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Abstract

Background: In spite of many years of research, our understanding of the molecular bases of Alzheimer’s disease
(AD) is still incomplete, and the medical treatments available mainly target the disease symptoms and are hardly
effective. Indeed, the modulation of a single target (e.g., β-secretase) has proven to be insufficient to significantly
alter the physiopathology of the disease, and we should therefore move from gene-centric to systemic therapeutic
strategies, where AD-related changes are modulated globally.

Methods: Here we present the complete characterization of three murine models of AD at different stages of the
disease (i.e., onset, progression and advanced). We combined the cognitive assessment of these mice with
histological analyses and full transcriptional and protein quantification profiling of the hippocampus. Additionally,
we derived specific Aβ-related molecular AD signatures and looked for drugs able to globally revert them.

Results: We found that AD models show accelerated aging and that factors specifically associated with Aβ
pathology are involved. We discovered a few proteins whose abundance increases with AD progression, while the
corresponding transcript levels remain stable, and showed that at least two of them (i.e., lfit3 and Syt11) co-localize
with Aβ plaques in the brain. Finally, we found two NSAIDs (dexketoprofen and etodolac) and two anti-
hypertensives (penbutolol and bendroflumethiazide) that overturn the cognitive impairment in AD mice while
reducing Aβ plaques in the hippocampus and partially restoring the physiological levels of AD signature genes to
wild-type levels.
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Conclusions: The characterization of three AD mouse models at different disease stages provides an
unprecedented view of AD pathology and how this differs from physiological aging. Moreover, our computational
strategy to chemically revert AD signatures has shown that NSAID and anti-hypertensive drugs may still have an
opportunity as anti-AD agents, challenging previous reports.
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Background
Alzheimer’s disease (AD) is the most common form of
dementia. The accumulation of amyloid-beta (Aβ) pep-
tide in the form of plaques and the formation of intra-
cellular Tau neurofibrillary tangles in the brain are the
main pathological hallmarks of this neurodegenerative
disease [1]. Mutations in genes that are part of the Aβ
processing pathway (e.g., APP, PSEN1, and PSEN2) cause
infrequent cases of hereditary AD [2]. This observation
thus reinforces the hypothesis that Aβ accumulation
plays a necessary role in AD onset. At a later stage, Aβ
aggregation induces a series of molecular changes that
lead to Tau hyper-phosphorylation and intracellular fib-
rillation, which in turn causes neuronal death and neu-
rodegeneration [3].
Transgenic mice that develop extensive Aβ plaque ag-

gregation have provided important insights into the
pathobiology of AD and there is consensus that they are
representative models of the asymptomatic stage of AD
[4], although it is accepted that they are incomplete
models of the disease. Mice expressing mutant forms of
human APP recapitulate many aspects of cerebral Aβ ac-
cumulation seen in the human disease, including associ-
ated neuroinflammation, synaptic dysfunction, and
vascular pathology [5]. Characterization of the molecular
events taking place during Aβ aggregate accumulation in
the brain is key to identifying signaling pathways that
might be altered during AD and to unveiling potential
biomarkers and therapeutic opportunities. Previous ef-
forts to characterize murine models of AD at the tran-
scriptional level have highlighted the role of
inflammatory pathways in AD pathogenesis [6, 7]. Re-
cently, key studies have addressed the role of neuroin-
flammation using single-cell sequencing strategies to
identify specific microglial sub-populations associated
with AD [8, 9]. Given the accumulation of proteins in
the plaques, quantitative proteomics might also be a fun-
damental approach to understand protein-related
changes in AD pathogenesis. Unfortunately, to date,
these studies have been limited to single time points and
decoupled from gene-expression data [10–14]. However,
it is clear that combining transcriptional and proteomics
data provides key insights into aging processes in rats
[15].
Despite many advances in the characterization of dif-

ferent physiological motifs involved in AD onset and

progression, our understanding of the events that trigger
the disease is limited. Consequently, the only medical
treatments currently available for AD are purely symp-
tomatic and hardly effective [16], and most develop-
ments aiming at modifying the biology of the disease
have failed [17]. The recurrent failures have triggered a
debate about the deficiencies in diagnostic strategies, the
choice of therapeutic targets, and the design of the clin-
ical trials [18]. On the one hand, it seems clear that
modulation of a single target, even with a highly efficient
drug, is unlikely to yield the desired outcome, and there
is a growing perception that we should increase the level
of complexity of our proposed therapies from a gene-
centric to a systems view [17]. Another aspect that has
become apparent is that we have been studying AD and
attempting to develop therapeutics against it at advanced
stages of the disease when it is virtually impossible to re-
verse the brain damage already caused [19, 20]. We
therefore need to focus on much earlier phases, ideally
even before the first clinical symptoms appear or when
cognitive impairment is still mild [18].
Unbiased genome-wide data-driven approaches may

reveal new therapeutic opportunities, providing a global
perspective beyond individual targets. For example,
gene-expression data arising from a pathological pheno-
type can be seen as a disease-specific signature and used
to find compounds able to restore a healthy state [21].
Indeed, this approach has been successfully used to
identify drugs targeting obesity [22], osteoporosis [23],
and aging [24] at preclinical stages. Recently, we ex-
tended the idea of using small molecules to mimic or re-
vert biological signatures beyond transcriptional profiles
and demonstrated the capacity of our approach to iden-
tify compounds able to revert specific expression alter-
ations of AD genes (e.g., BIN1, GRIND2D) in APPV717F

and PSEN1M146V SH-SY5Y cells [25]. However, despite
its potential, this approach to revert global signatures
has been validated only in cell cultures and thus its
in vivo relevance is still uncertain.
Here we present a comprehensive characterization of

three murine AD models at phenotypic and molecular
levels, including transcriptomic and proteomic profiles.
We explore the molecular changes associated with AD
onset, progression, and advanced stages, and correlate
them with cognitive status and Aβ accumulation in
order to study the dynamics of the disease and compare

Pauls et al. Genome Medicine          (2021) 13:168 Page 2 of 23



the changes observed with healthy aging processes.
Moreover, to pinpoint potential instances of protein ag-
gregation, we examine those cases in which transcript
levels and protein abundance are decoupled. Finally, we
use the derived molecular profiles to identify approved
drugs able to revert the specific AD signatures and we
study their effects at phenotypic and molecular levels
in vitro and in vivo (summarized in Fig. 1a).

Methods
Cells
SH-SY5Y cells (obtained from Jens Lüders’ lab, IRB Bar-
celona) were cultured in DMEM/F12 (1:1) medium sup-
plemented with 10% FBS, glutamine, and antibiotics
(Thermo Fisher Scientific). 7PA2 cells overexpressing
mutated APP were obtained from Dennis Selkoe’s lab
(Harvard Medical School, Boston). 7PA2 cells were
maintained in DMEM medium supplemented with 10%
FBS, glutamine, and antibiotics. CRISPR/Cas9-edited
PSEN1M146V/M146V cells have been described before [25].
For RNA interference, we used pLKO.1-puro Mission
shRNA vectors (Sigma-Aldrich). Target sequences are
provided in Additional File 1: Table S7. Viral vectors
were generated in 293T cells to infect SH-SY5Y cells
that were selected with 2 μg/ml puromycin (Sigma-Al-
drich), following the manufacturer’s recommendations.
For the assays on SH-SY5Y cells, 5 × 104 cells were ini-
tially differentiated for 3 days in neurobasal medium
supplemented with B27, glutamax (Thermo Fisher Sci-
entific), 10 μM retinoic acid (Sigma-Aldrich), and 50 ng/
mL brain-derived neurotrophic factor (BDNF; Pepro-
tech). The medium was then renewed in the presence of
the indicated concentration of drugs. All drugs were dis-
solved in DMSO, and controls were treated with DMSO
in parallel. After 3 days, supernatants were stored at −
80 °C for Aβ measurement, and cells were incubated for
1 h in the presence of 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) and then lysed in
DMSO to check viability. For the assays on 7PA2 cells,
1.4 × 105 cells were seeded in 24-well plates. The day
after, medium was replaced with the indicated concen-
tration of compounds in DMEM without FBS supple-
ment. Cells were incubated for further 24 h before
medium was collected and stored at − 80 °C until Aβ
quantification.

Aβ quantification
Aβ peptides were quantified with the Human β Amyloid
(1-40) ELISA Kit Wako, Human β Amyloid (1-42)
ELISA Kit Wako, and the Human β Amyloid (1-42)
ELISA Kit, High-Sensitive (FUJIFILM Wako Pure Chem-
ical Corporation), following the manufacturer’s
instructions.

Proximity ligation assay
Duolink proximity ligation assay (PLA) reagents were
purchased from Sigma-Aldrich. Differentiated SH-SY5Y
cells grown in slides were fixed and permeabilized with
0.3% Triton, 2% BSA in TBS-T (all from Sigma-Aldrich).
The protocol recommended by the manufacturer was
followed. Primary antibodies anti-Aβ (1-16) (Clone
6E10, 1:100, #803001, BioLegend) and anti-(human)-
SYT11 (1:100, ab204589, Abcam) were used. Specificity
of the anti-SYT11 antibody was assessed by western blot
(Additional File 1: Fig. S8c). Images were acquired using
a Zeiss LSM 780 Upright confocal, multiphoton FLIM
system. For quantification, the positive dots were mea-
sured using Fiji ImageJ software. The number of cells
was manually evaluated and results were expressed as
the number of dots per cell.

Drugs/compounds
BACE inhibitor AZD3839, etodolac, fenoprofen, and
pargyline were supplied by Selleckchem. Dexketoprofen
and penbutolol were from Medchemexpress. Bendroflu-
methiazide was obtained from Sigma-Aldrich.

