Moosavi et al. Genome Medicine (2021) 13:143

https://doi.org/10.1186/513073-021-00956-1 Ge nome M ed |C| ne

?.)

Check for
updates

De novo transcriptomic subtyping of
colorectal cancer liver metastases in the
context of tumor heterogeneity

Seyed H. Moosavi'*?, Peter W. Eide'? Ina A. Eilertsen'*?, Tuva H. Brunsell'?, Kaja C. G. Berg'?, Bard I. Rasok®*,
Kristoffer W. Brudvik>*, Bjgm A. Bjornbeth®*, Marianne G. Guren®?, Arild Nesbakken®**, Ragnhild A. Lothe'*® and
Anita Sveen'#?"

Abstract

Background: Gene expression-based subtyping has the potential to form a new paradigm for stratified treatment
of colorectal cancer. However, current frameworks are based on the transcriptomic profiles of primary tumors, and
metastatic heterogeneity is a challenge. Here we aimed to develop a de novo metastasis-oriented framework.

Methods: In total, 829 transcriptomic profiles from patients with colorectal cancer were analyzed, including primary
tumors, liver metastases, and non-malignant liver samples. High-resolution microarray gene expression profiling was
performed of 283 liver metastases from 171 patients treated by hepatic resection, including multiregional and/or
multi-metastatic samples from each of 47 patients. A single randomly selected liver metastasis sample from each
patient was used for unsupervised subtype discovery by nonnegative matrix factorization, and a random forest
prediction model was trained to classify multi-metastatic samples, as well as liver metastases from two independent
series of 308 additional patients.

Results: Initial comparisons with non-malignant liver samples and primary colorectal tumors showed a highly
variable degree of influence from the liver microenvironment in metastases, which contributed to inter-metastatic
transcriptomic heterogeneity, but did not define subtype distinctions. The de novo liver metastasis subtype (LMS)
framework recapitulated the main distinction between epithelial-like and mesenchymal-like tumors, with a strong
immune and stromal component only in the latter. We also identified biologically distinct epithelial-like subtypes
originating from different progenitor cell types. LMS1 metastases had several transcriptomic features of cancer
aggressiveness, including secretory progenitor cell origin, oncogenic addictions, and microsatellite instability in a
microsatellite stable background, as well as frequent RAS/TP53 co-mutations. The poor-prognostic association of
LMS1 metastases was independent of mutation status, clinicopathological variables, and current subtyping
frameworks (consensus molecular subtypes and colorectal cancer intrinsic subtypes). LMS1 was also the least
heterogeneous subtype in comparisons of multiple metastases per patient, and tumor heterogeneity did not
confound the prognostic value of LMST.
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Conclusions: We report the first large study of multi-metastatic gene expression profiling of colorectal cancer. The
new metastasis-oriented subtyping framework showed potential for clinically relevant transcriptomic classification in
the context of metastatic heterogeneity, and an LMS1 mini-classifier was constructed to facilitate prognostic

stratification and further clinical testing.
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Background

Gene expression profiles of colorectal cancers (CRCs)
have strong clinical associations. Prognostic value has
consistently been shown for signatures of immune and
stromal cells infiltrating the tumor microenvironment
[1, 2], as well as for different subtyping frameworks in-
corporating microenvironment-related and cancer cell-
intrinsic signals [3, 4]. The current consensus framework
(the consensus molecular subtypes, CMS) defines four
biologically distinct subgroups with associations to clini-
copathological factors (cancer stage and tumor
localization), molecular markers (microsatellite instabil-
ity [MSI] and KRAS/BRAFY®®E mutations), and patient
survival [3]. CMS also reflect therapeutically relevant sig-
naling pathways, such as enrichment with EGFR signal-
ing in CMS2-epithelial/canonical tumors and angiogenic
signals in the CMS4-mesenchymal/stromal group, sug-
gesting that CMS could also be used for selection of
standard targeted agents [5, 6]. However, retrospective
analyses of randomized clinical trials comparing combin-
ation chemotherapies plus either anti-EGFR or anti-
VEGF monoclonal antibodies in the first-line treatment
of KRAS wild-type metastatic CRCs, showed inconsistent
results with respect to the predictive value of CMS (7,
8]. These studies have highlighted the unsettled question
of the suitability of the CMS framework in the meta-
static setting [9].

CMS was originally developed for primary tumors, and
metastatic lesions have different expression signals from
the tumor microenvironment, as well as a different distri-
bution of the clinicopathological and molecular features
associated with CMS [10]. Furthermore, CMS4-
mesenchymal/stromal tumors are associated with a poor
prognosis in the primary setting [3, 6], while patients with
CMS1-MSI/immune cancers have a particularly short sur-
vival after metastatic dissemination [7, 8, 11]. The CRC in-
trinsic subtypes (CRIS) were identified as a more uniform
framework across different sources of CRC samples [4],
but the clinical relevance of CRIS has not been equally
well addressed. It has been suggested that also metastases
can be grouped according to epithelial-like and
mesenchymal-like expression signals [12, 13], but only few
studies have sampled metastatic lesions.

The liver is the most common site of metastasis from
CRC and approximately 30% of the patients develop

liver metastasis, commonly with multiple lesions. This is
associated with a 5-year overall survival (OS) rate of only
approximately 15% [14], although liver resection offers a
potential for long-term survival in a subset of the pa-
tients [15]. A few molecularly guided systemic treatment
options have shown clinical benefit, including anti-EGFR
agents in KRAS/NRAS (RAS) wild-type cancers with a
left-sided primary tumor location [16], immune check-
point inhibitors against MSI cancers [17, 18], and tar-
geted combination therapies against BRAF'*°°F mutated
cancers [19]. Molecular pre-screening for therapy selec-
tion in the metastatic setting is most commonly based
on the primary tumor, justified by the strong concord-
ance between primary and metastatic tumors for the
currently “actionable” genetic aberrations [20-22]. How-
ever, tumor heterogeneity is a major cause of treatment
failure, illustrated by the clonal expansion of resistant
subclones with acquired RAS mutations during anti-
EGFR treatment [23]. Gene expression profiles are
highly dynamic, and heterogeneity of CMS between
matched primary tumors and metastases may be found
in as many as 40% of patients [11], further highlighting
the need for molecular profiling directly of metastatic
lesions.

In this study we performed transcriptomic profiling
and de novo subtype discovery and validation analyses of
CRC liver metastases (CRLMs) from an in-house series
and two external series of a total of 479 patients. The
new subtyping framework was analyzed for biological
characteristics by gene set enrichments, and for prog-
nostic associations in relation to established transcrip-
tomic frameworks (CMS and CRIS), clinicopathological
factors, key genomic markers such as RAS, BRAFY®F
and 7TP53 mutations, and intra-patient heterogeneity
among metastatic lesions from 47 of the patients.

