustered
the data after adding EPIC DNA methylation data of
three primary normal lymph node tissues [48] (Add-
itional file 1: Figure S3A). Indeed, the DNA methylation
profiles of normal lymph nodes were similar to adjacent-
normal skin tissues, while the Cluster 2 probes that dis-
played specific DNA hypomethylation in primary tumors
and metastatic lymph nodes were unique from the re-
gions displaying DNA methylation in normal lymph
nodes (Additional file 1: Figure S3A and B). Thus, the
Cluster 3-specific DNA hypermethylation patten is
unique to metastatic lymph nodes involved with MCC.
MCC patients are sensitive to immunotherapy (im-
mune checkpoint inhibitors) [63, 64], and recent studies
have suggested that DNA demethylation and reactivation
of transposon elements (TEs), such as endogenous retro-
viruses (ERVs), can lead to up-regulation of tumor cell
immune response (viral mimicry) and increase T cell in-
filtration [65-67]. In order to determine TE DNA
methylation status in each cluster, we analyzed the DNA
methylation status of 1286 TE probes on the Infinium
MethylationEPIC array (Additional file 1: Figure S1).
TEs showed very similar DNA methylation patterns
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across the four clusters, even after unsupervised cluster-
ing of the panel of 1286 TE probes alone (Additional file
1: Figure S3C). Thus, TE DNA methylation is distributed
across all four clusters and no TE-specific DNA methy-
lation patterns are identified (Fig. 1).

The differentially methylated probes in all four clusters
were located on promoter, gene body, or intergenic re-
gions. Enrichment analysis using phyper function in R
programming language showed that while all clusters
contain probes located in intergenic regions, gene body
probes were enriched in Clusters 2, 3, and 4. In addition,
promoter or gene body DNA hypermethylation is found
only in Cluster 3 probes in metastatic lymph nodes
(Additional file 1: Figure S3D). Promoter DNA methyla-
tion is negatively correlated with gene expression and
gene body DNA methylation is positively correlated with
gene expression [68, 69]. Meanwhile, DNA methylation
in intergenic regions may correlate with chromatin in-
stability and regulation of functional elements, such as
enhancers [70, 71]. Thus, the distribution of probes on
various genic regions and their DNA methylation states
may provide clues regarding potential gene activity.

GO analysis for biological terms was performed for all
differentially methylated probes in clusters 1- 4 using
RDAVIDWebService, and these data suggest that DNA
methylation alterations in MCC involve in multiple
pathways, including in cell adhesion, signal transduction,
and nervous system development, all of which may dir-
ectly participate in MCC tumorigenesis (Fig. 1C). Path-
way analyses based probe location (promoter or gene
body) suggests that gene body DNA methylation may
drive changes in cell adhesion, signal transduction, and
nervous system development (Additional file 1: Figure
S3E). Taken together, we identified four clusters of
cancer-specific DNA hypermethylation (Clusters 1 and
3) and hypomethylation (Clusters 2 and 4) profiles, some
of which are also specific to metastatic MCC tumors
and may play a critical role in pathways relevant to
tumor progression in MCC (Fig. 1C).

MCPyV-specific DNA methylation patterns in MCC tumors
Among approximately 80% of patients, MCC is associ-
ated with the oncogenic virus MCPyV. Approaches to
detect MCPyV include PCR for virus-specific sequences,
as well as immunohistochemical and serologic testing
for viral oncoproteins. However, to date, no epigenetic
biomarker has been established as the consensus test for
determining MCPyV status. As a result, MCPyV infec-
tion in patients may be easily missed [7, 8] or left un-
checked. While it is thought that MCPyV status impacts
MCC patient prognosis [72], how MCPyV status may
alter clinical decision-making is also controversial [1,
73]. As such, improved diagnostic testing to delineate
MCPyV status may be important not only towards
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improved understanding of MCC biology, but also to-
wards clinical management. Based on immunohisto-
chemistry, five primary tumors and three metastatic skin
tumors were MCPyV-positive, while three primary tu-
mors and two metastatic lymph node tumors were
MCPyV-negative.