Animals and drug treatments
The homozygous 3xTg-AD mice and the corresponding
wild-type mice (C57BL/6 × 129/Sv mixed background)
were obtained from The Jackson Laboratory. Heterozy-
gous Appwt/NL-F and Appwt/NL-G-F mice were obtained
from the RIKEN Brain Science Institute and used to
start colonies of homozygous AppNL-F and AppNL-G-F

mice and their respective wild-type counterparts. Mice
were maintained at the animal facility of the Barcelona
Institute of Science and Technology, Barcelona, Spain.
Only female animals were used in the study, as several
lines of evidence suggest that pathology is stronger in
3xTg-AD female mice (https://www.jax.org/strain/004
807). To allow comparison between models, only female
mice were used in all the models.
Mice were maintained under standard housing condi-

tions on a 12 h light/dark cycle, with water and food ad
libitum. Genotyping was done on genomic DNA from
the tail or ear, using standard PCR amplification and gel
electrophoresis. The DNA primers (Sigma-Aldrich) used
for genotyping are listed in Additional File 1: Table S7.
During the treatment period, 5-mo. AppNL-G-F mice re-

ceived a daily intraperitoneal injection of the indicated
drugs for 4 weeks. Etodolac (50 mg/kg), dexketoprofen
(15 mg/kg), fenoprofen (50 mg/kg), and bendroflu-
methiazide (20 mg/kg) were dissolved in a mixture of
5%Tween-80 (Sigma-Aldrich), 25% propylene glycol
(Sigma-Aldrich), 25% Poly(ethylene glycol) (Sigma-Al-
drich), and 45% phosphate-buffered saline (PBS). Penbu-
tolol (20 mg/kg) and pargyline (20 mg/kg) were dissolved
in PBS (veh.2). The drug doses were chosen according
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Fig. 1 Behavioral and histological characterization of mouse AD models. a Experimental flowchart. b Top, novel object recognition (NOR) test
performed on Appwt (light blue; 3 mo. n = 9; 9 mo. n = 9; 18 mo. n = 11) and AppNL-F (dark blue; 3 mo. n = 11; 9 mo. n = 15; 18 mo. n = 11)
mice. Bottom, NOR test performed on Appwt (light blue; 3 mo n = 6; 6 mo n = 10; 9 mo n = 13) and AppNL-G-F (dark blue; 3 mo n = 12; 6 mo n =
10; 9 mo n = 13) mice. Mean ± SD of the % of time exploring the novel object is shown. One-sample t-test versus a hypothetical value of 50 (* p
value < 0.05, ** p value < 0.005, *** p value < 0.0005) and unpaired Student’s t test (# p value < 0.05; ### p value < 0.0005) analysis are shown.
Red dots indicate the results of the animals selected for histological and molecular profiling analyses. c Quantification and representative
microphotographs of the CA1 region of the hippocampus of brain sections from 3-, 9-, and 18-mo. AppNL-F mice or from 3-, 6-, and 9-mo.
AppNL-G-F mice stained with an anti-Aβ antibody (green) and Hoechst dye (blue) (n = 4 for each condition). Scale bars represent 50 μm.
Photographs for both models were taken under identical conditions and the percentage of area with Aβ-positive staining was quantified as
indicated in the “Methods” section. Mean ± SD of AppNL-F (light blue) and AppNL-G-F (dark blue) mice are shown. NA: not available. d Y-maze test
performed on mixed non-transgenic C57BL6/129SvJ mice (light blue; 3 mo. n = 16; 8 mo. n = 17; 15 mo. n = 14) and 3xTg-AD transgenic mice
(dark blue; 3 mo. n = 11; 8 mo. n = 12; 15 mo. n = 13). Mean ± SD of the % of alternation are shown. Unpaired Student’s t test was performed
(## p value < 0.05). Red dots indicate the results of the animals selected for histological and molecular profiling analyses. e As in a, sections from
3-, 8-, and 15-mo. 3xTg-AD mice were stained with an anti-Aβ antibody (green) and Hoechst dye (blue) (n = 4 for each condition). Scale bars
represent 50 μm. Mean ± SD are shown. f Representative staining of Aβ (green), phosphorylated Tau (red), and nuclei (blue) in a brain section of
a 15-mo. 3xTg-AD mouse (n = 4). White arrows indicate neurons with aggregated phosphorylated Tau. Asterisks indicate non-specific staining.
Scale bar represents 50 μm
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to previous publications on these compounds or similar
compounds [26–31]. Groups of Appwt and AppNL-G-F

mice were also treated with the vehicles.

Cognitive tests
The Novel Object Recognition (NOR) test was per-
formed following the protocol described in [32]. On the
first day, the habituation session, mice were placed in
the empty box and allowed to explore for 5 min.
Twenty-four hours after habituation, mice were placed
in the same box in the presence of two identical objects
(familiarization session) and allowed to explore for 10
min. The pair of objects was randomized and counterba-
lanced between mice. Twenty-four hours later (test ses-
sion), mice were placed in the same box, but a novel
object substituted one of the known objects, and the
mice were allowed to explore for 5 or 10 min. The pos-
ition of the novel object (left or right) was randomized
and counterbalanced between mice. The objects and the
box were cleaned with odorless soap between trials. All
sessions were recorded. Object exploration was defined
as the mouse sniffing or touching the object with the
nose while looking at it. Climbing onto the object or
chewing was not considered exploration. An experi-
menter blinded to the mouse condition tested assessed
the exploratory activity manually. The amount of time
exploring the novel object was expressed as a percentage
of the total exploration time. Ability to discriminate the
novel object was evaluated by performing a one-sample
t-test against a hypothetical value of 50%.
The Y-maze test was conducted as described in [33].

The Y-maze apparatus consisted of three identical arms
set at angles of 120°. Each animal was placed at the cen-
ter of the maze and was allowed to explore it freely for
5 min. The maze was cleaned with odorless soap be-
tween trials. All sessions were recorded. The four paws
of the mouse had to enter an arm to count as an arm
entry. Alternation behavior was defined as consecutive
entries into each of the three arms without repetition
(ABC, CBA, etc.). We expressed the results as the per-
centage of spontaneous alternations, which was calcu-
lated by dividing the number of alternations by the total
number of possible alternations (total arm entries − 2) ×
100.
The following number of mice of the three AD models

and the corresponding wild-type animals were used for
behavioral characterization: C57BL6/129SvJ mice (3 mo.
n = 16; 8 mo. n = 17; 15 mo. n = 14) and 3xTg-AD
transgenic mice (3 mo. n = 11; 8 mo. n = 12; 15 mo. n =
13); Appwt (3 mo. n = 9; 9 mo. n = 9; 18 mo. n = 11) and
AppNL-F (3 mo. n = 11; 9 mo. n = 15; 18 mo. n = 11)
mice; Appwt (3 mo n = 6; 6 mo n = 10; 9 mo n = 13),
and AppNL-G-F (3 mo n = 12; 6 mo n = 10; 9 mo n = 13).

In the drug treatments, n = 4–7 AppNL-G-F mice and the
corresponding wild-type were used.
Additional analyses of the videos were performed with

dedicated tracking software (SMART video tracking,
Panlab). The results obtained were in concordance with
our observations. However, the inability of the software
to discriminate between mouse head and tail in all the
situations led us to rely on manual analysis for a more
accurate result.
For further analyses, we manually selected the mice

taking into account the results in order to maximize the
chances to see differences with the controls. For the
mice undergoing drug treatments, we selected the clos-
est animals to the average response as observed in Fig.
5b, although the sample quality (incomplete perfusion of
the sample, for example) was also a factor to take into
account.

Mouse brain tissue preparation
Mice were anesthetized with an intraperitoneal (i.p.)
mixture of ketamine/xylazine (100/10 mg/kg) and per-
fused intracardially with 0.9% saline solution. Brains
were removed and cut in two hemispheres. The left
hemisphere was snap-frozen in cold isopentane for 1
min, saved in dry ice, and stored at − 80 °C for immuno-
fluorescence assays. The right hemisphere was dissected
into the hippocampus and cortex. Only hippocampal tis-
sue was used for analysis. Briefly, hippocampi from the
same animal was minced and split in two halves, one for
RNA extraction and the other for protein extraction,
and snap-frozen in dry ice, and stored at − 80 °C (n = 4
per genotype and age). From the AppNL-G-F mice and the
corresponding wild-type mice used for drug treatments,
only RNA extraction from hippocampi was performed
(n = 4 mice per condition).

Immunofluorescence staining
Twenty-micrometer coronal sections of the entire brain
were cut using a Leica CM1900 cryostat. Sections were
mounted on SuperFrost Ultra Plus slides (TermoFisher)
and fixed in cold acetone for 10 min at room
temperature (RT). After drying at RT, the mounted
slides were saved at − 20 °C until further processing.
Brain sections were washed in PBS for 5 min and incu-
bated with blocking buffer (1% BSA, 5% goat serum, and
0.2% Triton in PBS) for 20 min at RT in a humidifier
chamber. After the slides had been washed in PBS, the
sections were incubated overnight at 4 °C with the pri-
mary antibodies diluted in PBS with 1% BSA and 0.2%
Triton. The following primary antibodies were used:
anti-Aβ (clone D54D2, 1:100, #8243, Cell Signaling),
anti-human PHF-tau (clone AT-8, 1:100, #90206, Inno-
genetics), anti-Aβ (1-16) (Clone 6E10, 1:100, #803001,
BioLegend), anti-Syt11 (1:100, #270003, Synaptic
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Systems), or anti-Ifit3/P60 (1:50, ab76818, Abcam). After
PBS washes, sections were incubated for 1 h at RT with
the corresponding goat anti-rabbit Alexa Fluor 488 (1:
250, Thermo Fisher), donkey anti-rabbit Alexa Fluor 647
(1:250, Thermo Fisher), or goat anti-mouse Alexa Fluor
568 (1:250, Thermo Fisher) diluted in PBS with 1% BSA
and 0.2% Triton. Sections were counterstained with
2 μg/ml Hoechst for 5 min at RT, washed in PBS, and fi-
nally coverslipped using Fluoromount-G (EMS). Control
sections (without primary antibody) were used to differ-
entiate specific from non-specific staining. Images were
acquired using a Nikon Eclipse E800M microscope
equipped with an Olympus DP72 camera or a Zeiss
LSM 780 Upright confocal, multiphoton FLIM system.
For quantification, two coronal sections from n = 4 mice
per group were analyzed, and the immunoreactive areas
were measured using Fiji ImageJ software.