Methods

Patient material

A total of 829 samples from CRLMs, non-malignant
liver tissue, primary CRCs, and pre-clinical CRC models
have been analyzed in the study. The in-house series of
metastatic CRC included 171 patients treated by hepatic
resection at Oslo University Hospital between October
2013 and March 2018 (Table 1). The median age at sur-
gery was 65 years (range 24—85) and the median follow-
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Table 1 Clinicopathological characteristics of patients with resected CRLM in the in-house series

Clinicopathological variable Patients (total n = 171) %
Gender, male 106 62
Primary tumor location
Proximal colon 36 21
Distal colon 135 79
Primary tumor differentiation (unknown, n = 19)
Well 25 15
Moderate 107 63
Poor 20 12
Nodal status primary tumor (unknown, n = 8)
NO 50 29
N1 62 36
N2 51 30
Synchronous (within 6 months) liver metastasis 133 78
Previous resection/radiofrequency ablation of CRLM 39 23
Systemic oncological treatment prior to tumor sampling 156 91
Neoadjuvant chemotherapy for this metastatic situation 131 77
Previous chemotherapy before this metastatic situation 52 30
Molecularly targeted treatment, previous or neoadjuvant 51 30
Radiofrequency ablation 22 13
R-status liver
RO-resection 71 42
R1-resection® 91 53
R2-resection® 9 5
Extra-hepatic disease 40 23
Multiple CRLM analyzed (patients, tumors, samples) 47/141/158

21 mm resectional margin or lesions treated with radiofrequency ablation

P Macroscopic residual tumor in liver (visible at surgery or by radiological examination)

up time was 41 months. The patients had a median of 4
liver metastases (range 1-23) on radiological imaging be-
fore treatment, and fresh-frozen samples were collected
from distinct metastatic lesions larger than 5 mm and from
adjacent, macroscopically non-malignant tissue in the
resected liver specimens. From these patients, 283 CRLM
samples were analyzed. The dataset for intra-patient tumor
heterogeneity analyses (totally 158 samples from 47 pa-
tients) included multiple metastatic lesions (from the same
resection) from 42 patients (mean of 3 and median of 2 le-
sions per patient, range 2-7), 2—4 multiregional samples
from each of 15 lesions, and 1-3 lesions from hepatic re-
resection of 7 patients. Adjacent non-malignant liver tissue
samples from 19 patients were also analyzed.

RNA and DNA were extracted using the Allprep DNA/
RNA/miRNA Universal kit (Qiagen GmBH, Hilden,
Germany), and nucleic acid concentrations were measured
with Nanodrop spectrophotometry (Thermo Fisher Scien-
tific, Waltham, MA, USA). RNA quality was assessed by
the RNA integrity number (RIN) using the Bioanalyzer

2100 system (RNA 6000 Nano kit; Agilent Technologies,
Santa Clara, CA, USA), and all samples had RIN > 6 (me-
dian 9.4).

Previously published in-house data from the primary
tumor of 170 patients treated surgically for stage I-IV
CRC at Oslo University Hospital [6], 34 CRC cell lines
[24], and 15 patient-derived organoids (PDOs) grown
from resected CRLMs [25] were included for compari-
son. Two publicly available gene expression datasets of
resected CRLMs were downloaded from the Gene Ex-
pression Omnibus (GEO) under accession numbers
GSE131418 (n = 141 CRLMs; MCC dataset [12]) and
GSE73255 (n = 167 CRLMs [4]) and used for independ-
ent validation analyses.

An overview of the study materials and analyses is shown
in Supplementary Figure 1 (Additional file 1: Fig. S1).

Gene expression analyses
All CRLM samples (n = 283) and adjacent non-
malignant liver tissue samples from 19 of the patients
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were analyzed for gene expression at exon-resolution on
the GeneChip Human Transcriptome Array 2.0 (HTA
2.0; Thermo Fisher Scientific) using 100 ng of total RNA
as input, and following the manufacturer’s protocol. The
primary tumors and pre-clinical CRC models were ana-
lyzed on the same type of array in separate studies (GEO
accession numbers GSE96528 [6], GSE79959 [26] and
GSE97023 [24]). The in-house data represented two
batches (primary CRCs and cell lines versus CRLMs,
normal liver samples, and PDOs). The raw intensity CEL
files were background corrected, normalized, summa-
rized at the gene level, and log2 transformed using the
robust multi-array average (RMA) method implemented
in the justRMA function in the affy package [27] in R,
using the custom Entrez CDF file (v22) from Brainarray
[28]. Pre-processing was performed across sample types
as defined by the downstream analyses (all 521 in-house
samples; CRLMs and non-malignant liver tissue; or
CRLMs only). Entrez IDs were converted to HGNC gene
symbols using the org.Hs.eg.db package (v 3.7.0) from
Bioconductor [29].

Principal component analysis (PCA) was performed in
R by the prcomp function based on genes (n = 1000)
with the highest standard deviation (SD) across samples,
and hierarchical clustering was similarly performed
using Manhattan distance and ward.D2 linkage in the R
package stats. Differential gene expression analysis was
performed by Empirical Bayes estimation in the R pack-
age limma [30], with Benjamini-Hochberg correction for
the false discovery rate (FDR). Gene set enrichment ana-
lysis (GSEA) with FDR correction was performed using
the camera function in limma on a collection of 57
CRC-related gene sets (Additional file 2: Table S3 and
S4). Sample-wise liver scores were calculated by the gsva
function implemented in the R package GSVA [31],
based on a set of 157 genes with expression enrichment
in the liver, retrieved from The Human Protein Atlas
(https://www.proteinatlas.org/humanproteome/tissue/
liver; version 18).

Analysis across the two different technical batches of
the in-house gene expression data was performed in the
initial exploratory step, presented as PCA in Fig. la—c.
To evaluate the need for a batch correction, data were
pre-processed in two batches and merged using the
ComBat method in the R package sva [32]. PCA of
batch-corrected data showed separation of pre-clinical
models along the first principal component (PC1), as
well as clustering of primary CRCs and CRLMs relative
to normal liver samples (Additional file 1: Fig. S2). Fur-
thermore, the sample-wise liver score and gene expres-
sion signal of the hepatocyte differentiation marker ALB
were not significantly different between primary CRCs
and CRLMs, inconsistent with the known and distinct
gene expression patterns of liver tissue samples [33].
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Accordingly, batch correction likely removed important
biological distinctions between the sample types, and
data were therefore presented without batch correction.
However, we cannot conclude that the results shown in
Fig. la—c are not impacted by more subtle technical
variation between the two sample batches (particularly
relevant for the comparison of primary CRCs and
CRLMs).

MSI and mutation analyses

MSI status was determined by PCR-based analysis of ei-
ther the BAT25/26 mononucleotide markers or with the
MSI Analysis System, version 1.2 (Promega, Madison,
WI, USA). The CRLMs have previously been sequenced
for hotspot mutations in KRAS and NRAS exons 2-4,
BRAF exon 15, and for mutations in all coding regions
of TP53 (exon 2—11) [22].