We determined whether DNA methylation profiles dif-
fered between MCPyV-positive (n = 8) and MCPyV-
negative tumor tissues (n = 5) using supervised cluster-
ing of the EPIC DNA methylation data for these sam-
ples. Using FRD-adjusted P <0.05 and delta 8 value
differences > 0.4 or < — 0.4, we identified 470 probes (n
= 12 in Group 1 and n = 458 in Group 2) showing sig-
nificant differential DNA methylation between MCPyV-
positive and MCPyV-negative tumors (Fig. 2A). Interest-
ingly, the DNA methylation profile of MCPyV-positive
tumors was independent from adjacent-normal skin or
normal lymph node tissues irrespective of the MCPyV
status in normal tissues (Fig. 2A). PCA analysis showed
that the MCPyV-positive (red and orange) and MCPyV-
negative (pink and light blue) tumors separated into two
groups and do not overlap with normal tissues regard-
less of MCPyV status (green and light green) (Fig. 2B).
In addition, we further refined the top 12 cancer-specific
DNA methylation markers, a combination of both
hypermethylated and hypomethylated loci, from this
group that could most clearly distinguish MCPyV status
among the MCC specimens (Fig. 2C). The top 10 signifi-
cant loci in each group are listed in Additional file 2:
Table S1.

Differential DNA methylation among skin cell types and
cancer cells of origin

Merkel cells are mechano-sensory receptors that are re-
quired for soft touch response, have neuro-endocrine
features, and are in the basal layer between dermis and
epidermis, however, there is controversy over whether
these are the true cells of origin for MCC [74, 75]. De-
pending on the location of primary tumors and skin me-
tastases, the collected tumor samples from this study
could contain differing proportions of epidermal, dermal
tissue, and Merkel cells, thereby potentially resulting in
a sampling bias that may affect our analyses due to cell-
type-specific DNA methylation profiles. To determine
the potential consequences of dermal, epidermal, and
neuro-like cell contamination among our resected MCC
tumor tissues, we obtained and analyzed publicly avail-
able Infinium HumanMethylation450 (HM450) BeadAr-
ray DNA methylation data for primary epidermis and
dermis samples from sun-exposed and sun-protected
body sites of 20 individuals over 60years old
(GSE51954) [46], as well as tibial neuron (ENCS
R551DKY, ENCSR729VBL, ENCSRO6INRX, ENCS
R0O39CGW) and epilepsy brain tissues (GSE111165).
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Hypermethylated in MCPyV (-) " Hypomethylated in MCPyV (-)

Specifically, we compared the epidermis, dermis, and
neuro-like tissues (tibial neuron and epilepsy brain)
DNA methylation profiles of the probes used for cluster-
ing (Fig. 1) to the MCC data. A total of 24,497 probes
were originally used for clustering and 13,460 of these
are also represented in the HM450 array data. After per-
forming cluster analysis using the 13,460 shared probes
across the MCC sample panel, the same four clusters
remained. Interestingly, we noticed that epidermal, der-
mal, and neuron-like tissues have their own unique
DNA methylation profiles after including these samples
in the clustering analysis (Fig. 3A). Dermal, epidermal
and neuron-like samples were clearly different from
MCC tissues based on PCA plot analyses (Fig. 3B);
therefore, the DNA methylation profiles identified in
Clusters 1-4 (Figs. 1A and 3A) are likely MCC-specific.
In addition to tumor cell purity, cancer cell of origin is
also influential in characterizing DNA methylation pro-
files and may result in misleading findings of cancer cell
type. Both MCC and small-cell lung carcinoma (SCLC)
are neuroendocrine tumors and share cytological and
histochemical similarities [76]. In addition to the chal-
lenges in characterizing poorly differentiated neuroendo-
crine tumors, MCC and SCLC can present with both
lymph node and skin metastases. As a result, MCC and

SCLC may be misdiagnosed [77-79], and this may alter
treatment options for the patient.

