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Single-cell exome sequencing reveals
multiple subclones in metastatic colorectal

carcinoma
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Abstract

Background: Colorectal cancer (CRC) is a major cancer type whose mechanism of metastasis remains elusive.

Methods: In this study, we characterised the evolutionary pattern of metastatic CRC (mCRC) by analysing bulk and
single-cell exome sequencing data of primary and metastatic tumours from 7 CRC patients with liver metastases.
Here, 7 CRC patients were analysed by bulk whole-exome sequencing (WES); 4 of these were also analysed using

single-cell sequencing.

Results: Despite low genomic divergence between paired primary and metastatic cancers in the bulk data, single-
cell WES (scWES) data revealed rare mutations and defined two separate cell populations, indicative of the diverse
evolutionary trajectories between primary and metastatic tumour cells. We further identified 24 metastatic cell-
specific-mutated genes and validated their functions in cell migration capacity.

Conclusions: In summary, sCWES revealed rare mutations that failed to be detected by bulk WES. These rare
mutations better define the distinct genomic profiles of primary and metastatic tumour cell clones.
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Background

Colorectal cancer (CRC) is the third most commonly di-
agnosed cancer [1] and the fourth leading cause of
cancer-related death worldwide [2]. Distant metastasis
occurs in approximately 20% of newly diagnosed CRC
patients [3] and is one of the major causes of patient
death and a poor prognosis. However, the mechanism of

* Correspondence: liguibo@genomics.cn; zhou767@163.com;
danxie@scu.edu.cn

TJie Tang, Kailing Tu, Keying Lu and Jiaxun Zhang contributed equally to this
work.

2BGI-Shenzhen, Shenzhen 518083, China

3Department of Gastrointestinal Surgery, West China Hospital, Sichuan
University, No. 37, Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan,
China

"National Frontier Center of Disease Molecular Network, State Key Laboratory
of Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3,
Renmin South Road, Chengdu 610041, Sichuan, China

K BMC

the metastatic cascade in metastatic CRCs (mCRCs) re-
mains unclear. Previous studies have revealed a number
of driver genes, including APC, TP53, NRAS, and KRAS
[4], that exhibit high mutational frequency in matched
primary and metastatic tumours [5] and are acquired
early in CRC carcinogenesis [6]. Studies based on tar-
geted gene panels have also shown high mutational
consistency between primary and metastatic CRC tu-
mours [5, 7]. However, recent studies have shown high
intra-tumoural heterogeneity (ITH) and subclone mixing
in CRCs [6, 8], suggesting more complex dynamics in
the cell population during metastasis. Therefore, previ-
ous strategies that focussed on sequencing bulk tissues
present with considerable limitations.

Single-cell sequencing methods have emerged as
powerful tools to resolve ITH and trace clonal lineages
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during tumourigenesis. With advances in experimental
protocols and computational methods, it has become
possible to identify genome-wide single-cell somatic mu-
tation profiles [9, 10] and estimate the evolution of cell
lineages [11-14]. Leung et al. reported a ‘late-dissemin-
ation model” through single-cell lineage tracing from pri-
mary and liver mCRC samples based on a panel of 1000
cancer genes [10]. However, the limited number of genes
in panel sequencing methods may restrict the evolution-
ary model of CRC metastasis.

To gain better insights into the divergence between
primary and mCRC lesions, we generated bulk and
single-cell whole-exome sequencing (scWES) data from
primary tumours, metastatic tumours, and matched nor-
mal tissues of 7 patients with synchronous liver-limited
mCRC. The comprehensive genomic analysis of mCRC
provided important resources that allowed us to identify
the subclones in each sample, and we uncovered a more
detailed evolution model of mCRC.