CMS and CRIS classification of CRLMs

One randomly selected CRLM sample from each patient
in the in-house series was classified according to both
the CMS and CRIS transcriptomic frameworks. For
CMS classification, we have recently developed an algo-
rithm tailored to CRLMs, taking into consideration the
different distribution of clinicopathological factors and
molecular subgroups in the primary and metastatic set-
tings, as well as the different tumor microenvironment
in the liver [34]. The tailored classifier is available in an
updated version (v2.0.1) of the R package CMScaller
(https://github.com/Lothelab/CMScaller).  Using  this
classifier, 129 of the CRLMs (76%) were confidently clas-
sified. CRIS classification was performed using the cris_
classifier function in the CRISclassifier R package [4]
with default settings. This resulted in confident classifi-
cation of 139 (82%) CRLMs.

Unsupervised de novo transcriptomic classification of
CRLMs

Unsupervised classification of CRLMs based on gene ex-
pression was performed using nonnegative matrix
factorization (NMF) with the Brunet method, as imple-
mented in the NMF R package [35, 36], with 100 repeti-
tions and a pre-defined rank of 2 to 6. The classification
was performed for single metastases from each patient
to ensure sample independence (n = 169; the same
tumor samples used for CMS and CRIS classification).
Features for NMF included genes annotated as protein-
coding, lincRNA and miRNA genes (1 = 25969) in the
BioMart database (retrieved April 2019) after a two-step
filtering approach: (i) only genes that were upregulated
in the CRLMs compared to the non-malignant liver tis-
sue samples in unpaired differential expression analysis
by limma were considered (1 = 6247; log2 fold-change >
0, FDR-corrected p values < 0.05); (ii) only genes with
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Fig. 1 Comparison of gene expression profiles of CRLMs with normal liver tissue samples, primary CRCs, CRC cell lines, and PDOs. a PCA showed
sample clustering based on sample type and tissue of origin. CRLMs had largest variation along PC1, as indicated by the density plot on top. b
PC1 versus sample-wise liver scores calculated by GSVA of a set of genes highly expressed in the liver. The liver scores of CRLMs ranged from the
normal liver tissue samples to the primary CRCs. 27% of the CRLMs had a liver score below the maximum score for primary CRCs, as indicated by
the gray dashed line. c Repeated PCA plot of all samples along the PC1 and PC2 axes, colored according to the microarray expression levels of
ALB and KRT20. The tree CRLM samples that clustered close to non-malignant liver samples in part a were excluded. d Hierarchical clustering of
multiple (two to eight) distinct CRLMs from each of 45 patients. The tree is divided into five main branches, denoted A-E. Patients (n = 13) with
adjacent clustering of all metastases are marked with black dots. Patients (n = 28) with separation of metastases into two or more main branches
are represented by unique patient-wise colors. Patients (n = 4; P16, P21, P23, P45) with all metastases clustering within the same main branch,
although not adjacent to each other, are colored gray. Three selected patients (P8, P10, P39) with separation of metastatic lesions on 2-3 of the
main branches each are emphasized with arched lines

largest expression variation among the CRLMs (SD >
0.8; n = 514) were retained. The rationale for inclusion
only of over-expressed genes in CRLMs was to reduce the
influence of normal cell contamination in bulk tumor

gene expression data (70% [110/157] of the liver-enriched
genes retrieved from The Human Protein Atlas were
among the 313 genes downregulated in CRLMs compared
to non-malignant liver tissue). Gene expression values
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(log2-scale) were exponentially transformed (linear scale)
prior to NMF. Classification at K = 5 was largely concord-
ant when comparing thresholds for the input features of
SD > 0.7 (n = 763 genes) and SD > 0.8 (Cohen’s x = 0.87,
95% confidence interval [CI] = 0.84—0.94).

LMS prediction model for classification of independent
samples

A supervised random forest classifier for subtyping of in-
dependent samples into the five de novo LMS groups was
trained on the CRLMs with a positive silhouette value in
the initial LMS discovery analysis (n = 163 CRLMs, here
called the training set). Template features were the same
as the input for NMF. The best performing subset of
genes (largest prediction accuracy) was identified by recur-
sive feature elimination implemented with the rfe function
in the R package caret [37], and with initial NMF class la-
bels from the training set as outcomes. Function options
were set to “parRF” method, 3 times 7-fold repeated
cross-validation, “random” search for tuning parameter,
“multiclass” summary function, and “Accuracy” metric.
The weight of each gene included in the final model (n =
180, Additional file 2: Table S10) was calculated by the
varlmp function in the caret package. The trained model
was then applied to all in-house CRLMs using the predict
function in the R package stats. The performance of the
prediction model was estimated for the training set used
for LMS discovery (class labels from subtype discovery
were considered “true”) using the confusionMatrix func-
tion in the caret package.

Transcriptomic subtyping of external datasets

Two external gene expression datasets generated on Ro-
setta/Merck Human RSTA Custom Affymetrix 2.0 and
[Mlumina HumanHT-12 V3.0 bead chips platforms were
retrieved from GEO with accession numbers GSE131418
[12] and GSE73255 [4], respectively. For GSE131418,
raw CEL files from 141 resected CRLMs in the MCC
dataset were processed using the justRMA function in
the affy package and the provided CDF file (HuRSTA_
2a520709.cdf). Entrez IDs were mapped to HGNC sym-
bols using the org.Hs.eg.db package and expression
values for non-unique symbols were median aggregated.
GSE73255 included 167 unique CRLMs retrieved using
the getGEO function in the R package GEOquery. Probe
IDs were converted to Entrez IDs and HGNC symbols
using the illuminaHumanv4.db package from Biocon-
ductor [29] and the org.Hs.eg.db package, respectively.
Genes with the highest cross-sample variance were se-
lected for entries with non-unique symbols, and expres-
sion values were log2 transformed. Both gene expression
matrices were centered by the column/sample-wise
mean and scaled by the column/sample-wise SD.
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Supervised LMS prediction was performed on the two
data sets separately, and according to the approach de-
scribed for the independent in-house samples above,
with the exception that new prediction models were
trained with template features represented in each of the
two external datasets (GSE131418: n = 480/514 genes,
93%; GSE73255: 462/514, 90%). In brief, a supervised
random forest classifier was trained in the in-house
training set (samples with known LMS labels), using re-
cursive feature elimination to select the subset of the re-
spective template gene sets with largest prediction
accuracy (estimated by cross-validation in the training
set; GSE131418: n = 230 genes in the final model;
GSE73255: n = 390). The trained models were applied to
the corresponding external dataset using the predict
function in R.

For comparison with the LMS predictions, unsuper-
vised de novo transcriptomic subtyping was also per-
formed by NMF of each of the two external datasets
following the same approach as for the in-house series,
and using the set of overlapping template genes on each
platform (GSE131418: n = 480 genes; GSE73255: n =
462).