RNA extraction, mRNA library preparation, and
sequencing
Total RNA was extracted from mouse hippocampal samples
using a RNeasy Mini kit (Qiagen), following the manufac-
turer’s protocol, and sent for whole transcriptome sequen-
cing at the Centro Nacional de Análisis Genómico (CNAG-
CRG). Total RNA was assayed for quantity and quality using
the Qubit RNA BR Assay kit (Thermo Fisher Scientific) and
RNA 6000 Nano Assay on a Bioanalyzer 2100 (Agilent).
The RNA-Seq libraries were prepared from total RNA

using KAPA Stranded mRNA-Seq Kit Illumina Platforms
(Roche-Kapa Biosystems) with minor modifications.
Briefly, after poly-A-based mRNA enrichment with oligo-
dT magnetic beads and 500 ng of total RNA as the input
material, the mRNA was fragmented (resulting RNA frag-
ment size was 80–250 nt, with the major peak at 130 nt).
First-strand cDNA was synthesized using random prim-
ing. Second-strand cDNA was synthesized in the presence
of dUTP instead of dTTP, to achieve strand specificity.
The blunt-ended double-stranded cDNA was 3′ adeny-
lated and Illumina indexed adapters (Illumina) were li-
gated. The ligation product was enriched with 15 PCR
cycles and the final library was validated on an Agilent
2100 Bioanalyzer with the DNA 7500 assay.
Each library was paired-end sequenced using TruSeq

SBS Kit v4-HS, with a read length of 2 × 76bp. On aver-
age, we generated 53 million paired-end reads for each of
the 48 samples of AppNL-G-F, AppNL-G-F, Appwt mice, and
80 million reads for each of the 24 samples of 3xTg-AD
and C57BL/6 × 129/Sv mice in a fraction of a sequencing
lane on HiSeq2000 (Illumina, Inc.) following the manufac-
turer’s protocol. Image analysis, base calling, and quality
scoring of the run were processed using the manufac-
turer’s software Real-Time Analysis (RTA 1.18.64) and
followed by generation of FASTQ sequence files by
CASAVA.

RNA-Seq data analysis
STAR software (Dobin et al., 2013) was used to align the
raw RNAseq reads to the mouse reference genome
(GRCm38/mm10 and GENCODE vM15 genome anno-
tations [34]). MAPT, PSEN1, and humanized APP and/
or mutated sequences were included according to the
genotype of the mouse model analyzed. We used casper
[35] to quantify the expression of all transcript isoforms,
which were aggregated at gene level and quantile-
normalized. To reduce biases caused by low expression,
we considered only genes with at least 0.2 RPKMs in
90% of the samples. This filter was applied separately to
the 48 samples of APP knock-in mice and their controls
(GSE168430), to the 24 samples of 3xTg mice and their
controls (GSE168428), and to the 32 samples of drug- or
vehicle-treated mice (GSE168429). We used the Limma
package [36] to perform differential expression analysis
based on empirical Bayes moderated t-statistics, includ-
ing experimental batch as covariate. We performed all
pairwise comparisons along the genotype- and time-axes
to describe AD progression and physiological aging. To
derive the AD signatures, we specified an additional
model to analyze the APP knock-in dataset, in which we
considered age as a continuous variable together with its
interaction with genotype. These models were used to
estimate the linear association of gene expression with
age for each genotype. Multiple comparisons correction
was performed using the Benjamini-Hochberg algorithm.
For visualization purposes, quantile-normalized expres-
sion values were corrected by batch using the remove-
BatchEffect function from Limma. Genes were ranked
by multiplying their fold change sign by the − log10 (p
value) for pre-ranked GSEA [37]. We used the prcomp
function in R to perform a principal components ana-
lysis (PCA) of the gene expression matrices before and
after batch adjustment. We used the pvca Bioconductor
package to perform a principal variance component ana-
lysis (PVCA) aimed at identifying the most prominent
sources of variability n each dataset.

Mass spectrometry sample preparation
Frozen mouse hippocampi were homogenized in 0.2 ml
of pre-cooled homogenization buffer (0.3 M sucrose, 10
mM MOPSNaOH, and 1mM EDTA) supplemented
with complete protease inhibitor cocktail (Roche). In
total, 50 μl of lysis buffer (8% SDS and 0.2M DTT in
0.2M Tris-HCl pH 7.6) was added to 50 μl homogenate
and the mixture was incubated for 3 min at 95 °C. Once
cooled, the total protein extracts were stored at − 20 °C
until quantification. Protein samples were quantified
using the Pierce 660 Protein Assay Kit, reduced with tris
(2-carboxyethyl) phosphine (TCEP), alkylated, and
digested with trypsin. After digestion, all samples were
isotopically labeled with the corresponding iTRAQ-8plex
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reagent according to the experimental design and fol-
lowing the manufacturer’s instructions (Thermo Fisher
Scientific). iTRAQ labels were randomized, minimizing
the co-occurrence of labels within a biological condition.
Samples were desalted using C18 and strong cationic ex-
change tips. Each batch was fractionated off-line by basic
reversed-phase chromatography. Sample fractionation
was performed with a Zorbax 300 Extend-C18 column
(2.1 × 150 mm, 3.5 mm) in an AKTA micro ETTAN gra-
dient LC system (Amersham Biosciences).
Peptides were separated in a total of 84 collected frac-

tions and grouped into 24 fraction groups per batch and
dried via vacuum centrifugation. Fraction groups (~
5 μg) were reconstituted in 48 μl of 3% acetonitrile
(ACN) and 1% formic acid (FA) aqueous solution for
nano LC-MS/MS analysis.

Mass spectrometry analysis
Mass spectrometry data were collected on an Orbitrap Fu-
sion Lumos™ Tribrid mass spectrometer (Thermo Scien-
tific) equipped with a Thermo Scientific Dionex Ultimate
3000 ultrahigh pressure chromatographic system (Thermo
Fisher Scientific) and an Advion TriVersa NanoMate
(Advion Inc. Biosciences) as the nanospray interface. Pep-
tide mixtures (6 μl) were loaded into a μ-Precolumn
(300 μm i.d × 5mm, C18 PepMap100, 5 μm, 100 Å, C18
Trap column; Thermo Fisher Scientific) at a flow rate of
15 μL/min and separated using a C18 analytical column
(Acclaim PepMap TM RSLC: 75 μm × 75 cm, C18 2m,
nanoViper) with a flow rate of 200 nl/min and a 210min
run, comprising three consecutive steps with linear gradi-
ents from 1 to 35% B in 180min, from 35 to 50% B in 5
min, and from 50 to 85% B in 2min, followed by isocratic
elution at 85% B in 5min and stabilization to initial condi-
tions (A = 0.1% FA in water, B = 0.1% FA in ACN). The
mass spectrometer was operated in a data-dependent ac-
quisition (DDA) mode. In each data collection cycle, one
full MS scan (400–1600m/z) was acquired in the Orbitrap
(120 k resolution setting and automatic gain control
(AGC) of 2 × 105). The following MS2-MS3 analysis was
conducted with a top-speed approach. The most abundant
ions were selected for fragmentation by collision-induced
dissociation (CID). CID was performed with collision en-
ergy of 35%, 0.25 activation Q, an AGC target of 1 × 104,
an isolation window of 0.7 Da, a maximum ion accumula-
tion time of 50ms, and turbo ion scan rate. Previously an-
alyzed precursor ions were dynamically excluded for 30 s.
For the MS3 analyses for iTRAQ quantification, multiple
fragment ions from the previous MS2 scan (SPS ions)
were co-selected and fragmented by HCD using a 65%
collision energy and a precursor isolation window of 2 Da.
Reporter ions were detected using the Orbitrap with a
resolution of 30 k, an AGC of 1 × 105 and a maximum ion
accumulation time of 120ms. Spray voltage in the

NanoMate source was set to 1.60 kV. RF Lens were tuned
to 30%. The minimal signal required to trigger MS to MS/
MS switch was set to 5000. The mass spectrometer was
working in positive polarity mode and single charge state
precursors were rejected for fragmentation.
Database searches were performed with Proteome Dis-

coverer v2.1.0.81 software (Thermo Fisher Scientific)
using Sequest HT search engine and SwissProt Mouse_ca-
nonical_2016_11 including contaminants and MAPT,
PSEN1, and APP humanized and/or mutated sequences
according to each of the mouse models analyzed. Search
was run against targeted and decoy database to determine
the false discovery rate (FDR). Search parameters included
trypsin, allowing for two missed cleavage sites, carbamido-
methyl in cysteine and iTRAQ 8-plex peptide N-terminus
as static modification and iTRAQ 8plex in K/Y, methio-
nine oxidation and acetylation in protein N-terminus as
dynamic modifications. Peptide mass tolerance was set to
10 ppm and the MS/MS tolerance to 0.6 Da. Peptides with
an FDR < 1% were considered as positive identifications
with a high confidence level. The mass spectrometry pro-
teomics data have been deposited to the ProteomeX-
change Consortium via the PRIDE [38] partner repository
with the dataset identifier PXD024538.
All computations were performed in the R statistics

framework. The iTRAQ reporter intensities were filtered
by contamination flag set to “False,” average reporter sig-
nal to noise ratio larger than 3, intensity value larger
than 1000, and the Peptide Quan Usage flag set to
“Use.” For peptides without a unique assigned protein,
the protein with maximum total intensity was defined as
master protein. Filtered intensities were normalized
within each processing batch by a size factor computed
as in [39]. To do this, intensities were summarized via
the median for each protein and sample. A reference
sample was computed as the mean value of all samples
for each protein. Size factors were computed as the me-
dian ratio of each protein against the reference sample.
Once the size factors were obtained, all PMSs were di-
vided by the corresponding factor and the log2 value
(after adding 1) was computed.
For each protein, a linear model was fitted with or

without random effects depending on the number and
combination of peptides measured in each age*genotype
group. When more than one peptide was measured in
more than one group and throughout several fractions,
peptide, fraction (within peptide), and sample were in-
cluded in the model as random effects, with age × geno-
type and batch as fixed effects. When only one peptide
or one fraction was found, random effects were dropped
accordingly. When no repeated measures existed for a
given protein, a linear model was fitted with the same
fixed effects. Mixed effects models were fitted using the
lmer function from the lme4 package [40], while linear
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models were fitted with the lm function of the stats
package. To perform the desired contrasts, the glht func-
tion from the multcomp package was used without p
value adjustment [41]. Multiple comparisons correction
was performed a posteriori for each contrast using the
p.adjust function with the Benjamini-Hochberg method.
For visualization purposes, normalized intensities were

corrected by peptide, sample, and batch using the model
coefficients.

Statistics
Data were analyzed with the Prism statistical package.
Unless otherwise indicated in the figure legend, P values
were calculated using an unpaired, one-tailed, Student t
test. To control possible batch effects in transcriptomics
and proteomics, we used a blocked/randomized design.
Biological replicates were confounded with the process-
ing batches (4 batches in each mouse model). iTRAQ la-
bels were randomized to minimize the co-occurrence of
labels within a biological condition.