Methods

Patients and clinical information

Seven patients with liver-limited mCRC were staged ac-
cording to the American Joint Committee on Cancer
version 7, initially diagnosed with CRC and received sur-
gical treatment at West China Hospital of Sichuan Uni-
versity from October 27, 2015, to July 21, 2017.
Information, including patient age, sex, ethnicity, path-
ology, and tumour stage, was collected from 7 patients
(Table 1). Patient CRC5 received neoadjuvant chemo-
therapy before surgery, and all other patients did not re-
ceive any treatment before surgery. Primary and
metastatic tumours and matched distal normal colon tis-
sues were obtained during surgery. All samples were
evaluated by two pathologists to determine the patho-
logical diagnosis and tumour cellularity. Six of 7 patients
were classified as having microsatellite-stable (MSS)
CRC, and patient CRC5 was classified as having
microsatellite-instability (MSI) CRC through immuno-
histochemistry (IHC). This study was approved by the
Institutional Review Board of West China Hospital of Si-
chuan University, Chengdu, China (project identification

Table 1 Patient information covered in the article
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code: 2017.114), and all patients provided written in-
formed consent.

Tissue handling and tumour cell disaggregation

Resected tissues were transported in prechilled (4°C)
RPMI-1640 medium to a clean bench as soon as possible
and then rinsed with PBS several times. Clean tissues
were minced into tiny pieces (<1 mm?) using scalpels,
followed by transfer to 1 ml of a hypothermic protective
solution (90% FBS and 10% DMSO). After procedural
cooling in a —-80°C freezer, the samples were stored in a
-80°C freezer until use over the following several days.
Frozen tissues in hypothermic protective solution were
quickly thawed in a 37°C waterbath and subsequently
subjected to centrifugation at 500 g for 5 min to remove
superfluous hypothermic protective solution. Tissue
pieces were digested in mixed digestion media composed
of Hank’s solution, collagenase I (Gibco Cat. No. 17100-
017) and collagenase IV (Gibco Cat. No. 17104-019) for
45-60 min, followed by mixing and inverting once every
5 min to dissociate cells thoroughly. Cell strainers (40
pum) were used to filter the digested cells. For each sam-
ple, a negative selection strategy was used to enrich can-
cer cells by cell sorting. Unwanted cells, such as
leukocytes, vascular endothelial cells, and fibroblast cells,
labelled with CD45, CD31, and PDGFRa, respectively,
were filtered by flow cytometry. Finally, absolutely disso-
ciated single active cells were selected under a micro-
scope after flow cytometry sorting. These selected single
cells in separate 0.2-ml tubes were amplified for down-
stream sequencing.

Single-cell whole-genome amplification

All selected discrete single cells were subjected to
whole-genome amplification using the REPLI-g Single
Cell Kit (Qiagen, Cat. No. 150345). In brief, single cells
were transferred to a 0.2-ml PCR tube with 4 pl of PBS;
then, 3 pl of a denaturation solution mixture (1 M DTT,
buffer DLB first mixed at a 1:11 ratio) was added and
centrifuged briefly. Subsequently, the mixture was incu-
bated for 10 min at 65°C was needed, and 3 pl of stop
solution was added to end the reaction. A master mix

Patient Sex Age Grade T N Stage Primary tumour location Site of metastasis
CRC1 Male 70 G3 2 2 I\ Left colon Liver
CRC2 Male 64 G2 3 2 v Rectum Liver
CRC3 Male 62 G2 2 0 v Left colon Liver
CRC4 Female 69 G2 4 0 v Right colon Liver
CRC5 Female 54 G2 3 0 vV Left colon Liver
CRC6 Male 54 G2 4 0 v Right colon Liver
CRC7 Male 59 G2 3 0 % Left colon Liver
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containing 9 ul of H,O, 29 ul of REPLI-g sc Reaction
Buffer, and 2 pl of REPLI-g sc DNA polymerase was
then added to the above 10 pl of denatured DNA. Fi-
nally, the mixture was incubated at 30°C for 8 h and
then at 65°C for 3 min. Amplified DNA was used for
downstream sequencing.

Bulk DNA extraction

Frozen specimens of proximal normal tissues, primary
tumours, and liver metastases were separately subjected
to bulk DNA extraction by using the DNeasy Blood &
Tissue Kit according to the manufacturer’s manual (Qia-
gen). The extracted DNA was quantified on a Qubit
Fluorometer and characterised by agarose gel electro-
phoresis. Qualified DNA was subsequently used for
WES library construction.

Whole-exome library construction and sequencing

Both tissues and single cells from varying locations in
different patients were subjected to WES library con-
struction. High-quality genomic DNA (single-cell whole-
genome amplification products or bulk DNA from tis-
sues) was used to construct the WES libraries.