Cells of origin questions also persist for human MCC
cell lines [80]. DNA methylation data can be used to
identify the cell of origin [81], therefore, we took advan-
tage of specific DNA methylation profiles based on tis-
sue, cell, or cancer type to analyze the cell of origin for
human MCC13 and MS-1 MCC cell lines. We compared
MCC13 and MS-1 DNA methylation patterns with our
patient MCC samples (Fig. 1A). In addition, we com-
pared MCC EPIC DNA methylation data with HM450
DNA methylation data from primary SCLC and corre-
sponding adjacent-normal lung tissues generated by
Poirier et al. [47] and other potential neuroendocrine or
neuro-like tumors such as lung carcinoids (GSE118133;

= 18), pancreatic tumors (GSE117852, n = 20), pros-
tate tumors (GDC, n = 20), and pediatric high-grade gli-
omas (pHGG) (E-MTAB-5552; n = 20). Unsupervised
clustering of the MCC patient samples, MCC cell lines
and other tumor types using the panel of 13,460 probes
shared between the EPIC and HM450 arrays showed
that MCC and other tumor types have unique DNA
methylation profiles. Interestingly, the MS1 cell line
clustered with patient MCC samples, while the MCC13
cell line clustered with the SCLC samples and SCLC cell



Gujar et al. Genome Medicine (2021) 13:130

Page 8 of 17

1>

R

clusterl cluster2 cluster3

cluster 4

cluster 1 cluster 2 cluster 3

Methylation (B) B
1
- 0.8 i} .e
~ -
04
I 02
0

= Dermis
Epidermis 1
mmm Epilepsy_brain -
Tibial_neuron_normal >
Primary ";g&
Metastatic_Sk b
Metstatic_LN T T T T z
Normal 0.1
Normal_LN PC1 (44.04%)

0.1

0.1
".
.

.

.

PC2 (18.67%)
0.0

-0.2

L ]

0.3

1o

- Primary
Metastatic_Sk
- Metstatic_LN .®
Normal ¢ . & | #
[ Normal_LN 1 e e

0.2

B mcci3

- SCLC_pateint
SCLC_cell_line
Lung_Carcinoids
Normal_Lung

B PanNETs -
Pancreas_Nor - -

B rHGe
pHGG_Nor .

[ Prostate_Pri
Prostate_Nor

PC2 (12.21%)
0.0
L ]
.

-0.1 0 0.1

PC1 (26.18%)

-0.2

Fig. 3 Differential DNA methylation in skin cell subtypes and cancer cells of origin. A MCC-specific DNA methylation (Fig. 1A) was compared to
DNA methylation data from epidermis, dermis, tibial neuron, and epilepsy brain tissues. B PCA plot showing MCC was well separated from
dermis, epidermis, tibial neuron, and epilepsy brain tissues. C Unsupervised clustering the MCC-specific DNA methylation profiles (Fig. 1A) with
DNA methylation data from SCLC tissues, SCLC cell lines, MCC cell lines (MS1 and MCC13), lung carcinoids, pancreatic tumors, prostate tumors,
and pediatric high-grade gliomas (pHGG). D PCA plot of Normal tissue, primary MCC tumors, with SCLC, SCLC cell lines, MCC cell lines (MST and

MCC13), lung carcinoids, pancreatic tumors, prostate tumors, and pediatric high-grade gliomas (pHGG)

lines but not the other cancer types. In addition,
adjacent-normal skin and adjacent-normal lung tissues
display similar DNA methylation profiles (Fig. 3C). PCA
analysis showed that the primary MCC, metastatic skin,
SCLC, other cancer types, adjacent-normal skin, and
normal lung tissue samples clustered separately. In
addition, PCA analyses also showed that the MS1 cell
line clustered with MCC patient samples, while the
MCC13 cell line clustered with SCLC samples and SCLC
cell lines (Fig. 3D). This finding suggests that MCC cell
lines have unique cells of origin with MCC13 cells likely
derived from metastatic SCLC cells, as previously hy-
pothesized [80]. Thus, DNA methylation may be a novel
approach to help identify cancer cell of origin for aggres-
sive neuroendocrine malignancies.