Virtual signature-based screening of compounds
We devised a strategy to select the most promising small
molecules to modify the biology of AD within the uni-
verse of the ~ 1M bioactive compounds cataloged in the
CC. The CC aggregates 25 data types for the molecules,
organized in five levels (A-E) and sublevels (1-5). On the
one hand, we defined three “pharmacological queries” to
identify compounds that were (1) chemically similar (p
value < 0.001 in the A1-5 bioactivity spaces of the CC)
to drugs that have entered clinical trials against AD or
that shared a significant number of targets with them
(B4 signatures). More specifically, we considered drugs
thought to target amyloid fibrils and plaques, tau, chol-
esterol, inflammation, neurotransmitters, and cholinergic
receptors [42]. We also (2) selected small molecules that
showed similar transcriptional (D1) or cell sensitivity
(D2) to these drugs. In addition, (3) we looked for small
molecules known to bind putative AD targets, as defined
by OpenTargets [43]. Furthermore, we designed two
“biological queries” to capture connectivities between
the discovered molecular changes in AD models and the
bioactivity data available in the CC. In particular, we
looked for (4) compounds that trigger transcriptional re-
sponses able to neutralize the changes observed in the
AD mice in the CC D1 space. Finally, (5) we used the
LINCS L1000 resource [44] to find perturbation experi-
ments, mainly shRNA, that could also revert our AD
transcriptional signatures, used them as putative AD tar-
gets and looked for compounds in the CC able to inhibit
their activity (B spaces). Molecules selected in at least
one of the 5 queries were kept; these candidates based
on virtual screening can be found in Additional File 2:
Table S5, together with detailed scores for each of the

queries. Scores are represented as empirical − log10 p
values obtained over the CC universe of > 800 k
molecules.
Additional calculations were done to facilitate the se-

lection of compounds for experimental screening. In
particular, we trained machine-learning classifiers based
on the BBBP and BACE datasets available from Molecu-
leNet [45], and Aβ40, Aβ42, and Aβ40/Aβ42 ratio from
a previous compound screening performed in iPSC cells
[46] (binarization cut-offs: Aβ 0.8, ratio 0.9). As a
machine-learning method, we used an ensemble-based
approach (extra-trees classifiers) and, as features, we
used CC signatures. Ensemble-based methods applied to
CC signatures have shown exceptional performance
across a wide range of benchmarking tasks [47]. In a
stratified 5-fold cross-validation, we obtained ROC AUC
> 0.918, 0.874, 0.774, 0.690, and 0.874 for BBP, BACE,
Aβ40, Aβ42, and Aβ ratio models, respectively.

Results
Characterization of cognitive impairment in three AD
mouse models
To gain an understanding of the dynamics of AD
progression, we characterized different AD mouse
models at the phenotypic and molecular levels, at
three representative stages of the disease (onset, pro-
gression and advanced). As primary models, we used
two App mutated knock-in mouse versions widely
used in AD preclinical research and developed to
avoid potential artifacts of transgene overexpression
[48]. AppNL-F and AppNL-G-F mice contain a human-
ized Aβ sequence with the Swedish “NL” (KM670/
671NL) and Beyreuther/Iberian “F” (I716F) mutations.
In addition, the AppNL-G-F model contains the Arctic
mutation “G” (E693G) in the Aβ sequence [49]. To
complement these models, we also characterized the
classical 3xTg-AD mice, which overexpress mutated
human APP (APPKM670/671NL) and Tau (MAPTP301L)
proteins in a Psen1M146V/M146V background [50].
To determine the disease stage in each AD model, we

first evaluated the cognitive status of AppNL-F and
AppNL-G-F mice of different ages using the novel object
recognition (NOR) test, which is substantiated in the in-
nate preference of mice for novelty (i.e., if the mouse
recognizes a familiar object, it will spend most of its
time exploring the novel object) [32]. We used 3-, 9-,
and 18-month-old (mo.) AppNL-F mice and 3-, 6-, and 9-
mo. AppNL-G-F mice as representatives of different dis-
ease stages [49]. We found that 18-mo. AppNL-F mice
spent a similar time exploring the novel object and fa-
miliar object (47.3 ± 11.1%), while their Appwt counter-
parts spent 66.6 ± 7.5% of time exploring the novel
object. Younger AppNL-F mice (i.e., 3 and 9 mo.) did not
show significant differences in object exploration time,

Pauls et al. Genome Medicine          (2021) 13:168 Page 8 of 23



thereby confirming that this AD model has memory de-
fects only at advanced ages (Fig. 1b). In the case of the
AppNL-G-F mice, 6- and 9-mo. animals were not able to
discriminate the novel object (53.2 ± 9.9% and 53.7 ±
9.9%, respectively), thereby indicating earlier cognitive
impairment than the AppNL-F mice (Fig. 1b). As ex-
pected, Appwt animals spent more time on the novel ob-
ject at all the ages tested (63.6 ± 4.7%, 60.0 ± 12.2% and
61.4 ± 10.7% in 3-, 6-, and 9-mo. mice, respectively).
We next selected samples of representative female mice

(shown in red in Fig. 1b; see “Methods” for details) and
quantified the Aβ aggregates in the hippocampal region of
the two knock-in models (Fig. 1c). We observed that 18-
mo. AppNL-F mice presented small plaques with an Aβ-
positive area of 9.6 ± 4.3%, whereas 3- and 9-mo. AppNL-F

mice did not show significant Aβ area staining. On the
other hand, all 3-, 6-, and 9-mo. AppNL-G-F mice showed a
progressive increase in Aβ staining (2.8 ± 2.6%, 10.7 ±
1.9%, and 24.3 ± 5.3%, respectively). As expected, the cor-
responding Appwt mice did not show Aβ staining (data
not shown). Overall, these results were in line with the ini-
tial characterization of these mouse models [49], and com-
parison of hippocampus Aβ plaque accumulation with the
results of the NOR test (Fig. 1b) pointed to the presence
of a threshold of Aβ pathology from which these mice
start to develop cognitive impairment (18months for
AppNL-F mice and 6months for AppNL-G-F mice).
To complement the two knock-in models, we also

characterized cognitive status (Fig. 1d) and Aβ plaque
formation (Fig. 1e) in 3-, 8-, and 15-mo. 3xTg-AD
mice in a Y-maze spontaneous alternation experiment,
which also evaluates hippocampal defects by measur-
ing the willingness of mice to explore new environ-
ments. As expected, 8- and 15-mo. 3xTg-AD mice
showed a progressively reduced percentage of alterna-
tion in the Y-maze (53.7 ± 13.7% and 50.9 ± 11.6%,
respectively) compared with wild-type controls, which
showed around 60% of alternation at all ages (Fig.
1d), suggesting cognitive impairment of the former.
Although intracellular staining of Aβ was detected at
8 months, dense Aβ plaques were only clearly visible
at 15 months of age (Fig. 1e). Note that the 3xTg-AD
model has the unique characteristic of the concomi-
tant manifestation of both plaques and tangles at late
ages due to the overexpression of a mutated form of
Tau (MAPTP301L). Indeed, we confirmed the presence
of intracellular hyper-phosphorylated Tau in neurons
of 15-mo. mice (Fig. 1f).

Characterization of the gene expression and protein
abundance associated with AD
To identify molecular changes associated with these
pathological features, we performed a comprehensive
parallel quantification of gene expression levels and

protein abundance in the dissected hippocampi of the
AppNL-F, AppNL-G-F, and 3xTg-AD mice previously ana-
lyzed. More specifically, the right hippocampus of each
mouse was minced and split in two parts, one for RNA
sequencing, and the other part for proteomics studies.
We used the hippocampi of 3-, 9-, and 18-mo. AppNL-F

mice; 3-, 6-, and 9-mo. AppNL-G-F mice; and 3-, 8-, and
15-mo. 3xTg-AD mice (n = 4 per genotype and time
point), together with the corresponding Appwt and
C57BL6/129SvJ controls. Overall, we measured the ex-
pression levels of 21,950 protein-coding genes. We also
performed proteomic studies, based on the 8-plex
iTRAQ labeling method [51] and LC-MS/MS, and we
were able to quantify a total of 8732 unique protein
groups, corresponding to 6837, 7938, and 7473 proteins
from AppNL-F, AppNL-G-F, and 3xTg-AD mice, respect-
ively. A detailed description of the protocols is provided
in the “Methods” section, and the complete datasets are
available in GEO [52] GSE168431 and PRIDE [38]
PXD024538.
To identify the changes in transcriptional and protein

abundance associated with each disease stage, we first
performed a differential abundance analysis comparing
the AD genotypes at indicated ages with their wild-type
counterparts, applying several false discovery rate (FDR)
thresholds (Fig. 2a). We also compared different ages
within the same genotype to evaluate changes associated
with disease progression for all three models (Fig. 2b).
Consistent with the phenotypes described in Fig. 1, 6-
and 9-mo. AppNL-G-F mice showed the largest effects on
gene/protein down- and, specially, upregulation (150
genes and 51 proteins for 6-mo. mice, and 295 genes
and 64 proteins for 9-mo. mice; n = 4, FDR < 5% and
|logFC| > 0.5 and 0.25). Interestingly, few changes were
found in the 6- vs. 9-mo. comparison (Fig. 2b; 18 genes
and 0 proteins; n = 4, FDR < 5% and |logFC| > 0.5 and
0.25). This observation thus indicates that most of the
changes take place between 3 and 6months of age, when
Aβ plaques became more evident and cognitive impair-
ment appeared (Fig. 1b, c). On the other hand, despite
the small Aβ plaques observed in 3-mo. AppNL-G-F mice
(Fig. 1c), no detectable changes in transcript or protein
abundance were observed with respect to their wild-type
counterparts (Fig. 2a). Similarly, 18-mo. AppNL-F mice
did not show differences with their age-matched wild-
type controls (Fig. 2a). However, an age comparison (Fig.
2b; 3- vs. 18-mo. AppNL-F) identified age-dependent dif-
ferentially expressed genes/proteins (107 and 72, re-
spectively; n = 4, FDR < 5% and |logFC| > 0.5 and 0.25).
When analyzing the genotype-dependent changes in the
3xTg-AD model, we already observed significant gene
expression and protein abundance differences at 3
months of age (Fig. 2a), even before the first signs of Aβ
pathology appeared in the hippocampus of these mice
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(Fig. 1e). Moreover, in contrast to the AppNL-G-F model,
the number of differentially expressed genes/proteins
did not increase with disease progression (Fig. 2a). In-
deed, a principal variance component analysis (PVCA)

showed that the genotype accounted for 48% and 19% of
the variance observed in the transcriptomics and proteo-
mics data for this model, compared to the 17% and 13%
observed in AppNL-G-F and the 8% and 4% observed in