In brief, the former procedures, including DNA frag-
mentation, size selection, end repair, A-tailing, adaptor
ligation, and PCR amplification, were performed in a
similar manner to that for WGS library construction.
Subsequently, exome capture of the PCR results was
performed with the BGI Exome Enrichment Kit v4.0 for
enrichment. Pre-hybridization was performed at 95°C
for 5 min, with a 65°C hold, followed by hybridization at
65°C for 24 h. After elution, 44 ul of the products was
obtained. The post-PCR mixture included 100 pl of 2X
KAPA HiFi HotStart Ready Mix, 6 pl of Ad-153-F (20
puM), and 6 pl of Ad-153-R (20 uM). Next, 44 pl of NF
water was prepared and added to the above products.
This 200-ul mixture was separated into two parts and
amplified under the following programme: 95°C for 3
min; 13 cycles of 98°C for 20 s, 60°C for 15 s, and 72°C
for 15 s; 72°C for 10 min; and 4°C overnight. After PCR,
the products were purified using AMPure XP magnetic
beads. The qualified WES libraries were then sequenced
on a HiSeq-4000 system (Illumina) at an average cover-
age depth of ~300X for tissues and ~50X for single cells.

WES data alignment and processing

All FASTQ files from the bulk and scWES data were
subjected to adapter ligation and low-quality sequence
trimming by using SOAPnuke version 1.5.6 [15] under
the following parameters: -1 5 -q 0.5 -n 0.1 -Q 2 -G
--seqType 0. We mapped clean reads to human refer-
ence build hgl9 with Burrows-Wheeler Aligner (bwa)
software version 0.7.12-r1039 [16]. Aligned reads were
sorted and indexed using SAMtools version 1.2.1 [17],
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and the Genome Analysis Toolkit (GATK, version
4.0.10.1) [18] was used to realign reads to the genome
and eliminate PCR duplicates.

Single-nucleotide variant (SNV) and insertion/deletion
(indel) calling in bulk samples

The final aligned bulk WES datasets were processed
using the Genome Analysis Toolkit (GATK4) Haploty-
peCaller [18] and Strelka2 [19] for germline genotyping.
Specifically, for data processing, indel realignment, vari-
ant recalibration, and mapping quality of 40 were
performed.

Both MutTect version 2 [20] and Strelka2 were used
to call somatic mutations under default parameters, and
only shared mutations detected by both software pro-
grammes were retained for subsequent analysis. To
avoid potential low-quality SNV calling, mutations with
low coverage (<10x) and those falling outside the exon
regions were excluded. Variant annotation was per-
formed using ANNOVAR [21] and CRAVAT 4.0 [22].

Tumour purity

Tumour purity was calculated with PurBayes [23] using
total reads and mutant allele supporting read counts for
each somatic mutation from the tumour tissue WES
data.

SNV calling in scWES samples

For each patient, single-cell samples with target region
coverage less than 75% or an average depth of 10x were
excluded from the analysis. The GVCF model of GATK
HaplotypeCaller was used to call SNVs in single-cell
data. To generate highly confident SNV profiles from
single-cell data, mutations were filtered and removed
from the analysis by consensus filtering according to
previous studies [10, 24]. In detail, SNV sites with low
coverage (<10x) were labelled as missing values (NA).
For SNV sites with 10-20x coverage, at least 10 variant
reads were required. For SNV sites with 20-100x cover-
age, at least 30% of reads were required. For SNV sites
with over 100x coverage, at least 20% of reads were re-
quired. Then, SNVs that occurred in fewer than 3 cells
were located in clustered regions (more than one muta-
tion detected within a 10-bp window) or were contained
in germline and SNVs were removed from further ana-
lysis. For each SNV, the mutation frequency was defined
as the percentage of cells that harboured the specific
SNV.

Phylogenetic tree

Mutational trees were calculated from single-cell muta-
tion data using SiCloneFit [14] and redrawn using the
ggtree R package [25]. The binary genotype matrix of
single cells and point mutations with missing values was
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used for tree inference. SiCloneFit was run using a false-
positive rate of 0.002 and an allelic dropout rate of 0.2.