LMS1 mini-classifier

A two-class random forest model (LMS1 versus rest of
the subtypes) was trained using the train function in the
caret package on differentially expressed genes identified
from limma analysis comparing LMS1 to all other sub-
types in the in-house training series (FDR-corrected p <
0.05, log fold-change > 1.6, n = 9 genes). The prediction
model was trained using 7-fold leave-one-out cross-
validation. The optimal value of the mtry parameter was
identified using the tuneLength option in the train func-
tion. Class labels were predicted using the predict func-
tion and were compared with original class labels in the
complete in-house dataset.

For assessment of this 9-gene LMS1 mini-classifier in
the external datasets, CRLM samples from the in-house
training series, GSE131418, and GSE73255 were merged
based on common genes and batch corrected using the
ComBat function in the R package sva. Missing values
for UCA1 in GSE73255 were imputed by its median ex-
pression across the batch-corrected dataset. The random
forest model for the 9-gene signature was re-trained on
the batch-corrected in-house training series and applied
to the full dataset using the predict function. The predic-
tion accuracy of the trained model (LMS1 versus LMS2-
5 distinction) was 100% for re-classification of the in-
house training series.

Statistical analysis
All statistical tests were two-sided and performed in R
(v3.5). Fisher’s exact, Pearson’s chi-squared, t-test, and
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Wilcoxon tests were performed using fisher.test, chisq.t-
est, ttest, and wilcox.test functions in R package stats,
respectively. Spearman’s correlation was calculated using
stat_cor function in R package ggpubr. Cohen’s kappa
was calculated using the confusionMatrix function in R
package caret. Five-year OS and cancer-specific survival
(CSS) curves were estimated with the Kaplan-Meier
method using the survfit function in the R package sur-
vival. Pairwise log-rank tests were performed to compare
survival curves using the pairwise_survdiff function in
the R package survminer, with the method for p value
adjustment set to the Benjamini-Hochberg procedure.
The time to event or censoring was calculated from ini-
tiation of treatment for the CRLMs, either neoadjuvant
treatment or hepatic resection. All deaths were regis-
tered as events for OS, and death from CRC was defined
as an event for CSS, with censoring of patients who died
from other causes. Patients without events the first 5
years of follow-up were censored. Hazard ratios (HR)
were calculated in univariable and multivariable Cox
proportional hazards analyses using the coxph function
in R package survival and p values were calculated using
Wald test. The proportional hazards assumption was
checked using the cox.zph function and was supported
for all Cox models.

Results

Variable impact of the tumor microenvironment on gene
expression profiles of CRC liver metastases

To assess the primary-to-metastasis transcriptomic land-
scape in CRC, gene expression profiles of 283 resected
liver metastasis samples and 19 non-malignant liver tis-
sue samples from 171 patients (Table 1) were initially
compared with primary CRCs (n = 170) and pre-clinical
CRC models derived from primary tumors (1 = 34 cell
lines) or resected CRLMs (# = 15 PDOs). In PCA, the
CRLMs ranged from the primary CRCs to the non-
malignant liver samples along PC1, although the closer
vicinity to the primary CRCs indicated resemblance of
the metastasized cancer cells to the tumors of origin
(Fig. 1a). The CRLMs had a larger spread along PC1
than the primary CRCs (10-90th percentile range of
PC1 values of 29 and 6.3, respectively), indicating a
highly variable degree of influence from the liver tumor
microenvironment in CRLMs. This was confirmed by
calculation of a sample-wise liver score based on genes
with high expression in the liver (see “Methods”), which
correlated strongly with PC1 of the CRLMs (Fig. 1b).
The liver scores of the CRLMs spanned from the non-
malignant liver samples (range 0.40 to 0.89) to the pri-
mary CRCs (range — 0.3 to — 0.58) and cell lines (range
- 0.27 to — 0.54). The large variation in the degree of
tumor microenvironment infiltration in the CRLMs was
further illustrated by the gene expression levels of the
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hepatocyte differentiation marker ALB, which was high-
est in the non-malignant liver samples and decreased
gradually in the CRLMs along PC1 (Fig. 1c). The oppos-
ite expression pattern was found for the intestinal differ-
entiation marker KRT20. Notably, 27% of the CRLMs
(75/283) had liver scores within the range of the primary
CRCs (liver score < — 0.3; Fig. 1b), suggesting negligible
influence from the liver tumor microenvironment in
these samples. Three CRLM samples from three patients
clustered close to the non-malignant liver samples in
PCA (Fig. 1a) and were excluded from further analyses.

The majority of patients had received chemotherapy
prior to sampling of the CRLMs (Table 1). PC1 values
were slightly lower for CRLMs treated in a neoadjuvant
setting compared to chemo-naive and/or previously
treated tumors (one randomly selected sample per pa-
tient; Additional file 1: Fig. S3), indicating an impact of
neoadjuvant chemotherapy on the gene expression pro-
files. Among other clinicopathological characteristics,
only R2 resections in the liver and extra-hepatic disease
were associated with PC1 values and the liver scores
(Additional file 2: Table S1).

Exploratory analyses indicated pronounced intra-
patient transcriptomic heterogeneity among metastatic
lesions, illustrated by hierarchical clustering of 2-8
CRLMs from each of 45 patients (total n = 139 lesions;
Fig. 1d). Only 13 patients (29%) had multiple CRLMs
that clustered together, while 62% of the patients (28/45)
had CRLMs that separated on at least two of the five
main branches. The remaining 9% of the patients (4/45)
had metastases that clustered on the same main branch,
although not adjacent to each other. Patient-wise clus-
tering versus separation of samples was not associated
with exposure to neoadjuvant chemotherapy (Fisher’s
exact p = 0.3). However, a comparison of CRLM liver
scores showed that hepatocyte infiltration was higher in
samples from patients with separation of metastases into
different clusters, compared to patients with adjacent
sample clustering, indicating an association with inter-
metastatic heterogeneity (although not statistically sig-
nificant; Wilcoxon p = 0.07).

De novo transcriptomic subtypes of CRLM

By adapting CMS classification to liver metastases and de-
veloping a new version of the R package CMScaller [38]
(v2.0.1), we have shown that CMS has limited discrimin-
atory power in CRLM [34]. Most metastatic lesions were
classified into one of only two subtypes, based on
epithelial-mesenchymal characteristics (Additional file 1:
Fig. S4). In addition, CMS classification was strongly influ-
enced by systemic treatment prior to sampling, showing
strong enrichment with CMS4-mesenchymal/stromal tu-
mors and concomitant depletion of CMS2-epithelial/ca-
nonical among tumors exposed to neoadjuvant
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chemotherapy (Additional file 1: Fig. S4). We therefore in-
vestigated the potential to develop a new intrinsic classifi-
cation framework for CRLM that captures additional
biological information. Unsupervised classification of sin-
gle CRLMs from each patient (n = 169 samples, patient-
wise random selection) was performed by NMF of a fil-
tered set of 514 genes (Additional file 2: Table S2), se-
lected both for having upregulated expression in CRLMs
compared to non-malignant liver tissue samples, and for
high expression variation among the CRLMs (see
“Methods”). Quality metrics from NMF classification, in-
cluding the cophenetic correlation coefficient and silhou-
ette width, were highest at K = 2 and K = 5 across
different input gene sets defined by the expression vari-
ation threshold (Fig. 2a). GSEA of a custom collection of
CRC-related gene sets (n = 57; Additional file 2: Table S3,
Additional file 1: Fig. S5) indicated that sample classifica-
tion at K = 2 resulted in subtypes with predominantly epi-
thelial (cluster 1: 76% of tumors) or mesenchymal (cluster
2: 24% of tumors) characteristics (Fig. 2b). Classification at
K = 5 resulted in four additional sub-classes within the
epithelial subtype, with a 98% concordance between epi-
thelial and mesenchymal-like subtypes at the two
factorization levels (Cohen’s x = 0.98, 95% CI = 0.95-1;
Fig. 2¢).