Fig. 2 Differential molecular profiling and AD progression. a Number of differentially expressed genes (left panel) and proteins (right panel)
comparing the three mouse AD models (AppNL-F, AppNL-G-F, and 3xTg-AD) at different ages with their corresponding, age-matched, wild-type
controls. Red and blue represent up- and downregulated genes/proteins, respectively. Bars indicate the number of significant genes/proteins that
changed between conditions at different thresholds of false discovery rate (FDR) and with an absolute log fold change (LogFC) larger than 0.5 for
mRNA and 0.25 for proteins. Numbers depicted in the figure correspond to FDR < 5%. N = 4 for all the conditions. b Number of differentially
expressed genes (left panel) and proteins (right panel) comparing each genotype at the different ages. N = 4 for all the conditions. c Overlap
between differentially expressed genes (left panel; absolute LogFC> 0.5, FDR < 5%) or proteins (right panel; absolute LogFC> 0.25, FDR < 5%)
comparing AD mouse models and disease stages
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AppNL-F models (Additional File 1: Fig. S1b). We attri-
bute this effect to the wild-type controls used with the
3xTg-AD model, since one of the drawbacks of the
3xTg-AD model is that it has to be kept in a mixed
background, as backcrossing may affect the initially re-
ported phenotype [53]. Therefore, similar mixed back-
ground mice (as recommended by The Jackson
Laboratory) were used as controls. This effect does not
influence the comparisons across ages in the 3xTg-AD
model, where we observed, as expected, an increase in
dysregulated genes/proteins as AD advanced (Fig. 2b).
Interestingly, we observed a significant degree of over-

lap between the upregulated genes and proteins in the
three different models, thereby suggesting that, despite
the notable differences between models, there are com-
mon molecular patterns across them (Fig. 2c). For in-
stance, the strongest overlap across models occurred
between AppNL-G-F (3- vs. 9-mo.) and 3xTg-AD (3- vs.
15-mo.) mice, which shared 102 upregulated genes (odds
ratio (OR) 247.53, Fisher’s exact test p value 7.58 ×
10−164) and 10 proteins (OR 62.47, p value 6.45 × 10−14).
On the other hand, AppNL-F (3- vs. 18-mo.) also shared a
significant number of upregulated genes and proteins
with both AppNL-G-F (3- vs. 9-mo.), with 61 genes and 10
proteins (OR 172.13 and 29.22; p value 1.37 × 10−94 and
3.96 × 10−11) and 3xTg-AD (3- vs. 18-mo.), with 53
genes and 11 proteins (OR 316.27 and 53.82; p value
1.12 × 10−95 and 1.99 × 10−14). As for the downregulated
genes and proteins, the changes were much less evident
and specific for each model. Indeed, only 17 genes and
10 proteins were significantly downregulated in
AppNL-G-F mice (3- vs. 9-mo.), and the only significant
overlap between downregulated genes and proteins cor-
responded to the AppNL-F (3- vs. 18-mo.) and Appwt (3-
vs. 18-mo.) mice, which involved 7 proteins (OR 2250.89
and p value 4.68 × 10−18).
Additionally, analysis of the Appwt mice corresponding

to the knock-in models allowed us to study the relation-
ship between healthy aging and AD progression at the
molecular level. Comparison of “old” (18-mo.) with
“young” (3-mo.) wild-type mice revealed the upregula-
tion of 31 genes and 62 proteins and the downregulation
of 4 genes and 10 proteins (Fig. 2b; Additional File 2:
Table S1; FDR < 5% and |logFC| > 0.5 and 0.25). At the
transcriptional level, we detected the upregulation of
known microglial markers such as Cst7, Clec7a or Lyz2
(Additional File 1: Fig. S2a), thereby suggesting an in-
crease in the inflammatory component in the aged
hippocampus. This finding is in line with the recent
characterization of gene expression in aged microglia at
single-cell level [8, 54, 55], and also with the general ac-
cepted role of inflammation as one of the hallmarks of
aging [56]. Of note, a significant number of these genes
were also upregulated in other comparisons involving

younger AD mice (e.g., 17 of the 21 genes were already
upregulated in 3- vs. 6-mo. AppNL-G-F animals, OR
215.73 and p value 3.48 × 10−30; Fig. 2c and Additional
File 1: Fig. S2a), thereby suggesting that Aβ pathology
promotes features of molecular aging. However, the ob-
servation that 18-mo. Appwt mice did not present cogni-
tive deficits (Fig. 1c) confirms that AD is not merely
accelerated aging, and some differences must exist with
AppNL-F mice, which indeed showed cognitive impair-
ment at 18 months of age (Fig. 1c) despite the lack of
significantly altered genes or proteins (Fig. 2a). Direct
comparison between Appwt (3- vs. 18-mo.) and AppNL-F

(3- vs. 18-mo.) mice indicated a similar trend of up- and
downregulated genes (Additional File 1: Fig. S2b), al-
though we identified a set of genes with accentuated
changes in AppNL-F mice (Additional File 2: Table S2).
Among these, we found a number of chemokines (Ccl6,
Ccl3, or Ccl5) and also markers of microglial activation
(Cd14, Tyrobp). Interestingly, Ccl3 has been found to
impair mouse hippocampal synaptic transmission, plasti-
city and memory, and polymorphisms in this gene in-
crease the risk of AD in humans [57].
While there was a significant overlap between the

transcriptional changes in 3xTg-AD mice (3- vs. 15-mo.)
and those observed in the AppNL-G-F model (76 with 3-
vs. 6-mo. comparison; 102 with 3- vs. 9-mo. comparison;
Fig. 2c), we would expect that some of the changes ob-
served in the 3xTg-AD model could be attributed to the
presence of Tau fibrils (Fig. 1f). Therefore, we directly
compared changes in 3xTg-AD mice (3- vs. 15-mo.)
with AppNL-G-F mice (3- vs. 9- mo.) to identify 3xTg-
AD-specific changes (Additional File 1: Fig. S2c; Add-
itional File 2: Table S3). The 3xTg-AD model showed an
accentuated upregulation of Klk6 and Lcn2, which have
been evaluated as possible markers of AD and vascular
dementia, respectively [58, 59]. We also observed an in-
creased upregulation of Serpina3n protein, a serine pro-
tease inhibitor previously identified in human amyloid
deposits [60] and dysregulated in prion diseases [61],
which might indicate a role for Tau aggregates in the
metabolism of these diseases. Additionally, we found the
upregulation of Alox12b, which encodes a lipoxygenase
enzyme, only in the 3xTg-AD model. This observation is
consistent with recent findings in a Tau mouse model
[62] and the potential role that lipoxygenases might have
in Tau metabolism [63]. Of note, we consistently de-
tected the downregulation of extracellular matrix genes
(Col1a2, Col3a1) and proteins (Col6a1), as well as pro-
teins linked to adhesion or actin function, such as Flna,
Palld, or Fbln5 (Fig. 2c; Additional File 2: Table S3).
These observations thus support the hypothesis that
hyper-phosphorylated Tau compromises the integrity
and function of the blood–brain barrier in the 3xTg-AD
mouse model [64].
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Physiological aging and AD progression
To gain further insight into the common molecular
events that take place in response to pathogenic App
mutations, we integrated the two App knock-in mouse
models (AppNL-F and AppNL-G-F) and their respective
Appwt mice to analyze the entire experiment as a whole.
To this end, and in order to capture the temporal dy-
namics of the transcriptional changes associated with
physiological aging and AD progression, we considered
the age of the animals as a continuous variable. We mea-
sured the linear association of gene expression with age
for each genotype and identified a series of up- and
downregulated genes in AppNL-G-F mice with respect to
Appwt that we named AD signatures (AD-UP and AD-
DW, respectively; Additional File 2: Table S4). Finally,
we compared the relative expression of AD signature
genes across all the mouse models (Fig. 3a and Fig. 3c,
left panels) and observed that a number of up- and
downregulated genes followed similar trends in the com-
parisons of 3- vs. 15-mo. and 8- vs. 15-mo. 3xTg-AD
mice (Fig. 3a, c, left panels). Indeed, the AD signatures

derived from the App knock-in mice were significantly
enriched in the 3xTg-AD transcriptional changes (Add-
itional File 1: Fig. S3a), indicating that these signatures
are common to the three AD models.
To assess the potential translatability of our AD signa-

tures, we compared them to the transcriptional signa-
tures of human AD identified at the Mount Sinai/JJ
Peters VA Medical Center Brain Bank (MSBB-AD).
Their transcriptomic analysis identified five AD molecu-
lar subtypes that can be grouped in three major classes.
Classes A and B seem to be more vulnerable to synaptic
excitation, whereas class C seems to be more vulnerable
to synaptic depression [65]. The authors described an
upregulation of immune-related pathways in subtypes
B2, C2, and especially C1 compared to normal controls.
This finding is indeed recapitulated in our AD mouse
models and is reflected in the AD-UP signature (Add-
itional File 1: Fig. S4). On the other hand, the authors
describe a downregulation of glutaminergic, γ-
aminobutyric acid (GABA) related, glycinergic, and
dendritic synaptic pathways in class C subtypes. This