Cell lines

Five colon adenocarcinoma cell lines were purchased
from American Type Culture Collection (ATCC; Manas-
sas, VA, USA). All cell lines were cultured according to
ATCC-recommended methods. Cells were maintained
in a humidified incubator with 5% CO, at 37°C. All cell
lines were confirmed negative for mycoplasma by rou-
tine testing.

RNA interference and cell migration assays

To silence genes related to metastasis, colon cancer cell
lines were transfected with specific small interfering
RNAs (siRNAs) or a scrambled sequence as a negative
control (Transsheep Bio-Tech, Shanghai, China). All
transfections were performed using the Lipofectamine
RNAimax transfection reagent Lipofectamine 2000
(Thermo Fisher Scientific) according to the protocol of
the manufacturer.

Migration assays were performed on CIM 16-well
plates and with an xCELLigence RTCA-DP device (Acea
Biosciences, Inc.). The complete medium was adjusted
to the desired concentrations (final volume of 165 pl)
and loaded into the lower chamber of the plate. Follow-
ing cell attachment in the upper chamber, the upper
wells were filled with 30 pl of opti-MEM medium, and
the plate was incubated at 37°C for at least 1 h to pre-
equilibrate and then used for a baseline measurement.
Next, 100 pl of cell suspension was added to the upper
wells. Cells were allowed to settle and adhere for 6 h in
the incubator before they were transfected with 100 nM
siRNA or scrambled RNA oligonucleotides. Six hours
after transfection, the medium in the top wells was re-
placed with 100 pl of complete medium, and cell migra-
tion was continuously monitored over 24-48 h by
measuring changes in electrical impedance. Cells were
subjected to real-time monitoring every 15 min. Record-
ing of the cell index (CI) as well as subsequent data ana-
lysis was performed using RTCA Software 1.2 (ACEA
Biosciences Inc.).

Results

Patients with liver-limited mCRC

We collected tumour and para-tumour specimens from
7 patients with mCRC who had resectable liver metasta-
sis. Six of the 7 patients were classified as having
microsatellite-stable (MSS) CRC and had received no
prior therapy, while one patient, CRC5, was classified as
having microsatellite-instability (MSI) CRC and had re-
ceived one course of neoadjuvant chemotherapy before
surgery. Five of the 7 patients had no lymph node metas-
tasis, indicating that the blood vessels were the preferred
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dissemination (Table 1). Tissues from the primary
tumour, matched liver metastasis, para-tumour colon,
and distal normal colon were processed to obtain a cell
suspension (Methods, Fig. 1A). A total of 24 bulk WES
and 321 scWES samples were sequenced on the Illumina
platform, with high-quality data (Methods, Additional
file 1: Table S1), which included single-cell and bulk
sample pairs from four patients: CRC4, CRC5, CRC6,
and CRC7 (Fig. 1B). However, the sample clustering ana-
lysis suggested that the bulk primary sample from CRC5
(CRC5_T) might have been mislabelled (Additional file
2: Fig S1A). Thus, we focussed on the 6 other patients
from the bulk WES analysis.

Patients showed various genetic alterations between
matched bulk primary and liver metastatic lesions
From the bulk sequencing data, we identified 2636 som-
atic SNVs (median, 153; range, 99 to 1335) and 456
somatic indels (median, 7; range, 0 to 395) in the 7 pa-
tients (Fig. 2A). A high concordance of the somatic mu-
tation spectrum between primary and mCRC samples
has been reported in previous studies [5, 10]. However,
in our data, we observed a high concordance in the SNV
spectrum (over 50% of common somatic SNVs) between
the primary and metastatic tumours in only three pa-
tients: CRC4, CRC6, and CRC7. The other 3 patients
(CRC2, CRC1, and CRC3) showed low concordance in
the SNV spectrum between the two tumour lesions (Fig.
2B, Additional file 2: Fig S1B). Concerning common
SNVs, bulk WES data reflected their different mutation
allele frequencies between the primary and metastatic
samples (Fig. 2C). Some important nonsynonymous
SNVs, such as those in TP53, APC, and SMAD4, showed
an increased variant allele frequency (VAF) in the meta-
static samples (Fig. 2C). Our data also showed that the
VAF of some primary or metastatic-specific SNVs in
both tumour lesions was too low to be detected by SNV
callers, such as SYTL1 and NPIPB15 in CRC1 (Fig. 2C).
Unexpectedly, patient CRC3, who presented with high
somatic mutational divergence between the primary and
metastatic lesions, was an exception. Almost no somatic
mutations were detected in common between the pri-
mary and metastatic tumour lesions (Fig. 2B, C, Add-
itional file 1: Table S2), although two tumour samples
showed significant similarities in germline mutations
(Additional file 2: Fig S1A). Because no other primary
CRC disease was detected in CRC3, we speculate that
the metastatic lesion of this patient may have been
seeded by another recessive primary tumour that failed
to be detected or had regressed. Alternatively, the incon-
sistency between the primary and metastatic tumour
samples of other patients may be affected by tumour
purity. Although we enriched cancer cells using flow cy-
tometry sorting (Methods), we still found that some
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samples had low tumour purity based on the VAFs of
somatic SNVs (Additional file 1: Table S3, Methods). To
address these issues, we used scWES data in subsequent
analyses.