The five de novo sample clusters, hereafter called liver
metastasis subtypes (LMS), each represented 18%
(LMS1), 10% (LMS2), 19% (LMS3), 30% (LMS4), and
24% (LMS5) of the tumors (Fig. 2d, Additional file 1:
Fig. S6a-b). PCA confirmed that epithelial (LMS1-4) ver-
sus mesenchymal (LMS5) characteristics represented the
primary distinction of samples along PC1 (Fig. 2e).
There was little difference in the distribution of liver
scores among the subtypes, indicating that the LMS
framework was not confounded by hepatocyte infiltra-
tion (Additional file 1: Fig. S6c). However, LMS5-
mesenchymal was significantly enriched among CRLMs
exposed to neoadjuvant chemotherapy (Fig. 2f). Among
the four epithelial subtypes, only LMS3 was significantly
depleted in the chemotherapy-exposed group.

Enrichments with specific cell types and RAS/TP53 co-
mutations in the LMS framework

Distinct patterns of biological processes among the LMS
groups were found by GSEA (Fig. 3a, Additional file 2:
Table S4). LMS5-mesenchymal CRLMs were enriched
with tumor microenvironment signals, including a
strong stromal component and a high relative expression
of immune-related gene signatures. LMS1 had strong
gene expression-based MSI characteristics and included
the single MSI-high CRLM (CRLMs from all other pa-
tients [168/169] were confirmed MSS). The MSI-high
sample had the third highest MSI-like score, and most
MSS tumors in LMS1 had stronger MSI-like
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characteristics than MSS tumors in LMS2-5 (Additional
file 1: Fig. S7a). Notably, the MSI-like score had only a
weak correlation with cytotoxic T cell signals among the
CRLMs (Spearman’s p = 0.2; Additional file 1: Fig. S7b),
consistent with the predominantly weak immune re-
sponse signals in LMS1. LMS1 was further characterized
by several oncogenic signatures in the MAPK and MET
signaling pathways (including KRAS and BRAF signa-
tures), as well as cancer aggressiveness (cell migration,
hypoxia) and a signature of resistance to the standard
chemotherapeutic agent 5-fluorouracil. LMS2-4 all had a
transit amplifying-like phenotype. LMS2-3 showed en-
richments with few other signaling pathways, while
LMS4 presented with strong metabolic signals (partly
shared with LMS1 and LMS2), TP53 transcriptional ac-
tivity, and cell cycle-associated signatures (cell cycle
checkpoints and DNA repair mechanism; Fig. 3a).

Cell type-specific gene markers extracted from pub-
lished single-cell RNA sequencing studies (Additional
file 2: Table S4) indicated clear differences in the most
dominating cell type of origin of each subtype. LMS1
CRLMs were highly enriched with genes related to
secretory progenitor cells, mucus-secreting goblet cells
(for example, MUC2 and MUC4), and liver cholangio-
cytes (for example, KRT7, KRT19, EPCAM, SOX9).
LMS2 strongly expressed core gene markers of LGR5+
intestinal stem cells (LGR5, OLFM4, ASCL2, SMOCI,
and MSI1). No inference of the cell type of origin could
be made for LMS3 CRLMs. LMS4 showed marked ex-
pression of absorptive enterocyte markers, and LMS5-
mesenchymal tumors showed strong expression of
markers of quiescent stem cells (DLCKI+, PROCR+).

The five LMS groups were further analyzed for poten-
tial enrichment with key genomic markers of CRC be-
yond MSI status, including mutations of TP53, KRAS,
NRAS, and BRAFV**F (Fig. 3b). TP53 mutations were
common across all subtypes, but with a significantly
lower mutation frequency in LMS5-mesenchymal tu-
mors (LMS5 versus LMS1-4: Fisher’s exact p = 5 x 1075,
odds ratio [OR] = 0.2; Additional file 2: Table S5). KRAS
mutations were enriched in LMS1-secretory/MSI-like
tumors (LMS1 versus LMS2-5: p = 0.002, OR = 3.9), al-
though the mutation frequency was not significantly
higher in LMS1 than LMS3 separately (p = 0.4). Notably,
there was enrichment with the gene expression-based
KRAS addiction signature in LMS1 also when analyzing
KRAS mutated CRLMs only, further supporting prefer-
ential KRAS signaling in LMS1 (Additional file 1: Fig.
S7c). NRAS and BRAFY*°F had low mutation frequen-
cies in all subtypes, and there were no significant enrich-
ments. RAS and TP53 were co-mutated in 31% (52/169)
of the patients, and the co-mutations were enriched in
LMS1-secretory/MSI-like CRLMs (LMS1 versus LMS2-
5: p = 0.005, OR = 3.2; no significant difference between
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Fig. 2 Unsupervised de novo subtyping of CRLMs based on gene expression. a Quality metrics from NMF classification using input gene sets
defined by three different thresholds for the cross-sample SD indicated that the optimal number of sample clusters (K) was either 2 or 5. b The
sample clusters at K = 2 factorization were most strongly separated by epithelial-mesenchymal characteristics, as illustrated with a sample-wise
epithelial score calculated by GSVA (p value from t-test). ¢ Heatmap of NMF clustering output at K = 5 factorization. The top annotation bars
indicate sample clusters and the sample-wise silhouette width in each cluster. The red-blue color intensity in the heatmap represents the within-
cluster similarity of each sample. Cross-tabulation of samples at K = 2 and K = 5 factorizations indicates that the mesenchymal subtype from K =
2 is largely retained also at K = 5. d Pie chart showing the proportion of samples in each of the de novo liver metastasis subtypes (LMS1-5) at K =

and LMS4

5. e PCA plot of samples based on the input gene set for NMF (cross-sample SD > 0.8) and colored according to LMS group, confirms strong
separation of the mesenchymal subtype (LMS5) from the four epithelial subtypes (LMS1-4) along PC1. The density plot on the top shows the
distinction between the epithelial and mesenchymal sample clusters from K = 2 factorization. f The proportion of LMS5 samples was higher
among CRLMs exposed to neoadjuvant chemotherapy, but there was no significant difference between treatment groups for LMS1, LMS2,

LMS1 and LMS3 separately: p = 0.4; Fig. 3b). GSEA of
RAS/TP53 co-mutated tumors only showed similar re-
sults to the analyses across all tumors, supporting en-
richment with several oncogenic signatures in the
MAPK and MET signaling pathways in LMS1 (Add-
itional file 1: Fig. S8). TP53 transcriptional activity was
enriched in LMS1 and LMS4, and LMS4 (together with
LMS2) showed significant enrichment with 7P53 muta-
tions in a RAS wild-type background (LMS2/4 versus
LMS1/3/5: p = 8 x 107% OR = 3.8, 95% CI = 1.6-9.7).