Impact of DNA methylation on gene regulation in MCC

Most cancer-specific DNA methylation alterations are
passage effects and do not result in altered gene expres-
sion [69, 82, 83]. Only a small portion of DNA methyla-
tion alterations correlate with gene expression changes;

specifically, promoter DNA and gene body DNA methy-
lation are negatively and positively associated with gene
expression, respectively [68, 84]. Due to the limited tis-
sue availability of this rare cancer, we were unable to
perform RNA expression analyses in patient samples
and instead focused on RNA sequencing (RNA-seq) of
MCC13 and MS1 MCC cell lines to characterize the ex-
tent to which MCC DNA methylation may affect gene
expression.

First, we clustered the MCC DNA methylation data
with MCC13 and MS1 cell lines included. The MS1
DNA methylation profiles were similar to MCC tumors,
while the MCC13 DNA methylation profiles clustered
with adjacent-normal MCC tissues (Fig. 4A). Next, we
determined the extent to which the MCC cell line data
overlapped with each MCC cluster (Fig. 4B). Both cell
lines showed substantial similarity with the Cluster 1-
specific probes, whereas the majority of Cluster 3 probes
did not overlap with the MCC cell lines. Interestingly,
we did not identify MCC13-specific overlap with any of
the four clusters, but in contrast, there was overlap with
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Fig. 4 DNA methylation and RNA expression in MCC cell lines. A Unsupervised clustering of probes based on MCC-specific DNA methylation
compared to MS1 and MCC13 cell lines. B Differentially methylated genes in the four clusters were overlapped with MS1 and MCC13. Percentage
of genes showing DNA methylation similar to cell lines were recorded. C Volcano plot for gene expression by RNA-seq in MS1 and MCC13 cell
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MS1 among four clusters. We identified MCC-specific
promoter or gene body DNA methylation alterations in
8885 of 14,456 genes (61%) in one or both MCC cell
lines.

Second, we uncovered dramatic expression differences
when comparing gene expression of MS1 and MCC13
cells to normal skin tissues (GSE130955) [61, 62] (Fig.
4C), suggestive of widespread epigenetic dysregulation in
MCC. After integrating the MS1 and MCC13 DNA
methylation and RNA-seq data for the panel of 8885
genes, we identified 968 genes (11%) that are directly
regulated by DNA methylation (Fig. 5A, Additional file
2: Table S2 and S3). These genes include those upregu-
lated by promoter DNA hypomethylation (171 genes in
MS1 cells and 74 genes in MCCI13 cells) and gene body
DNA hypermethylation (232 genes in MS1 cells and 164
genes in MCCI13 cells), as well as genes downregulated
by promoter DNA hypermethylation (179 genes at MS1
cells and 161 genes in MCC13 cells) or gene body DNA
hypomethylation (383 genes in MS1 cells and 162 genes
in MCC13 cells) (Fig. 5A).

GO analysis for biological terms on genes regulated by
DNA methylation showed enrichment in
neuroendocrine-related pathways including axonogen-
esis, hormone metabolism process, forebrain develop-
ment, axon guidance, neuron projection guidance, and
limbic system development (Fig. 5B). This finding

suggests that DNA methylation alterations may directly
contribute to the neuroendocrine features present in
MCC.

