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Integrating thousands of PTEN variant
activity and abundance measurements
reveals variant subgroups and new
dominant negatives in cancers
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Abstract

Background: PTEN is a multi-functional tumor suppressor protein regulating cell growth, immune signaling,
neuronal function, and genome stability. Experimental characterization can help guide the clinical interpretation of
the thousands of germline or somatic PTEN variants observed in patients. Two large-scale mutational datasets, one
for PTEN variant intracellular abundance encompassing 4112 missense variants and one for lipid phosphatase
activity encompassing 7244 variants, were recently published. The combined information from these datasets can
reveal variant-specific phenotypes that may underlie various clinical presentations, but this has not been
comprehensively examined, particularly for somatic PTEN variants observed in cancers.

Methods: Here, we add to these efforts by measuring the intracellular abundance of 764 new PTEN variants and
refining abundance measurements for 3351 previously studied variants. We use this expanded and refined PTEN
abundance dataset to explore the mutational patterns governing PTEN intracellular abundance, and then incorporate
the phosphatase activity data to subdivide PTEN variants into four functionally distinct groups.

Results: This analysis revealed a set of highly abundant but lipid phosphatase defective variants that could act in a
dominant-negative fashion to suppress PTEN activity. Two of these variants were, indeed, capable of dysregulating Akt
signaling in cells harboring a WT PTEN allele. Both variants were observed in multiple breast or uterine tumors,
demonstrating the disease relevance of these high abundance, inactive variants.

Conclusions: We show that multidimensional, large-scale variant functional data, when paired with public cancer
genomics datasets and follow-up assays, can improve understanding of uncharacterized cancer-associated variants,
and provide better insights into how they contribute to oncogenesis.
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Background
Genome and exome sequencing has revealed that indi-
viduals collectively harbor millions of germline and som-
atic protein-coding variants [1, 2]. Interpretation of the
functional consequence of each observed variant is a
major bottleneck for personalized genomic medicine.
Missense variants are particularly challenging to inter-
pret, as only ~2% of all presently reported germline mis-
sense variants have clinical interpretations [3], and a
conclusive understanding of the disease-causing poten-
tial of the vast majority of both germline and somatic
missense variants is missing [4]. Computational ap-
proaches are useful, but lack the high accuracy needed
to confidently interpret the impacts of a given protein
variant in a clinical setting. Thus, experimental
characterization of protein variants in model systems of-
fers a powerful method to aid in interpreting the impacts
of human variants.
Traditional experimental assays that measure variant ef-

fects one at a time lack the throughput needed to
characterize the thousands of missense variants that are
possible within each disease-relevant protein. Multiplexed
assays of variant effects (MAVEs), such as deep mutational
scanning (DMS), resolve this bottleneck by measuring the
effects of thousands of variants on a particular function or
cellular property simultaneously [5]. Unfortunately, many
disease-related proteins have multiple functions, and, gen-
erally, no single large-scale variant effect dataset can cap-
ture all of these functions. Thus, multiple distinct large-
scale variant effect datasets may be needed to accurately
phenotype variants in such proteins.
For example, PTEN is a multi-functional, disease-

relevant protein where individual assays insufficiently cap-
ture the effects of its coding variation [6]. The PTEN gene
encodes a 403 amino acid tumor suppressor protein,
whose lipid phosphatase activity catalyzes the conversion
of the growth-promoting phospholipid PtdIns(3,4,5)P3
into the alternative form PtdIns(4,5)P2. PTEN also has
both protein phosphatase-dependent and -independent
roles in genome maintenance, DNA repair, and cellular
morphology [6]. Accordingly, germline PTEN-coding vari-
ation is associated with a collection of developmental ab-
normalities including Cowden Syndrome (MIM: 158350),
grouped under the umbrella term PTEN Hamartoma
Tumor Syndrome (PHTS). PTEN germline variation is
also associated with macrocephalic autism spectrum dis-
order (MIM: 605309), and its pleiotropic effects can cause
other phenotypes such as immune dysfunction. Somatic
variation in PTEN is common in diverse cancers [7]. Des-
pite intense study, the mechanism by which changes to
each of PTEN’s functions impact its various roles and con-
tribute to each disease remains unclear [8].
A pair of recent MAVEs, each measuring a separate

property of PTEN, enabled the classification of large

numbers of PTEN variants according to each property.
We used variant abundance by massively parallel
sequencing (VAMP-seq) to measure the steady-state
abundance of 4112 PTEN missense variants when over-
expressed in cultured human-derived cell lines [9]. Sim-
ultaneously, a separate group measured the lipid
phosphatase activity of 7244 PTEN missense variants
when overexpressed in yeast [10]. Both studies described
how perturbations of the PTEN properties they mea-
sured correlated with disease, and both functional data-
sets have had implications for variant classification,
either by comparing the data with the results of compu-
tational variant effect predictors to find discrepancies
[11], or using the data to develop a better PTEN-specific
predictor of variant pathogenicity [12].
Here, we use VAMP-seq to measure 764 additional