Poor prognosis associated with LMS1-secretory/MSI-like
CRLMs

Several clinicopathological variables were differently distrib-
uted across the LMS groups (Additional file 2: Tables S5-
S6). LMS1-secretory/MSI-like and LMS5-mesenchymal
were enriched with CRLMs originating from poorly differ-
entiated and proximal (right-sided) primary tumors com-
pared to LMS2-4 (tumor differentiation: OR = 8.4, 95% CI
=25-364, p = 9 x 107 tumor location: OR = 2.6, 95% CI
= 1.1-6.0, p = 0.02; Fisher’s exact test; Fig. 4a). Synchronous
liver metastases were most frequently found in the LMS5-
mesenchymal group (OR = 4.6, 95% CI = 1.3-24.6, p =
0.009). Furthermore, analyses of the 160 patients with RO/
R1 resections in the liver showed prognostic associations to
5-year OS and CSS. Patients in the LMS1-secretory/MSI-
like group had a 5-year OS rate of 15%, which was lower
than for patients with LMS2-5 CRLMs, analyzed both indi-
vidually (significantly different for each of LMS3-5; Fig. 4b)
and collectively (HR = 2.2, 95% CI = 1.4-3.6, Wald test p =
9 x 107% Fig. 4c). A similar association was found with 5-
year CSS as the endpoint (LMS1 versus LMS2-5: HR = 1.9,
95% CI = 1.2-3.3, Wald test p = 0.01; Additional file 1: Fig.
S9). Notably, patient stratification based on epithelial or
mesenchymal characteristics (from NMF classification at K
= 2) had no prognostic associations (Additional file 1: Fig.
S10). Multivariable Cox proportional hazards analyses in-
cluding the clinicopathological parameters with univariable
prognostic associations (patient gender, primary tumor dif-
ferentiation grade, systemic oncological treatment prior to
tumor sampling, R2 resection in the liver, and extra-hepatic

disease; Additional file 2: Table S7) showed that the LMS
framework (LMS1 versus LMS2-5) was an independent
prognostic factor for both 5-year OS and CSS (adjusted HR
= 24, 95% CI = 1.4-4.0, Wald test p = 1 x 107 and ad-
justed HR = 2.1, 95% CI = 1.2-3.7, Wald test p = 0.008, re-
spectively, Additional file 2: Table S8). Furthermore,
exclusion of patients with extra-hepatic disease and/or R2
resections in the liver (the clinicopathological factors with
the strongest prognostic association) did not preclude the
prognostic value of the LMSI1-secretory/MSI-like group
(Additional file 1: Fig. S11a).

RAS/TP53 co-mutations were also associated with a
worse 5-year OS (HR = 1.6, 95% CI = 1.1-2.5, Wald test
p = 0.02 among patients with RO/R1 resection in the
liver), and to investigate whether enrichment with co-
mutations was the underlying factor for the prognostic
value of LMS1-secretory/MSI-like CRLMs, we compared
patients with LMS1 and LMS2-5 tumors with/without
co-mutations. This indicated that LMS1 was associated
with a poor patient survival independent of co-mutation
status in a bivariable analysis (adjusted HR = 2.0, 95% CI
= 1.2-3.3, Wald test p = 0.004), with worst prognosis for
co-mutated LMS1, but no significant difference between
co-mutated LMS2-5 and LMS1 without co-mutations
(Additional file 1: Fig. S11b).

Comparison of LMS with established transcriptomic
frameworks

A direct comparison of LMS with the CMS (adapted to
the liver metastatic setting) and CRIS frameworks
showed only moderate subtype concordances, although
LMS did not represent a statistically independent sub-
type distribution (Table 2). Notably, only 66% of CMS4-
mesenchymal CRLMs (38/58) were included in LMS5-
mesenchymal. Furthermore, 91% (10/11) of CMS1-MSI/
immune CRLMs were found in LMS1, but CMS1 consti-
tuted only 45% (10/22) of the total number of tumors in
this de novo subtype. Combined survival analyses of the
LMS and CMS frameworks in patients with RO/R1 resec-
tions in the liver, focusing on the poor-prognostic sub-
types LMS1 and CMS], indicated that LMS provided the
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Fig. 3 Molecular characteristics of the de novo LMS framework. a GSEA of selected gene expression signatures shows distinct patterns of
activated (red) or downregulated (blue) pathways. The color intensities represent p values from comparison of each subtype against all others
(analyzing one randomly selected CRLM sample from each patient, n = 169). b From top: TP53/KRAS/NRAS/BRAF'®F mutation frequency across
patients, with and without subtype stratification (for the latter, calculated per subtype). Bottom: Frequency of RAS/TP53 co-mutations in each subtype

strongest prognostic stratification. The worst prognosis
was found for patients classified as LMS1/non-CMS1 (5-
year OS rate of 11%), followed by LMS1/CMS1 (22%)
and non-LMS1/non-CMS1 (45%), respectively (log-rank
p < 0.004 for both 5-year OS and CSS; Fig. 4d).

With respect to the LMS and CRIS (Additional file 1:
Fig. S12) frameworks, the best subtype concordance was
found between CRIS-C and LMS4 (69% [31/45] of sam-
ples in LMS4 were also CRIS-C), while 86% of samples
in LMS1 were either CRIS-A or CRIS-B (Table 2).
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Table 2 Correspondence of the de novo subtypes with CMS and CRIS in resected CRLMs

Translated CMS CRIS
CMS1 CMS2 CMS3 CMs4 CRIS-A CRIS-B CRIS-C CRIS-D CRIS E
De novo subtypes LMS1 10 4 1 7 13 12 1 0 3

LMS2 0 8 0 1 4 1 6 1 2
LMS3 0 15 0 10 3 3 4 10 5
LMS4 0 32 0 2 4 3 31 2 5
LMS5 1 0 0 38 9 3 4 8 2

XY =1519,p< 2x107'® Y =829p=4x10"

Survival analysis focused on LMS1 and CRIS-B showed
a survival rank with worst outcome for LMS1/CRIS-B >
LMS1/non-CRIS-B > non-LMS1/CRIS-B > non-LMS1/
non-CRIS-B (log-rank p <0.006 for both OS and CSS;
Additional file 1: Fig. S12e).