Fig. 3 Identification and functional annotation of AD signatures. a Heatmap showing the progression of the transcriptional changes in the top-
250 genes showing a positive genotype by age interaction (AD-UP signature). Each gene is represented by a row of colored tiles, the color
representing the RNA expression level for the indicated condition by column (red, upregulated; blue, downregulated). The bar plot on the right
indicates the top-20 significant pathways corresponding to the functional enrichment analysis of these top-250 genes, indicating the adjusted p
value on the X-axis. b Normalized gene expression at different time points expressed in months (mo.) for four examples of the AD-UP signature
(Cst7, Trem2, Tyrobp, and Cx3cr1) in the AppNL-G-F (red line), AppNL-F (orange line), and Appwt (green line) mice. N = 4. c As in a, progression of the
transcriptional changes in the top 250 genes showing a negative genotype by age interaction (AD-DW signature) and functional enrichment
analysis of these genes. d As in b, four examples (Gabrb2, Stxbp1, Reln, and Calb1) of the AD-DW signature are shown. N = 4
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phenotype is also recapitulated in our AD mouse models
and reflected in the AD-DW signature. Note that the
changes in the class A subtype (atypical) are opposite to
the molecular changes observed in typical and inter-
mediate subtypes (C and B) (Additional File 1: Fig. S5).
Overall, our AD signatures could be useful to discrimin-
ate between case and controls of the typical C (especially
C1) AD subtype, but the atypical and intermediate sub-
types (A and B) would be out of the applicability do-
main. Moreover, we found that the derived AD
signatures included 28 genes defined as AD risk factors
in human genetic studies [66] (Odds ratio (OR) 3.16 and
Fisher’s exact test p val 6.29 × 10−7), 23 of them in the
AD-UP signature and 5 in the AD-DW signature (Add-
itional File 1: Fig. S3b and Additional File 2: Table S4).
We performed a functional enrichment analysis of AD

signatures and found that the top-20 upregulated path-
ways corresponded exclusively to the activation of the
immune system, including phagocytosis or cytokine pro-
duction pathways (Fig. 3a, right panel). Indeed, many of
the top upregulated transcripts were directly associated
with microglia activation (Fig. 3b), including Tyrobp and
its putative receptor Trem2, whose variants are associ-
ated with an extraordinarily increased risk for AD in
humans [67]. Our AD signatures also included 46
disease-associated microglia genes (46 of 382; OR 23.33,
p val 4.39 × 10−37), which have been associated with
microglial changes linked to pathological insults [8], and
38 plaque-induced genes (38 of 56; OR 255.62, p val 2.4
× 10−64) previously identified in a spatial transcriptomics
characterization of the cellular response to amyloidosis
[68]. These findings are therefore consistent with those
of other studies using distinct approaches.
One of the most upregulated genes in this AD-UP signa-

ture was GFAP, which was also upregulated at the protein
level (Additional File 2: Table S4), and we confirmed by
immunofluorescence in the AppNL-G-F model that it acti-
vates astrocytes around Aβ aggregates (Additional File 1:
Fig. S6a). GFAP is an astrocyte marker, and it has been re-
ported to accumulate in the brains of AD patients [69].
Additionally, six genes in the AD-UP signature (e.g., Cd14,
Gfap, Aspg, S1pr3, Ggta1, and Serpina3n) were also found
to be involved in astrocyte activation [70], and we found
others (e.g., Vim) significantly upregulated in both
AppNL-G-F and 3xTg-AD mice (Additional File 1: Fig. S6b).
Overall, our AD-UP signature was able to recapitulate

known activation pathways (microglia and astrocyte), in-
cluding a significant number of known AD genetic risk
factors, in response to pathological accumulation of
amyloid plaques, in agreement with previous studies.
Immune response to amyloid accumulation is an im-
portant part of the pathology of the disease, but the con-
venience or the timing for blocking or stimulating this
response as a therapeutic option is still arguable [71].

On the other hand, functional enrichment analysis of
the AD-DW signature highlighted defects on synapse
transmission, synapse membrane components, neuro-
transmitters, or the GABA-ergic signaling system (Fig.
3c, right panel). For example, several GABA-ergic recep-
tors such as Gabra1, Gabra3, or Gabrb2, as well as neu-
roprotective Calb1 or Reln genes, were downregulated
(Additional File 2: Table S4 and Fig. 3d). As these mo-
lecular defects may reflect the cognitive impairment ob-
served in the AppNL-G-F mice at 6 and 9months of age,
reverting some of these molecular changes could offer
therapeutic opportunities [72].

Identification of proteins associated with Aβ plaques
Access to both transcriptomics and proteomics data
allowed us to analyze the degree of correlation between
the two datasets for proteins that were significantly up-
or downregulated in the different age and AD model
comparisons (Fig. 4a and Additional File 1: Fig. S7a). Of
note, the changes observed at the protein level were
strongly correlated with transcriptional changes in the
AD models (AppNL-G-F, AppNL-F, and 3xTg-AD), indicat-
ing that many of the proteomic changes happening dur-
ing Aβ pathology are triggered and regulated at the
transcriptional level. This correlation was much weaker
in physiological aging (3- vs. 18-mo. Appwt), where we
observed a marked accumulation of proteins that was
uncoupled from transcriptional changes. Interestingly,
the proteins that accumulated in aged mice (3- vs. 18-
mo. Appwt and AppNL-F and 3- vs. 15- mo. 3xTg-AD)
tended to have longer lifespans compared to those that
accumulated in AppNL-G-F mice, thereby suggesting that
different mechanisms regulate protein homeostasis de-
pending on the age (Fig. 4a, Additional File 1: Fig S5).
We then analyzed, from a functional perspective, the
proteins whose higher levels were not explained by
changes at the mRNA level. We found common path-
ways related to pH regulation and glycogen metabolism
in most aged models (i.e., 3- vs. 18-mo) Appwt and
AppNL-F mice, while proteins were involved in Aβ forma-
tion or metabolic processes in the most aggressive
models (Fig. 4b), thereby suggesting that some of the
proteins interacting with Aβ, or its precursor App may
be accumulating. For instance, we found that the protein
levels of Itm2c were increased in the AppNL-G-F mice
while its transcripts remained stable (Fig. 4c). Indeed,
this protein has been found to co-localize with Aβ pla-
ques in mouse and human brain samples [73, 74]. We
also detected an acute increase in Ifit3 protein levels,
compared to mRNA levels, in 6-mo. AppNL-G-F mice
(Fig. 4c). In a previous study, we proposed that Ifit3
might physically interact with App [75], making its ag-
gregation in amyloid plaques plausible. IFIT family
members regulate immune responses and restrict viral
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infections through a variety of mechanisms, including
the restriction of RNA translation or binding to viral
proteins [76]. Therefore, we used immunofluorescence
to stain Ifit3. We observed that it formed plaque-like
structures that co-localized with Aβ plaques in the
brains of 6-mo. AppNL-G-F mice but these structures
were absent in Appwt control mice (Additional File 1:
Fig. S7). Interestingly, we also identified a sharp increase
in Synaptotagmin-11 (Syt11) protein levels in the
AppNL-G-F model, while its transcripts decreased (Fig.
4d). Syt11 is genetically linked to risk of Parkinson’s dis-
ease [77] and it is a substrate of PRKN (encoded by
PARK2), an E3 ubiquitin ligase that is often mutated in

familial cases of Parkinson’s disease [78, 79]. In mice,
Syt11 deficiency in excitatory glutamatergic neurons im-
pairs synaptic plasticity and memory [80], thereby sug-
gesting that Syt11 dysregulation contributes to AD-
associated cognitive decline. Analysis of the brain sec-
tions of 3-, 6-, and 9-mo. Appwt and AppNL-G-F mice re-
vealed Syt11 dense stains accumulating in the latter,
especially at 6 and 9months of age (Fig. 4e). Import-
antly, we found that Syt11 co-localized with Aβ plaques
in AppNL-G-F mice (Fig. 4f), thereby suggesting that accu-
mulation of Syt11 in amyloid plaques contributes to the
AD pathology. Moreover, a proximity-ligation assay
(PLA) showed that endogenous Syt11 and App proteins

Fig. 4 Identification of Aβ-aggregated proteins through comparison of mRNA and protein levels. a Spearman’s rank correlation of significantly
altered proteins with respect to their mRNA expression in the indicated comparisons. Bar colors indicate the mean half-life of the proteins as
defined by [110]. b Discordant upregulation of GO biological processes and Reactome pathways at protein level that is not explained by the
upregulation of the same genes at mRNA level. c Scatter plot depicting the logarithm of the fold change (LogFC) of mRNA (X-axis) and protein
(Y-axis) for the AppNL-G-F vs. Appwt comparison at 6 mo. Proteins whose LogFC(protein) > 0.25 and their corresponding LogFC(mRNA) > 0.5 are
shown in orange while those with a LogFC(protein) > 0.25 and LogFC(mRNA) < 0.5 are shown in red. Dot size is proportional to the negative
logarithm of the adjusted p value. d Syt11 protein (continuous line) and mRNA (dashed line) levels at different time points relative to the Appwt

at 3 mo. are shown for the AppNL-G-F (strong blue), AppNL-F (medium blue), and Appwt (corresponding to the AppNL-F model; light blue) mice. N =
4. e Representative microphotographs of the hippocampus of brain sections from 3-, 6-, and 9-mo. Appwt (top row) or AppNL-G-F (bottom row)
mice stained with an anti-Syt11 antibody (green) and Hoechst dye (blue) (n = 3 for each condition). Scale bars represent 100 μm. f Representative
micrographs of a brain section of a 6-mo. AppNL-G-F mouse stained with an anti-Syt11 antibody (green), the anti-Aβ antibody 6E10 (red), and
Hoechst dye (blue). Scale bars represent 100 μm (n = 3)
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interacted in human neuron-like SH-SY5Y cells (Add-
itional File 1: Fig. S8). Although we did not observe
Syt11 dense stains in the brains of AppNL-F or 3xTg-AD
mice at the ages tested (18 and 15months of age, re-
spectively), a recent proteomics analysis in the cortex of
the FADx5 AD mouse model also found Ifit3 and Syt11
among the most upregulated proteins at advanced ages
[81]. This finding indicates that our results could be ex-
trapolated to other models.

Identification of approved drugs with the potential to
revert AD signatures
Next, we sought to identify small molecules with the
capacity to “revert” the transcriptional traits of AD mice,
potentially ameliorating the disease phenotype. As a
chemical space, we considered the over 800,000 bio-
active compounds included in the Chemical Checker
(CC) [25]. The CC provides different types of bioactivity
descriptors (a.k.a. signatures) for each compound, in-
cluding transcriptional and target profiles gathered from
the major chemogenomics databases, as well as the more
conventional descriptors of chemical structure. We can
then use these signatures to connect small molecules to
desired outcomes observed in phenotypic experiments
such as genetic perturbation assays, as popularized in
the context of transcriptomics by the Connectivity Map
initiative [82]. Indeed, we proved that CC signatures
could be used to identify compounds able to revert the
transcriptional changes induced by AD mutations
(PSEN1M146V and APPV717F) in SH-SY5Y cells [25]. We
now explored whether the capacity to prioritize com-
pounds that revert molecular signatures could be trans-
lated to in vivo models, in which the phenotypic effects
of this reversion can be measured.
We devised five distinct strategies to query the CC

compound signatures based on known AD pharmacol-
ogy (queries 1–3) and on the transcriptional profiles ob-
served in our AD mouse models (queries 4–5). More
specifically, we looked for compounds chemically similar
to drugs clinically tested for AD [42] or with similar
mechanisms of action (1), or compounds that elicited
similar transcriptional responses to these drugs (2). In
addition, we searched for molecules that could bind pu-
tative AD targets, as defined by OpenTargets [43] (3).
Moreover, we used the CC gene expression signatures to
identify compounds that trigger transcriptional changes
in the opposite direction to those observed in our AD
mice models (4). Likewise, we looked for shRNA experi-
ments in the LINCS L1000 to identify knock-downs that
could also revert our AD signatures, and we used them
as putative AD targets to recall further candidate com-
pounds from the CC (5). Finally, we computed blood–
brain barrier penetration (BBBP) and Aβ affection scores
for all the compounds, based on machine-learning