Single-cell WES data revealed rare mutations associated
with tumour progression

While bulk sequencing data were advantageous in de-
tecting somatic mutations in the dominant cell popula-
tion, we usually failed to identify somatic mutations in
rare cell populations. Therefore, we applied single-cell
exome sequencing to 321 cells collected from the pri-
mary, liver metastasis, and proximal normal tissues of
four patients (Methods, Additional file 1: Table SI;
CRC4, CRC5, CRC6, and CRC7). The single-cell exome
libraries were sequenced at high depth (median target
depth, 81.72X; range, 34.67 to 137.87) and coverage (me-
dian target coverage, 90.6%; range, 39.14 to 98.38%)

(Additional file 1: Table S1). To ensure the quality of the
single-cell analysis, single-cell data with low coverage or
depth were filtered (Methods), leaving 298 single cells
for subsequent analysis. Notably, although we failed to
analyse the bulk sample of CRC5 because it may have
been mislabelled, all single-cell data of CRC5 showed
high concordance between the normal and metastatic
samples (Additional file 2: Fig S2A).

As expected, the cells from normal tissues presented
with substantially fewer mutations (range, 1 to 14) than
the cells from tumour tissues (median somatic mutation
counts: CRC4, 84; CRC5, 284; CRC6, 2; and CRC7, 55,
Fig. 3A). Consistent with previous research, the cells
from MSI tumours (as in CRC5) had a significantly
higher number of SNVs than those from MSS tumours
(as in CRC4 and CRC7) (Fig. 3B, p<2.2e-16, Wilcoxon
test). However, the total number of mutations in single
cells between primary and metastatic tumours from
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Fig. 2 Overview of the bulk mutation profile comparison between matched primary and met
SNVs (top) and indels (bottom) in the primary (blue) and metastatic (red) tumour tissues of 7
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CRC4, CRC7, and CRC5 did not show significant vari-
ation (Fig. 3A). Interestingly, we found very low somatic
mutation burden in several single cells from the primary
tumour lesion of CRC6 (Fig. 3A). These low-mutation
burden cells may have originated from normal cells in
the tumour tissue because they grouped with single cells

from distal normal tissue after clustering (Additional file
2: Fig S2B). We next focussed on the single-cell muta-
tion spectrum of CRC4 and CRC7 (with MSS tumours),
as they had both single-cell and matched bulk data. In
general, the single-cell data showed high concordance
with the bulk data. Over 42.42% of somatic SNVs in
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CRC4 and CRC7 were shared between matched bulk
and single-cell data (Fig. 3B, common SNVs, 42.42 to
49.29%, Additional file 1: Table S4). In single cells (Fig.
3B, single-cell-specific SNVs, 6.43 to 14.22%, Additional
file 1: Table S4), we also identified 21.05% to 72.73% of
single-cell-specific SNVs with a low frequency of reads
with a matched mutation in the corresponding bulk data
(Additional file 2: Fig S2B, low-MAF SNVs, Additional
file 1: Table S4). Low-MAF SNVs were not identified in
the bulk somatic SNV analysis because the somatic mu-
tation calling algorithm could not confidently distinguish
them from sequencing noise due to their low mutational
frequency. As expected, both the common SNVs and the
low-frequency SNVs showed high correlations between
the mutational allele frequency in bulk data and the
SNV percentage in the single-cell data (Methods, Fig.
3C). Interestingly, a number of low-MAF SNVs may be
associated with cancer progression (Additional file 1:
Table S4). For example, we identified low-frequency mu-
tations in NBPF10, which was previously reported to be
the most significant gene involved in breast cancer [26],
in both the primary and metastatic tumours of CRC4
(Fig. 3C).