LMS1-secretory/MSl-like and LMS5-mesenchymal define
distinct subtypes of CRLMs across independent datasets
To investigate the LMS framework in independent sam-
ples, a random forest LMS prediction model was devel-
oped (see “Methods”) and initially applied to two
external gene expression datasets of 141 (GSE131418)
and 167 (GSE73255) resected CRLMs analyzed on two
separate microarray platforms [4, 12]. In comparison
with the in-house dataset, there was a skewed distribu-
tion of LMS2-4 in both external datasets (Fig. 5a). The
LMS4 group encompassed a relatively large proportion
of samples, at the apparent cost of samples classified as
LMS2 (missing from both datasets) or LMS3. The
remaining subtype distributions were largely propor-
tional to the in-house material, and GSEA indicated that
several LMS characteristics were recapitulated in both
independent datasets (Fig. 5b, Additional file 1: Fig. S13).
LMS1 was found to have an epithelial and secretory
phenotype with strong MSI-like and BRAF-like expres-
sion signals. LMS3 and LMS4 both had a transit ampli-
fying phenotype, and LMS4 tumors additionally had
strong signaling of MYC targets. LMS5 was identified as
the only mesenchymal-like subtype and presented with a
strong stromal and immune component. Investigation of
the available clinicopathological information (in the
GSE131418 dataset) supported that the subtype distribu-
tion was not associated with exposure to neoadjuvant
treatment (Fisher’s exact p = 0.3) and that LMS1 CRLMs
were more likely to originate from proximal primary tu-
mors (OR = 2.9, 95% CI = 0.9-9.2, p = 0.04; Additional
file 2: Table S9, Fig. 5a).

Notably, de novo transcriptomic subtyping by un-
supervised NMF of each of the two external datasets
supported that the optimal number of sample clusters
was four. Matching of de novo subtypes with LMS pre-
dictions (based on the NMF sample cluster with the

largest number of sample overlaps) also supported a lar-
ger relative proportion of LMS4 samples compared to
the in-house series, at the apparent cost of LMS2 in par-
ticular (Additional file 1: Fig. S14a). Comparisons of the
sample-wise posterior probabilities from the LMS pre-
diction model (for LMS1, LMS3, LMS4, and LMS5) with
cluster membership probabilities for the related NMF
sample cluster showed a significant positive correlation
for each subtype in each dataset, indicating correspond-
ence between LMS predictions and unsupervised classifi-
cation (Additional file 2: Fig. S14b). However, the
correlations varied in strength and were strongest for
LMS5 (Spearman’s p > 0.85, p <2 x 107'°) and weakest
for LMS3 (Spearman’s p > 0.23, p < 0.005) in both
datasets.

Frequent intra-patient inter-metastatic subtype
heterogeneity does not confound the prognostic value of
LMS1

The random forest LMS prediction model was also ap-
plied to multiple additional CRLM samples from each of
47 patients in the in-house series (total #n = 158 samples)
to analyze intra-patient tumor heterogeneity. The pre-
diction model had an overall balanced classification ac-
curacy of 98% among the samples also included for
initial subtype discovery (95% CI = 94-99, Additional file
2: Table S10). Intra-patient inter-metastatic subtype het-
erogeneity was observed in 21 (50%) of the 42 patients
with multiple distinct lesions from the same hepatic re-
section, and intra-tumor heterogeneity was observed in
5 (33%) of the 15 lesions with multiregional samples
(Fig. 5¢). LMS1 was the least heterogeneous subtype,
with inter-metastatic heterogeneity in 43% of the pa-
tients (6 of 14) with at least one LMS1 CRLM/sample,
while LMS2 and LMS3 were most heterogeneous (in
100% and 93% of the patients, respectively).

Intra-patient inter-metastatic subtype heterogeneity
was not associated with patient survival (log-rank p > 0.2
for 5-year OS and CSS; Additional file 1: Fig. S15a).
However, considering the high frequency of subtype het-
erogeneity, we investigated its possible influence on the
prognostic associations of LMS1. There was no
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statistical survival difference between patients with
homogeneous LMS1 CRLMs and patients with inter-
metastatic LMS1 heterogeneity, although these analyses
were based on a small number of patients (Additional

file 1: Fig. S15b). We further analyzed the impact of
LMS1 heterogeneity in the complete patient series (n =
160 patients with RO/R1 resections of the liver) by
switching the inclusion of patients with inter-metastatic
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LMS1 heterogeneity between the LMS1 group and the
LMS2-5 group. This indicated no impact of tumor sam-
pling or tumor subtype heterogeneity on the prognostic
value of LMS1 (Additional file 1: Fig. S15c-d).

Development of LMS1 mini-classifier

We explored the potential to identify the clinically rele-
vant subgroup of LMS1 CRLMs using a simpler test
based on a small number of genes. A two-class mini-
classifier containing genes with high relative expression
in the LMS1 group (n = 9 genes; GCNT3, CTSE, REG4,
TCNI, LCN2, DSG3, UCAI1, SERPINBS, and MUCI?)
was constructed in the in-house training series (single
samples from each of the 169 patients). When applied to
the complete in-house set of 280 CRLM samples, the
classifier provided largely concordant classifications
(LMS1 versus LMS2-5; Cohen’s k = 0.86). Single-sample
gene set scores calculated by GSVA [31] of the nine
LMS1 mini-classifier genes correlated strongly with
single-sample scores for gene signatures enriched in
LMS1 tumors, including the secretory progenitor signa-
ture, the MSI-like signature, and the KRAS addiction
score (Spearman’s p > 0.6 across samples, p <2 x 107'°;
Additional file 1: Fig. S16). Furthermore, the mini-
classifier accurately captured the prognostic association
of the LMS1 group (5-year OS: HR = 2.2, 95% CI = 1.4—
3.6, Wald test p = 0.001; Additional file 1: Fig. S17), sug-
gesting that this 9-gene mini-classifier can be used for
independent prognostic stratification of resected
CRLMs. Application to the two external datasets
(GSE131418 and GSE73255 combined) showed a predic-
tion accuracy of 0.89 (95% CI 0.85-0.92) for the LMS1
versus LMS2-5 distinction.