models. More details on these search procedures are
available in the “Methods” section. Overall, by using
these five queries, we shortlisted 1% of the CC, yielding
a collection of 8250 candidates (Additional File 2: Table
S5). Of these, and in order to avoid issues related to
compound stability and solubility in vivo, we kept only
those that are commercially available and those previ-
ously tested in mice.
Among the 8250 candidate compounds, we found 125

highly ranked non-steroidal anti-inflammatory drugs
(NSAIDs) targeting PTGS1 or PTGS2, which shows a
very significant enrichment (p value < 10−9) with respect
to the number of similar drugs present in the CC. More-
over, we also found a significant enrichment in drugs
commonly used to treat cognitive loss (i.e., acetylcholin-
esterase inhibitors; p value < 10−6), which reinforces our
approach. NSAIDs are one of the most widely used types
of medication, being prescribed as anti-inflammatories,
analgesics, and antipyretics. Although clinical trials have
failed to demonstrate beneficial effects of NSAIDs in AD
[83], recent articles suggest that some exert previously
undescribed mechanisms of action that ameliorate AD
pathology in mouse models [84, 85], thus supporting
epidemiological studies reporting a potential protective
effect of NSAIDs against AD [86, 87]. Thus, we selected
three NSAIDs (namely etodolac, fenoprofen, and dexke-
toprofen) considering the scores obtained in all the de-
scribed CC, and whose activity in AD had not been
tested previously. Etodolac and fenoprofen are chem-
ically similar to other NSAIDs clinically tested against
AD (query 1) and they performed, in general, relatively
well in all queries. Additionally, fenoprofen and dexketo-
profen showed an interesting target profile (query 3),
and the former also presented a high potential for
reverting the transcriptional changes observed in our
AD models (query 4). All three compounds presented
reasonable BBBP scores (> 0.6).
The list also contained a number of approved anti-

hypertensive agents, including structurally similar non-
selective beta-adrenergic antagonists such as penbutolol,
levobunolol, nadolol, and bupranolol. Among these, pen-
butolol showed a strong aggregated score for targets
(query 3) and good potential for reverting transcriptional
signatures (query 4) from published profiles [88] and our
models. We also selected other anti-hypertensive agents
with different mechanisms of action, including bendro-
flumethiazide, which targets sodium reabsorption, and
pargyline, a MAO-A inhibitor with a relatively high
score in query 3 (AD targets profile). Out of the six
compounds, bendroflumethiazide showed the best rever-
sion score for our AD signatures, ranking 31st out of the
8250 compounds sorted in the first instance, and its ef-
fects were also phenotypically similar to compounds
tested in the clinics for anti-AD activity (query 2). We
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also calculated a reversion score for human AD-
associated signatures, extracted from [88] (see Methods).
Again, bendroflumethiazide showed an extremely high
score (3.82), being the 37th best score among the 8250
preselected compounds.
We assessed the effectiveness of the selected com-

pounds on the AppNL-G-F model, since it shows cognitive
deficits at early stages. We treated 5-mo. mice with the
different drugs for 4 weeks and, during the
characterization of the models, we evaluated the effects
of the drugs in the NOR test. We then collected hippo-
campi samples for further molecular analyses (Fig. 5a).
As we had already observed, AppNL-G-F mice treated with
vehicle performed worse (48.6 ± 12.5% for vehicle 1 and
53.5 ± 15.7% for vehicle 2) than age-matched Appwt

mice in the NOR test (60.1 ± 10.7% for vehicle 1 and
58.0 ± 10.5% for vehicle 2) (Fig. 5b). On average,
AppNL-G-F mice treated with bendroflumethiazide (62.4 ±
18.4%), dexketoprofen (55.7 ± 6.1%), etodolac (57.5 ±
23.3%), or penbutolol (68.1 ± 15.5%) performed better
than the corresponding control mice treated with ve-
hicle. However, we did not appreciate any cognitive im-
provement in the mice treated with fenoprofen (47.3 ±
17.0%) or pargyline (49.6 ± 4.7%). Overall, four out of
the six treatments assayed yielded NOR results compar-
able to those of wild-type animals, thereby pointing to
the potential rescuing of the cognition impairment asso-
ciated with App mutations.
In view of these results, we analyzed the gene expres-

sion changes in the hippocampi of AppNL-G-F mice
treated with the compounds that showed a beneficial
effect in the NOR test (bendroflumethiazide, dexketo-
profen, etodolac, and penbutolol) and the correspond-
ing controls (vehicle-treated AppNL-G-F and Appwt mice;
Additional File 2: Table S6). As expected, analysis of
Appwt and AppNL-G-F controls showed similar transcrip-
tional signatures compared with our previous
characterization of the model (data not shown). Indeed,
the four compounds significantly downregulated the
expression of genes upregulated in the AD signature,
thus being able to revert these characteristic transcrip-
tional changes related to Aβ pathology. Of the four
compounds, bendroflumethiazide and penbutolol
showed the strongest effects (blue lines, Fig. 5c). Func-
tional enrichment analysis of these reverted genes
showed significant association with phagocytosis and
activation of the immune response pathways (Add-
itional File 1: Fig. S9a), which is coherent with the
strong component of immune system activation found
in the signatures of the AD mouse models and the fact
that these signatures were used to prioritize the selec-
tion of potential drugs. Genes such as Cx3cr1 or Tyr-
obp, previously identified as part of the AD-UP
signature, were partially downregulated in

bendroflumethiazide-treated AppNL-G-F mice compared
with vehicle-treated mice (Fig. 5d and Fig. 5e), suggest-
ing that this drug may inhibit microglia activation.
Bendroflumethiazide is an anti-hypertensive drug that
exerts its effect by inhibiting sodium reabsorption at
the beginning of the distal convoluted tubule. Although
Na+ influx has been linked to activation of the inflam-
masome [89], we could not find previous reports de-
tecting or suggesting a potential anti-inflammatory role.
Although all four treatments reverted the tendency of

upregulated genes in AD signatures, only penbutolol
treatment also induced the reversion of a significant pro-
portion of the AD-DW signature in AppNL-G-F mice (Fig.
5c; red lines). Penbutolol prevented the Aβ-associated
downregulation of genes such as the gamma-
aminobutyric acid (GABA) receptor Gabrb2 or the glu-
tamate receptor Grm8, keeping their expression at
physiological levels (Fig. 5d, e).
Next, we used immunofluorescence to quantify Aβ ac-

cumulation in the brains of treated AppNL-G-F mice. The
percentage of Aβ-positive area in the DG-CA1 hippo-
campal regions of AppNL-G-F mice treated with penbuto-
lol (5.1 ± 1.6%) was reduced compared with mice treated
with the corresponding vehicle (6.3 ± 1.8%; Additional
File 1: Fig. S10a). As expected, Appwt animals did not
show Aβ staining. Other treatments did not seem to
have an effect on Aβ accumulation when compared to
the corresponding vehicles (data not shown). To further
validate the effect of penbutolol, we treated neuron-like
SH-SY5Y cells, which are known to recapitulate pheno-
types related to neurodegenerative disorders [90]. In-
deed, we observed that penbutolol inhibited the
secretion of Aβ40 (47.5 ± 15.5% at 25 μM) in a dose-
dependent manner, while a minor effect was observed
for Aβ42 secretion (78.8 ± 14.2% at 25 μM), without any
observed toxicity (Additional File 1: Fig. S10b). Addition-
ally, we tested the compounds in genetically modified
SH-SY5Y cells harboring the familial AD mutation
PSEN1M146V/M146V [25], which increases Aβ40 (1.6 ± 0.3
fold) and Aβ42 (3.4 ± 0.2 fold) secretion (Additional File
1: Fig. S10b). Like in wild-type cells, penbutolol inhibited
the secretion of Aβ40 (67.2 ± 6.3% of DMSO control at
25 μM) in PSEN1M146V/M146V cells (Additional File 1:
Fig. S10b). Finally, we tested the effect of these com-
pounds in the 7PA2 cell line, a well-established model
for screening compounds targeting Aβ production [91].
In accordance with the in vivo observation, penbutolol
inhibited Aβ40 (16.1 ± 10.0% at 25 μM) and Aβ42 (30.9 ±
24.0% at 25 μM) at relatively low concentrations, show-
ing a dose-dependent response. Fenoprofen showed a
similar trend, although the inhibition of Aβ40 was milder
(53.3 ± 4.7% at 500 μM), while the remaining four com-
pounds did not exhibit any significant effect (Additional
File 1: Fig. S10c).
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Fig. 5 (See legend on next page.)
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We had previously identified astrocytosis as an import-
ant component of the AD-associated molecular changes
in our mouse models (Additional File 1: Fig. S6) and,
interestingly, Gfap was one of the genes whose expres-
sion was partially downregulated in response to penbu-
tolol (Additional File 1: Fig. S10d). Moreover, penbutolol
was able to significantly revert the previously defined
astrocytic signature (Additional File 1: Fig. S10d). Also,
the percentage of GFAP immunofluorescence positive
area was slightly reduced in the brain sections of
AppNL-G-F mice treated with penbutolol (12.3 ± 3.7%)
when compared with vehicle-treated mice (14.3 ± 4.3%;
Additional File 1: Fig. S10e) and, as expected, in both
cases we observed more GFAP staining than in the cor-
responding age-matched Appwt mice (8.8 ± 2.4% for ve-
hicle 2).
Overall, our results consistently suggest that penbuto-

lol inhibits Aβ production, accompanied by a reversion
of the AD signature, both ameliorating inflammation,
astrocytosis, and loss of synaptic genes. Although the
phenotype reversion is mild, optimized regime treat-
ments (e.g., longer treatment, earlier treatment or im-
proved delivery) might improve the results.