Single-cell data revealed the cell population structures of
primary and metastatic tumours

We then performed multidimensional scaling (MDS)
analysis on the scWES data of patients CRC4, CRCS5,
and CRCY7. Single cells from all patients were classified
into 3 cell populations (Fig. 4A, Additional file 2: Fig
S3A, B), corresponding to normal cells, primary tumour
cells, and metastatic tumour cells. It is worth noting that
we generated 90 high-quality single-cell datasets from
the normal, primary, and metastatic tumours of CRCS5,
which was the patient with a hyper-mutation suffering
from MSI disease. Both primary and metastatic cancer
cells presented with a high mutation burden. According
to the somatic SNVs, the tumour cells of CRC5 were
classified into 4 major cell populations (Fig. 4B). Based
on the appearance pattern of SNVs in these cancer cells,
we identified 35 SNV clusters associated with 992 SNVs
and 489 nonsynonymous gene mutations in total (Fig.
4B, Additional file 1: Table S5). Over 46.2% of SNVs
(SNV cluster 2) commonly appeared in almost all
tumour cells. DNA mismatch repair process-related
genes, such as MLHI1, and well-known CRC driver
genes, such as PIK3CA [27], were included in the com-
mon gene set (Fig. 4B), suggesting their important func-
tions in the generation of these cancer cells. Except for
these common SNVs, the remaining SNVs (appearing in
3.95-39.47% of cancer cells) showed variant mutation
patterns in different cancer cell clones. For example, two
primary cancer cell clusters, ‘C1’ and ‘C2’, showed differ-
ent mutation spectra. Primary cancer cells classified in
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C1 shared SNV clusters 18 and 15, including nonsynon-
ymous mutations in transcription activator genes such
as ELK4, KAT6B, and MAML3. These gene mutations
were extremely rare in another primary CRC cluster,
‘C2", which mainly harboured mutations in other SNV
clusters, including nonsynonymous mutations in cell
junction-related genes, such as DDX58, SDKI, and
SORBS2, with significant functional impact scores based
on SIFT (<0.05) [28] and POLYPHEN (p>0.85) [29]
(Additional file 1: Table S5). Similar to primary tumour
cells, the single tumour cells of metastases were also di-
vided into two types: mCRC clusters C3 and C4 (Fig.
4B). Metastatic C3 cluster-specific mutations included
nonsynonymous mutations in membrane proteins, such
as PCDHBI1 and AMY2B. Metastatic C4 cluster-specific
mutations included those in SAMD7 and EPC2, with
significant functional impacts. In addition to the main
cell clones, we identified some small subclones located
within primary CRC clones C1 and C4 with a small
number of somatic mutations (Additional file 1: Table
S5). Because patient CRC5 received one cycle of neoad-
juvant chemotherapy, it was difficult to infer whether
these tumour subclones were derived from the choice of
chemotherapy drugs or from the tumourigenesis
process. With the scWES data, it became easier to anno-
tate tumour clones in each sample. These subclone-
specific SNVs may be ignored or defined simply as som-
atic SNVs with low MAFs.

Phylogenetic analysis of cell subclones showed the
pattern of metastatic progression