Identification of DNA methylation regulated genes
involved in MCC tumorigenesis, neuroendocrine status,
and MCPyV infection

Aberrant DNA methylation aberrations have been de-
scribed in most types of human cancers [85]. However,
most of the defined alterations appear to be passenger
events that do not lead to gene expression changes [83,
86, 87]. Understanding the relationship between DNA
methylation alterations and gene expression changes will
provide not only a functional DNA methylation marker
for gene expression status, but also a potential thera-
peutic biomarker, especially for DNA methylation inhib-
itors [88]. We recently demonstrated that epigenetic
alterations are more frequent than genetic alterations in
regulating gene expression, and this may be identified by
correlating gene expression with DNA methylation and/
or nucleosome accessibility of gene promoters or gene
bodies [68, 69, 83, 87, 89].

We queried our list of cancer-related genes regulated
by DNA methylation in MCC (Fig. 5A) to identify
MCC-specific DNA methylation regulated genes which
mainly dependent on expression status as existing MCC
biomarkers, MCPyV-specific biomarkers, and
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neuroendocrine-specific genes. First, we identified epi-
genetic regulation of SATB2, MAP2, ALOX15, CDKN2A,
NCAMI, PAXS, and PDGFRA in MCC. Interestingly,
these seven genes have been described as diagnostic
and/or prognostic markers for MCC based on RNA or
protein expression [90-95]. Indeed, SATB2, MAP2, and
ALOX1S5 were previously reported as down-regulated in
MCC. Our data suggest that SATB2 and MAP2 down-
regulated expression is correlated with promoter DNA
hypermethylation, while downregulated ALOX5 expres-
sion correlates with gene body DNA hypomethylation
(Fig. 6A) [90-92]. Furthermore, overexpression of
CDKN2A, NCAM1, PAX5, and PDGFRA in MCC can

be indicated by DNA hypermethylation of their gene
bodies (Fig. 6A) [93-95]. Thus, their DNA methylation
status also provides clinically relevant MCC biomarkers.

Second, CADM1 and PRDMS8 expression have been
previously studied as putative biomarkers for MCpyV
status in MCC [21, 96]. We found that and CADMI1 and
PRDMS expression positively correlated with DNA
methylation in their gene bodies. We then overlapped
the MCPyV-specific DNA methylation probes (Fig. 2A)
with the genes that were regulated by DNA methylation
in MCC (Fig. 5A). In doing so, we not only identified
DNA methylation markers that were strongly correlated
with MCPyV status (Fig. 2C), but we also identified 10
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genes whose DNA methylation status correlated with
gene expression (Fig. 5A) (Additional file 2: Table S4).
The top five genes displaying significant DNA methyla-
tion differences between MCPyV-negative and MCPyV-
positive MCC tumors are shown and compared to
CADM1 and PRDMS8 (Fig. 6B). Our list of MCPyV-
specific genes shows substantial DNA methylation differ-
ences and outperforms CADMI and PRDMS, indicating
that DNA methylation and gene expression curated bio-
markers are effective and specific for MCPyV status in
MCC.

Third, neuroendocrine signatures based on NEUROD1
and ASCLI [97] expression are not only a feature of
MCC but are also used for diagnostic and prognostic
purposes [1]. For both NEURODI and ASCL1, we found
that gene body DNA methylation status correlates with
gene expression (Fig. 5A). In addition, we also identified
two well-known neuroendocrine genes, ONECUT2 and
SRRM4 [98, 99], that demonstrated cancer-specific gene
body DNA methylation alterations (Fig. 6C), and which
also positively correlated with gene expression in MCC
(Fig. 5A). Taken together, these DNA methylation
markers not only correlate with their expression status,
but are also potential targets of epigenetic therapy.

DNA methylation alterations influence global loss of
histone H3 lysine 27 trimethylation in MCC

Global loss of H3K27me3 occupancy has been reported
in MCC [20, 100]. In brain tumors, global loss of

H3K27me3 may be explained by KDM6B over-
expression, leading to H3K27me3 demethylation, and/or
EZHIP over-expression that leads to inhibition of EZH2,
resulting in global loss of H3K27me3 [27-29]. However,
these data have not been shown in MCC. We found that
KDM6B promoter DNA hypomethylation (CpG site
from 2 to 7) was enriched in MCPyV-positive MCCs
(Fig. 7A, B) and correlates with KDM6B overexpression
in MCC (Additional file 2: Table S2 and S3). In addition,
EZHIP promoter DNA hypomethylation (CpG site 1-5)
and subsequent gene expression was also identified in
MCCs regardless of MCPyV status (Fig. 7C, D). These
results suggested that the up regulation of KDM6B and
EZHIP by DNA hypomethylation in their promoters
may contribute to global loss of H3K27me3 in MCC.