Discussion
The current consensus framework for transcriptomic
subtyping of CRC [3] is widely adopted for primary tu-
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oriented framework are growing. This study presents a
new framework dedicated to liver metastases, summa-
rized in Fig. 6. LMS showed only a moderate level of
classification concordance with CMS, despite compari-
son with CMS classes obtained from a tailored classifi-
cation of resected CRLM tissue samples [34]. LMS
provided stronger biological and prognostic discrimin-
atory power than CMS in this setting. Similar results
were obtained by a comparison between LMS and CRIS
classification [4], although CRIS by design should be
less influenced by the CRC sample source. This high-
lights context-dependency of transcriptomic classifica-
tions of CRCs and supports an added value from
analyses of metastatic lesions. We confirm the primary
distinction between epithelial-like and mesenchymal-
like tumors that has been shown also in previous stud-
ies focused on metastatic CRC [4, 12], including enrich-
ment with MYC and cell cycle signals in the former
group, as well as strong tumor microenvironment sig-
nals (both immune and stromal) in the latter. However,
LMS showed a potential for further sub-stratification of
epithelial-like CRLMs, and this uncovered the poor-
prognostic LMS1 group. LMS1 clearly had distinct bio-
logical characteristics and was faithfully identified with
a prevalence of 13-18% by subtype prediction across
different external CRLM sample series and analysis
platforms. Notably, the distinction among the
remaining epithelial-like groups, LMS2-4, was less clear
and not well reproduced. The main added value of the
LMS framework therefore appeared to be the recogni-
tion of LMS1, and we therefore constructed an LMS1
mini-classifier based on nine genes with subtype-
enriched expression, to facilitate analyses in additional
CRLM sample series.

The clinically relevant and poor-prognostic LMS1
CRLMs had gene expression features associated with
secretory progenitor cells and an MSI-like phenotype.

mors, but data supporting the need for a metastasis- This strengthens the current data suggesting an
LMS1 | LMS2-4
Epithelial-like Mesenchymal-like
Prevalence: 13-18% 55-59% 24-32%
A KRAS and
Genetic: TP53 mut TP53 mut
o Secretory LGR5+ cells, Qiescent
Rrogenitor: cells enterocytes stem cells
) . . e Immune and
Phenotype: MSlI-like Transit amplifying stromal infiltration
L . Synchronous
Clinical: Worse survival metastasis
Heterogeneity: + +++ ++
Fig. 6 Overview of the de novo liver metastasis subtypes. The main characteristics of each subtype are summarized. Mut, mutations
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aggressive biology of metastasizing MSI-high CRCs, in
contrast to the survival benefit associated with MSI in the
primary setting [39]. Patients with MSI-high metastatic
cancers have a clinical benefit with immune checkpoint
inhibitors, likely associated with the high tumor muta-
tional burden and strong anti-tumor immune responses.
However, very few resectable CRLMs are MSI-high [40],
and MSI-high status was found in only one of the patients
in this series (< 1%). Nonetheless, LMS1 identified a subset
of predominantly MSS tumors that had MSI-like gene ex-
pression characteristics and poor-prognostic associations.
These metastases were not particularly immunogenic,
which suggests that there are cancer cell-intrinsic MSI-
like features beyond a high tumor mutational burden that
have important clinical implications. An additional feature
of this subtype was strong oncogenic gene expression sig-
naling, including in the MAPK pathway, and a high rela-
tive frequency of RAS/TP53 co-mutations. Such co-
mutations have recently been demonstrated to be associ-
ated with a poor patient survival after surgical resection of
metastatic CRC [41, 42], but the transcriptomic LMS1
group had additional prognostic value independent of the
co-mutations.

Pronounced intra-patient inter-metastatic heterogen-
eity of transcriptomic subtypes was found by analysis of
multiple distinct metastatic lesions from a subset of the
patients. However, the frequency of heterogeneity varied
among the LMS groups, and the least biologically dis-
tinct subtypes were also the most heterogeneous. In par-
ticular, LMS2 and LMS3 were almost exclusively found
intermixed with CRLMs of other subtypes (with the ex-
ception of one patient homogenous for LMS3). Accord-
ingly, these subtypes might be particularly sensitive to
sampling bias, and this might have contributed to the
poor reproducibility in external datasets, each of which
included a single-sample/lesion per patient. However, it
is likely that these subtypes are too similar or transitory
to provide useful stratification of CRLMs. Notably, the
distinct LMS1-secretory/MSI-like group was clearly the
least heterogeneous subtype in inter-metastatic compari-
sons, and its prognostic value was consistent in the con-
text of tumor heterogeneity. Although the latter analysis
was not conclusive due to the small sample size, it indi-
cates that a single LMS1 metastasis is sufficient to confer
a poor patient prognosis after liver resection and stand-
ard perioperative treatment, and identifies an important
patient population in need of new treatment strategies.
Pre-clinical studies have shown that gene/protein ex-
pression is the molecular level with the strongest pre-
dictive power for drug sensitivities [43], and we have
recently shown co-variation among pharmacological and
transcriptomic profiles of PDOs from resected CRLMs
[25]. Altogether, this supports that LMS1 CRLM poses a
new opportunity for rational drug development
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strategies, although its prognostic association needs to
be validated in larger patient series and clinical trial
populations.

A limiting factor of this study is the inclusion only of
resectable CRLMs, which represent a skewed selection
of metastatic CRCs for important molecular factors,
such as MSI and BRAF'®°°F mutations. Furthermore, in
accordance with current guidelines for the management
of patients with resectable or potentially resectable
CRLMs [44] most of the samples (from 77% of the pa-
tients) had been exposed to neoadjuvant chemotherapy.
We observed an impact of neoadjuvant treatment on the
gene expression profiles of the samples, consistent with
the shift towards a more mesenchymal phenotype
enriched with signals of angiogenesis and hypoxia that
has previously been shown in treatment-exposed tumors
[12]. Most of the tumors that classified as LMS5-
mesenchymal in the in-house series were treatment-ex-
posed, but this was not equally prominent in the external
dataset, and there was a fair distribution of samples accord-
ing to treatment status among the epithelial-like subtypes.
Furthermore, the main distinction of metastatic CRCs into
epithelial-like versus mesenchymal-like tumors has been
found both for liver and lung metastases, and shown to be
independent of treatment exposure [12]. In primary CRC,
such an epithelial-mesenchymal distinction is strongly
prognostic, likely reflecting the metastasis promoting effect
of TGEP activation and a contribution from the tumor
stroma in the mesenchymal subgroup [1]. Among the
CRLMs analyzed here, there was no prognostic difference
according to epithelial-like versus mesenchymal character-
istics, although LMS5-mesenchymal CRLMs were predom-
inantly diagnosed as synchronous metastases. Notably, the
mesenchymal phenotype of LMS5 CRLMs was accompan-
ied by strong immune signals, which are likely to be associ-
ated with a favorable patient outcome [45].

Conclusions

LMS is a metastasis-oriented gene expression-based sub-
typing framework of CRC that identifies clinically relevant
biological traits also in the context of inter-metastatic het-
erogeneity. Clinical relevance was illustrated by an inde-
pendent poor-prognostic association of one of the five
subtypes, for which a mini-classifier was developed to facili-
tate prognostic stratification and further clinical testing. In
acknowledgment of the weaker reproducibility of some of
the subtypes in external CRLM sample series, a consensus
framework modeled after the work of the CRC Subtyping
Consortium for primary CRCs [3] might be needed to de-
termine the optimal number and frequency of metastasis
subtypes. Here, we publish the first large cohort of multi-
sample metastatic gene expression profiles, including de-
tailed clinical information and survival data, for future
multi-center studies (GSE159216).
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