We then studied the evolutionary process of mCRC at
the single-cell level in patients CRC4 and CRC7. We
constructed  phylogenetic trees using  SiClonefit
(Methods) [14]. In patient CRC4, tumour cells were di-
vided into 9 clones: 2 from the metastatic samples and 7
from the primary samples (Fig. 5A). Similar to the re-
sults we found in the subclone analysis of CRC5, all
tumour cell clones shared a large number of SNVs,
including those in some well-known CRC driver
genes, such as TP53 and MAPK6 (Fig. 5A). These
mutations may reflect the common origin of primary
and metastatic tumour cells. To further explore the
divergence of different tumour lineages, we identified
cell clone-specific mutated genes for each tumour cell
clone (Fig. 5A, Additional file 3: Table S6). These
genes may be associated with the phenotype of pri-
mary or metastatic tumour clones. For example, we
identified a high frequency of nonsynonymous muta-
tions in ATXN3 in all primary tumour clones (clones
2, 3, 4, 6, 7, 9, and 10). This gene promotes breast
cancer cell metastasis by deubiquitinating KLF4 [30],
and its mutation in primary tumour cells may sup-
press metastasis. On the other hand, we identified
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nonsynonymous mutations that appeared specifically and KCNH5, may have specific functions in meta-
in the metastatic tumour cell clones (clones 5 and 8, static tumour cells.

Fig. 5A, Additional file 3: Table S6). These genes, Interestingly, in patient CRC7, all normal cells to-
such as RFC1, XPO4, THEGL, SLC19A3, TBC1D4, gether with some primary and metastatic cells were
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classified into clones 1 and 4. Because these cells har-
boured only a small number of random SNVs (Fig. 5B),
they may belong to normal cells, and the tumour source
of cells in these clones may be derived from the normal
infiltrating tissue in both primary and metastatic tu-
mours. Similar to the mutation spectrum we observed in
CRC4, a large percentage of SNVs were shared in all
tumour cell clones, including SNVs on many well-
known CRC driver genes, such as TP53 and APC (Fig.
5B). And we also observed two cell populations with dif-
ferent mutation profiles. In contrast to CRC4, in CRC7,
the metastatic tumour cells appear in both cell popula-
tions. The first cell population is mainly composed of
primary tumour cells, which formed 5 cell clones (clones

0, 2, 3, 5, 6). These clones harboured nonsynonymous
mutations in genes that may be associated with tumour
cell proliferation and invasion, such as RASGRF1 [31]
and RABGAPIL [32] (Fig. 5B, Additional file 3: Table
S6). The other cell population is composed of metastasis
tumour cells only, which formed 3 tumour cell clones
(clones 8, 9, and 10). These clones harboured nonsynon-
ymous mutations in genes that may be associated with
cell migration potential (Fig. 5B, Additional file 3: Table
S6), such as PLEKHA7, which encodes an adherens
junction protein [33] that plays an important role in
modulating the dynamics of the tight junction barrier
through the E-cadherin protein complex and
microtubule-dependent mechanisms [34]. Gao et al. also
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reported that MUC16 has a higher frequency of nonsy-
nonymous mutations in circulating tumour cells than in
primary CRC cells [35].

Metastatic tumour clone specific mutated genes exhibit
high cell migration capacity

Notably, we observed large cell populations formed by meta-
static tumour cells only in both newly diagnosed patients
(CRC4 and CRC?). In total, we identified 24 genes with a
high rate of nonsynonymous mutations in these metastatic
tumour cell populations compared with the primary tumour
cell populations (Fig. 6A, B, CRC4 10 genes, CRC7 14 genes,
chi-squared test FDR<0.05, |log,-fold|>1), and 8 of these
genes showed a high risk based on their functional impact
scores (SIFT <0.05, POLYPHEN >0.85, Additional file 3:
Table S6). As expected, most metastatic tumour-specific-
mutated genes were rare in the primary tumour tissues of
the Cancer Genome Atlas (TCGA) CRC cohort [4] (Add-
itional file 2: Fig S4A). To further explore the functions of
these genes, we performed a validation experiment in CRC
cell lines with naturally occurring mutations according to the
COSMIC database. There are 48 CRC cell lines in the COS-
MIC database that contain at least one mutation in a
metastatic-specific mutated gene (Methods, Additional file 2:
Fig S4B). We designed siRNAs to knock down the expres-
sion of genes with significant functional impact score (SIFT
< 0.05 and POLYPHEN score > 0.85) or appear frequently
only in the metastatic tumour clones of two patients. Then,
we evaluated cell migration capacity via real-time cell analysis
(RTCA) (Methods). In this way, if the gene of interest is re-
lated to cell migration, the migration ability of the cell should
be changed after the target gene is knocked down. As ex-
pected, after knocking down DNAH3, the cell migration abil-
ity was reduced compared with the control samples in four
COSMIC cell lines, including cell lines harbouring a naturally
non-synonymous mutation (HCT-15 and HCT-116) and cell
lines with a naturally synonymous mutation (Fig. 6C). Fur-
thermore, knocking down CMYAS5, PLEKHA7, and
MYO18A also resulted in a decrease in cell migration cap-
acity in more than one cell line (Additional file 2: Fig S5); we
found similar cell phenotypes for TBC1D4 and SLCI19A3,
but in only one cell line (Additional file 2: Fig S5). According
to our results, some highly frequently mutated genes may
play an important role in the cell migration process, while
other genes, such as MUC16, may influence the function of
metastatic cancer cells in the other way, as its knockdown
did not cause a significant change in cell migration (Add-
itional file 2: Fig S5).