The potential role of DNA methylation in modulating
immune responses in MCC

MCQC sensitivity to immune checkpoint inhibitor treat-
ment is mainly dependent on T cell infiltration and PD-
1 (PDCD1) and PDL-1expression. Interestingly, expres-
sion of PD-1, but not PDL-1, is associated with response
to immunotherapy [101]. In addition, PD-1 and PDLI
DNA methylation is associated with survival outcomes
in MCC and melanoma [33, 38]. We measured PD-I
and PDL-1 DNA methylation in MCC tumors, meta-
static lymph nodes, and adjacent normal skin tissues.
We observed significant PDL-1 promoter DNA hyper-
methylation (CpG site 3) (Additional file 1: Figure S4A)
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and PD-1 promoter DNA hypomethylation (CpG site 1—
5) (Additional file 1: Figure S4B) in primary MCCs and
metastatic lymph nodes. Although it is yet unclear if PD-
1 and PDL-1 promoter DNA methylation influences
gene expression, our findings suggest that downregu-
lated PDL-1 expression and up-regulated PD-1 expres-
sion may be due to DNA methylation changes in their
promoters. This knowledge may have clinical relevance
in helping identify patients which benefit from immune
checkpoint inhibitors [33, 38].

Discussion

MCC is a rare but challenging malignancy with poor
clinical outcomes and may have a benign appearance at
initial presentation, leading to missed or late diagnosis
[12, 13]. Improved understanding of the biology of

MCC, including the impact of MCPyV infection, neuro-
endocrine features, epigenetic alteration, and immune
response-related immunotherapy are critical to improv-
ing clinical management of MCC [12, 13]. MCC can also
be diagnostically challenging for the clinical pathologist.
Testing for the presence of MCPyV and neuroendocrine
markers has improved sensitivity and specificity; how-
ever, these tests have been dependent on protein and
RNA expression from primary specimens [14, 102, 103].
In addition, 20% of MCC tumors are MCPyV-negative
and SCLC metastases may be mistaken with MCC path-
ology at diagnosis [102, 104].

In this study, we have compared the DNA methylation
profiles among primary MCC, metastatic MCC, and
normal-adjacent tissues. Our analyses revealed four clusters
of DNA methylation profiles that can distinguish these
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samples: MCC-specific hypermethylation regardless of
metastatic status (Cluster 1); hypermethylation-specific for
MCC lymph node metastases (Cluster 3); MCC-specific hy-
pomethylation that excludes lymph node metastases (Clus-
ter 2); and MCC-specific hypomethylation unique to MCC
skin metastases (Cluster 4). These DNA methylation pat-
terns are unique and independent of MCPyV status, and
thus may have potential diagnostic and prognostic value in
the management of MCC. Unexpectedly, we also identified
a panel of DNA methylation markers that distinguish
MCPyV infected tumors from non-infected tumors. How-
ever, the mechanisms as to how MCPyV actually affects
epigenetic alterations in MCC are yet to be determined.

SCLC shares several clinical and pathological features
with MCC, and it has been reported that some metastatic
MCCs may be derived from SCLCs [77-79]. Because of
unique DNA methylation signatures based on tissue, cell,
cancer, and cancer cell of origin, we compared DNA
methylation profiles between these two types of malignan-
cies. Indeed, DNA methylation profiles of MCC and SCLC
tumors are unique and can be used to identify cell of origin.
Intriguingly, we found that the MCC13 cell line, considered
a Merkel cell “variant,” displayed DNA methylation more
similar to SCLCs than MCCs, thereby suggesting that
SCLC may be the true origin of this cell line.