Discussion
In this manuscript, we present the complete
characterization of three murine models at different
stages representative of Alzheimer´s disease (AD) (i.e.,
onset, progression and advanced). To identify genotype-
to-phenotype relationships, we combined the cognitive
assessment of these mice with histological analyses and
a full transcriptional and protein quantification profiling
from the hippocampus. As expected, we confirmed pre-
viously reported findings in these AD models, such as
the age at which cognitive decline starts and when the
presence of Aβ plaques becomes detectable [49, 50]. We
also confirmed that the most aggressive model (e.g.,
AppNL-G-F) shows more changes in genes/proteins

compared to healthy mice, although a significant num-
ber of dysregulated genes/proteins are shared between
the three models, and that most of these changes take
place at disease onset. Our comparison between AD pro-
gression and healthy aging revealed certain commonal-
ities, such as the upregulation of microglial and
inflammation markers. However, the observation that
18-mo. healthy mice do not show any cognitive decline
indicates that, although accelerated aging occurs in AD
models, there are other factors specifically associated
with Aβ pathology. Comparison of transcriptional and
quantitative protein profiles from the same mice re-
vealed a clear correlation between mRNA and protein
levels of the dysregulated genes. This observation thus
supports the notion that most changes are indeed a con-
sequence of expression changes. Interestingly, this cor-
relation was much weaker in physiological aging, where
the observed accumulation of proteins was decoupled
from transcriptional changes. We also found a few pro-
teins whose abundance increased with AD progression,
while the corresponding transcript levels remained
stable. These were potential cases of protein accumula-
tion in disease conditions, and we showed that at least
two of these proteins, namely lfit3 and Syt11, co-localize
with Aβ plaques in the brain. Moreover, we also ob-
served that these proteins tend to have a shorter lifespan
than those found to accumulate in healthy old mice,
suggesting different mechanisms of homeostasis regula-
tion. Progressive decoupling of mRNA and protein ex-
pression profiles associated with aging has been reported
in yeast [92] and human and rhesus macaque brains
[93]. Excluding technical issues, it is believed that dis-
crepancies between protein and mRNA levels are mainly
determined by translation and protein degradation [94,
95], although it has been suggested a major influence of
protein turnover [96]. Since many proteins have been
found co-localizing with Aβ in plaques in neurodegen-
etarive diseases [97], it is a plausible hypothesis that

(See figure on previous page.)
Fig. 5 In vivo reversion of AD signatures. a Scheme of drug treatments and evaluation b Novel object recognition (NOR) test of 6-month-old
animals. Appwt (circles; light blue) and AppNL-F (squares; dark blue) mice were treated for 4 weeks with the indicated drugs. Mean ± SD of the % of
time exploring the novel object is shown (n = 4–7). One-sample t-test vs. a hypothetical value of 50 (* p value < 0.05). Red points indicate the
animals selected for RNAseq analysis. c Signature reversion. In the X-axis, genes are ranked by their differential expression in the comparison of
drug- vs. vehicle-treated AppNL-G-F mice. The Y-axis represents the running Enrichment Score (ES) performed for the AD signatures (AD-UP, blue;
AD-DW, red) that were reverted upon treatment. Dashed vertical lines indicate the point at which the ES reaches its maximum deviation from
zero, defining the leading-edge subset of genes that contribute the most to the enrichment result. The observed ES is compared to a null
distribution of 10,000 randomized signatures of the same size (95% CI shown as a shaded gray area). For example, AD-DW signature genes (red
line) tend to be ranked among the 5000 most upregulated genes in response to penbutolol treatment (second panel), with an ES of 0.63, which
is significantly higher than that of random signatures of the same size (p value < 0.0001). This is interpreted as a significant signature reversion.
RNAseq data were obtained from n = 4 mice per condition. d Heatmaps showing the reversion rank of the top-40 genes belonging to the
leading-edge of the AD-UP signature (blue; left panel) and AD-DW signature (red; right panel) in two or more treatments, sorted by the average
row value. Data obtained from n = 4 mice per condition. e Leading-edge genes of the AD-UP and AD-DW signatures reverted by the different
treatments. We show a few genes in the AD signatures that are up- (red) or down- (blue) regulated (t-score) in the vehicle-treated AppNL-G-F mice
compared with vehicle-treated Appwt animals (bold dots) or in the drug-treated AppNL-G-F mice compared with vehicle-treated Appwt animals
(empty dots). RNAseq data were obtained from n = 4 mice per condition
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some of the decoupled proteins are localized in Aβ pla-
ques, altering their normal turnover. Finally, we took ad-
vantage of the transcriptional profiles of two knock-in
mice (e.g., AppNL-F and AppNL-G-F) to derive specific Aβ-
related AD signatures, which showed a clear
mobilization of microglia and astrocytes, thus reflecting
the activation of the brain immune system in response
to Aβ accumulation. Additionally, these effects were ac-
companied by the downregulation of synapse transmis-
sion processes. Interestingly, most of the functional
processes associated with the characteristic AD signa-
tures were also dysregulated in the 3xTg-AD model,
thus supporting their general validity beyond AD models
harboring single App mutations.
Despite the many efforts and a great number of clin-

ical trials, only 5 drugs have been approved for the treat-
ment of AD (i.e., 4 cholinesterase inhibitors and a N-
methyl-D-aspartate (NMDA) antagonist with neuropro-
tective properties), and these are mostly symptomatic
drugs that do not tackle the etiology of the disease [17].
A lack of appropriate biomarkers, incomplete preclinical
data, and difficulties to start treatments at early stages of
the disease may explain these failures [19, 20]. Addition-
ally, given the robustness of biological systems, it is also
clear that the inhibition of a single target (i.e., the β-
secretase) is not enough to alter the progression of the
disease, and we need to look beyond the “one disease,
one target, one drug” paradigm. In an attempt to tackle
AD from a global perspective, we profited from our re-
cently derived compound bioactivity descriptors to find
small molecules able to neutralize the changes induced
by the disease [25]. Of the ~ 1M compounds, we se-
lected six drugs, including three non-steroidal anti-
inflammatory drugs (NSAIDs) and three anti-
hypertensives with very different reported mechanisms
of action, that showed a good potential to revert the AD
signatures in silico. Note that none of the selected drugs
have been previously tested against AD in clinical trials
or pre-clinical mouse models. After a 4-week treatment,
we demonstrated that four of the six drugs, two NSAIDs
(dexketoprofen and etodolac) and two anti-hypertensives
(penbutolol and bendroflumethiazide), reduced the cog-
nitive impairment in AD mice. We also demonstrated
that all four compounds partially reverted the expression
levels of those genes upregulated in our AD signatures,
although only penbutolol was able to significantly re-
store the global expression levels of genes repressed in
AD. Reassuringly, only the hippocampi of mice treated
with this antagonist of β-adrenergic receptors showed a
reduction of Aβ plaques and a clear dose-dependent in-
hibition of Aβ40 and Aβ42 production in vitro. Thus, the
beneficial effects on cognition observed with bendroflu-
methiazide, dexketoprofen, and etodolac could be more
associated with the reversion of immune system

activation signature to a homeostatic state rather than a
direct effect on Aβ clearance.
Epidemiological studies identified NSAIDs and anti-

hypertensives as protective agents against AD [86,
87], with the potential to target the Aβ processing
pathway [98]. Unfortunately, randomized clinical trials
did not show positive effects for a number of NSAIDs
(e.g., R-flurbiprofen, indomethacin, rofecoxib, na-
proxen, or celecoxib), and some adverse events were
reported associated with their prolonged use (e.g.,
cardiovascular risk [99]). There is an ongoing discus-
sion on the possibility that clinical trials testing NSAI
Ds might not have been fully comprehensive, and
dosage, CNS-permeability, or different patient-group
selection could have had an impact on the trial out-
come [100]. Thus, targeting inflammation as a con-
tributor to cognitive loss remains a viable goal [101–
103], but we are still lacking the right biomarkers to
address the effect of NSAIDs on AD-mediated neuro-
inflammation. On the positive side, it has been re-
ported that a 3-month treatment of a mouse model
of AD with ibuprofen prevents memory impairment,
although without any perceivable change in Aβ accu-
mulation or inflammation [85]. Recent studies also
showed that fenamate NSAID has the potential to
block AD pathology in animal models through COX-
2-independent inhibition of the NLRP3 inflammasome
[84]. On the other hand, as hypertension in midlife is
a risk factor for dementia [104], anti-hypertensive
drugs have been proposed as potential preventive
treatments for AD [105]. Indeed, compounds targeting
noradrenergic signaling, such as prazosin [106] and
carvedilol [107], have shown beneficial effects on AD
mouse models by alternative mechanisms, including
the blockade of Aβ production and neuronal protec-
tion, although an increased risk of Parkinson’s disease
has been associated to the use of nonselective β-
adrenergic antagonists [108, 109].
Given the strong linkage found between the inflamma-

tory signature and AD progression, it is tempting to at-
tribute the beneficial effects that we observed with
dexketoprofen and etodolac to the anti-inflammatory
role of NSAIDs, especially in view of the reversion of the
AD-UP, highly influenced by inflammatory response,
which have been linked to microglial response. Add-
itionally, recent studies suggest that PTGS2 (COX2) may
play a role in several signaling pathways activated in
neurons, affecting neurotransmission and neuronal plas-
ticity [85]; therefore, more than one functional process
may be contributing to the overall mechanism of action
of the drugs. Following a similar reasoning, we may
speculate that bendroflumethiazide may have an anti-
inflammatory role, in view of the AD-UP signature re-
version of known microglial genes. Although
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bendroflumethiazide showed the best predicted rever-
sion score for our AD signatures in our virtual drug
screening, we have not been able to find previous reports
indicating a role of bendroflumethiazide in inflamma-
tion, so further investigation will be required to address
the mechanism of action of this drug in cellular models
of microglia, for example. Finally, penbutolol did show a
mild effect on Aβ accumulation, corroborated by our
in vitro models. Compounds targeting noradrenergic sig-
naling, such as prazosin [106] and carvedilol [107], have
shown beneficial effects on AD mouse models by alter-
native mechanisms, including the blockade of Aβ pro-
duction and neuronal protection. Given the modest
effect of penbutolol on Aβ accumulation, we hypothesize
that it could be acting through several mechanisms, in-
cluding the reversion of the astrocytic signature through
the downregulation of Gfap. We cannot discriminate,
however, whether this effect on astrocytosis is the conse-
quence of the decrease in Aβ accumulation, and further
research will be required to address the specific effect of
this drug in different types of cells (microglia, neurons,
astrocytes, etc.).

Conclusions
The characterization of three AD mouse models at dif-
ferent disease stages has provided an unprecedented
view of AD pathology and how this differs from physio-
logical ageing. Moreover, our computational strategy to
chemically revert AD signatures has shown that, despite
the inconclusive and contradictory results reported,
NSAID and anti-hypertensive drugs may still have an
opportunity as anti-AD agents.
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