Discussion

In this article, we generated WES data for mCRC tu-
mours and normal tissues at both the bulk and single-
cell levels. Our study provided insights into liver-limited
mCRC; there are two critical points to note. First, the
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genomic profile could be more comprehensively de-
tected through scWES than through bulk sequencing.
With single-cell exome sequencing, we could identify
rare mutations that were undetectable in the bulk data.
Based on the single-cell data, we identified different sub-
clones in both primary and metastatic tumour cells of
the patient with MSI CRC, CRC5. Although single cells
in each subclone shared a very large number of common
mutations, a small number of subclonal-specific SNVs
with low mutation frequencies in the whole cancer cell
population could distinguish different cell clones. We
also identified distinct cell populations in primary and
metastatic tumour samples from CRC4 and CRC7.
Again, the rare mutations that failed to be detected in
bulk data because of their low allele frequencies acted as
a remarkable source that defined the differences between
the subclones in the primary and metastatic tumour cells
in both patients.

We generated phylogenetic trees for the two patients
with MSS CRC, CRC4, and CRC7. In both patients,
tumour cells were divided into two major cell popula-
tions, which are mainly composed of tumour cells from
primary and metastasis lesions, respectively. Most SNVs
were shared among all of the tumour cells. Many of the
common SNVs were found in genes associated with
CRC progression, such as TP53 and APC. In addition to
the common mutations, we observed some mutated
genes appear specifically in primary tumour cell-
enriched cell populations, such as those in AXIN3 and
RASGRF1, were associated with tumour proliferation
and invasion in previous studies. Interestingly, we also
identified 24 nonsynonymous SNVs specific to meta-
static cells. Metastatic cell-specific SNVs might have
special functions in metastatic tumours. The knockdown
of these genes in CRC cell lines, including DNAHS3,
TBC1D4, CMYA5, MYO18A, PLEKHA7, and SLC19A3,
decreased cell migration capacity.

High genomic concordance between primary and
mCRC tissues has been reported by previous research
through gene panel sequencing [5, 10]. In this study, we
observed common mutations between primary and
mCRC tissues in most patients, except for CRC3, in
whom the mutational profile was distinct between the
primary and metastatic samples. This case may be ex-
plained by the ‘spatial heterogeneity of the primary
tumour’, in which the common mutation was located in
the primary tumour and was not sampled for
sequencing.

This study was limited by the small number of patients
(n = 7) and cells (n =321) and, therefore, was subject to
potential sampling biases. We focussed on SNVs and
small indels because their functionality can be predicted
with multiple methods, and their heterogeneity has im-
mediate clinical consequences for therapy selection. We
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Conclusions

In summary, we generated bulk and scWES data from
matched normal, primary, and metastatic tumour tissues
of liver-limited mCRC patients. We identified rare

withheld further analysis of copy number alterations at
the single-cell level because of the random priming bias
generated by MDA methods, as they are difficult to cor-
rect systematically [36].
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mutations that were overlooked in bulk data using
single-cell technology. These rare mutations are import-
ant in identifying different subclones in mCRC tissues.
Only by sequencing a large number of genes at the
single-cell level (i.e., by scWES) could these subclone-
specific gene mutations be detected. In addition, we vali-
dated the functions of some metastatic subclone-
specific-mutated genes in cell migration. However, the
current study could be improved with a larger sample
size and cell numbers.
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