Our DNA methylation data also provides potential evi-
dence that aberrant DNA methylation may contribute to
MCC tumorigenesis. Gene ontology analysis has indi-
cated potential dysregulation of cell proliferation, neuro-
logical development, and hormone regulation pathways.
Notably, these pathways are also enriched in genes regu-
lated by promoter or gene body DNA methylation, thus
strengthening the possibility that DNA methylation is
directly involved in MCC tumorigenesis.

Although global H3K27me3 loss has been reported in
MCC [20, 100], this mechanism has not been well studied.
Using DNA methylation primary MCC specimens and ex-
pression data from MCC cell lines, we show that KDM6B
and EZHIP over-expression by promoter DNA hypome-
thylation may drive global H3K27me3 loss in MCC.
H3K27me3 loss may represent a target for epigenetic ther-
apy based on PRC2, HDAC, and DNA methylation inhib-
ition in other malignancies [105—-107], and this may prove
an important option in MCC as well [39, 40]. Our findings
provide further rationale for clinical trials of epigenetic
cancer therapy in MCC. In addition, the specific inter-
action between epigenetic modification and immunosup-
pressive pathways should be further explored [66, 88].
When considering that PD-1 and PD-L1 expression is as-
sociated with immunotherapy response [101] and that
their gene promoter DNA methylation levels can poten-
tially predict their expression status, it seems that therap-
ies to modulate epigenetic changes in MCC may help
enable improved responses to immunotherapy.
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Aberrant DNA methylation is a common event in most
malignancies but most of the defined alterations appear to
be passenger events that do not actually lead to gene ex-
pression changes [83, 85-87]. In this study, by combining
DNA methylation from MCC patient specimens and gene
expression data from MCC cell lines, we have identified
over 900 genes that are directly regulated by promoters or
gene body DNA methylation. The functional roles of these
genes will need to be evaluated in further studies, espe-
cially testing for potential therapeutic or epigenetic ther-
apy efficacy using in vitro and/or in vivo systems. Prior
studies have already analyzed RNA or protein expression
from some of the genes in this group as biomarkers to
evaluate relevant pathways unique to MCC, MCPyV infec-
tion, and neuroendocrine features. The established correl-
ation between DNA methylation and gene expression in
these genes suggests that these DNA methylation markers
can be used in place of RNA- or protein-based gene ex-
pression markers in the clinic.

Conclusions

Taken together, our identification of MCC-specific DNA
methylation markers may help provide the foundation
for novel methodologies in the clinical diagnosis and
prognostication of MCC. It should be noted that DNA is
especially stable and easy to obtain from patients in the
clinical setting, while DNA methylation markers are eas-
ily detected by various global or locus-specific assays
[108]. We believe that this approach also could lead to
more efficacious, personalized management of MCC
based on patient-specific genetic/epigenetic alterations.
Although our DNA methylation analyses have identified
novel regions of interest that may serve to help MCC in
the clinic, these findings are limited by low sample size,
and larger cohorts are needed to validate these findings
and assess their clinical relevance in the future studies.
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apparently healthy individuals over the age of 50 [46].

GSE73549 for normal lymph node DNA methylation data [48].

The tibial neuron DNA methylation data was downloaded from ENCODE
portal [110] (https//www.encodeproject.org/) with the following identifiers:
ENCSR551DKY, ENCSR729VBL, ENCSR06TNRX, ENCSRO39CGW.

GSE111165 for epilepsy brain tissue DNA methylation data [111].
GSE118133 for lung carcinoid DNA methylation data [112].

GSE117852 for pancreatic cancer DNA methylation data [113].

GDC for prostate cancer DNA methylation data [114].

E-MTAB-5552 for pediatric high-grade glioma (pHGG) DNA methylation data
[115].

GSE130955 for gene expression in normal skin tissues [61, 62].
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