variant abundance scores that were not previously mea-
sured, and add additional data to 3351 variants that
were. We use this more comprehensive PTEN abun-
dance dataset to explore the mutational patterns govern-
ing PTEN intracellular abundance and then incorporate
the phosphatase scores to subdivide PTEN variants into
four functionally distinct groups. This analysis revealed a
set of highly abundant but lipid phosphatase defective
variants that could act in a dominant-negative fashion to
suppress PTEN activity. We validated that two of these
variants are, indeed, capable of dysregulating Akt signal-
ing in cells harboring a WT PTEN allele. Both variants
were observed in multiple breast or uterine tumors cata-
loged in cancer genomics databases, demonstrating the
disease relevance of a subset of high abundance, inactive
variants, identifiable by analyzing paired, large-scale ac-
tivity and abundance data. Thus, we show that multidi-
mensional, large-scale variant functional data, when
combined with public cancer genomics datasets and
follow-up assays, can improve understanding of unchar-
acterized cancer-associated variants and provide better
insights into their characteristics contributing to
oncogenesis.

Methods
Plasmids
The pCAG-NLS-HA-Bxb1 (Addgene #51271) plasmid
was a gift from Dr. Pawel Pelczar (University of Zürich,
Switzerland). The attB-PTEN-HA-IRES-mCherry plas-
mid containing the PTEN cDNA sequence (NCBI acces-
sion number NM_000314.8) was modified by inverse
PCR and Gibson assembly [13] to create the various var-
iants tested for phospho-Akt1 Western blotting (Add-
itional file 1: Table S1).

Secondary PTEN Library generation
We previously determined that the biggest contributor
to the sparseness of the original abundance dataset was
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loss of protein variants during the library generation
process [9]. Thus, we sought to create a secondary, com-
plementary library capable of supplying variants that
were missing in the original library. We identified co-
dons from the original PTEN site saturation mutagenesis
library with five or fewer of the 20 possible protein-
coding codons and re-amplified the sparsest 192 posi-
tions. We used a more permissive set of amplification
parameters and higher cycle numbers to optimize cover-
age in these weakly represented codons. In individual
tubes for each codon, 135 pg of attB-EGFP-PTEN-IRES-
mCherry-562bgl plasmid was used in a 10 μL Kapa HiFi
reaction with a final concentration of 0.5 μM forward
and reverse primers and a final concentration of 5% di-
methyl sulfoxide (DMSO). These reactions were dena-
tured for 3 min at 95°C and cycled 25 times at 98°C for
20s, 52°C for 15s, and 72°C for 3 min with a final 3 min
extension at 72°C. We ran 2 μL of each 10 μL reaction
on a 1% agarose gel with SYBR Safe at 130V for 30 min.
ImageJ was used to quantify the amounts of correctly
sized amplicons for each codon. The ImageJ quantities
were used to make an equal mix of all the codon
amplicons.
The mix was cleaned and concentrated using a DNA

Clean & Concentrator-5 kit (Zymo Research). The
cleaned product was then phosphorylated using T4 PNK
(NEB) and subsequently ligated using T4 ligase (NEB).
The wild type plasmid template was digested using DpnI
(NEB). The final ligated product was cleaned and con-
centrated again and transformed using 10-beta electro-
max cells (NEB). Small samples of a final 50 mL culture
(before doubling could occur) were taken and plated in
order to assess an approximate size of transformation.
We chose to move forward with a library containing
~17,500 transformants. In order to get rid of small back-
ground plasmid, we moved the library into the final
attB-EGFP-PTEN-IRES-mCherry-562bgl-KanR vector
encoding kanamycin resistance using restriction en-
zymes XbaI and EcoRI-HF (NEB). Barcodes were added
as previously performed [9], using a primer set ordered
from IDT and filled in using Klenow (-exo) (NEB). The
barcoded primer was inserted using SacII and EcoRI-HF
(NEB). The final library was prepared for PacBio sequen-
cing by digesting the ORF and associated barcode using
SacII and XbaI (NEB) and processed using the PacBio
Template Prep Kit 1.0 (Pacific Biosciences).

Illumina sequencing of the library plasmid
Barcode sequencing of the plasmid library was also gen-
erated as previously performed [9]. Briefly, 50 ng of final
midi-prepped (Sigma-Aldrich) plasmid was amplified
and adapters were added in technical duplicate in 50 μL
Kapa HiFi reactions (Roche). These reactions were dena-
tured for 3 min at 95°C and cycled 5 times at 98°C for

20s, 60°C for 15s, and 72°C for 15s with a final 3 min ex-
tension at 72°C. The adapter reactions were cleaned
using AMPure XP beads (Beckman-Coulter). Individual
indices and Illumina cluster generating sequences were
added in 50 μL Kapa Robust reactions (Roche). These
reactions were denatured for 3 min at 95°C and cycled
25 times at 95°C for 15s, 60°C for 15s, and 72°C for 15s
with a final 3 min extension at 72°C. The technical du-
plicates were mixed volumetrically, ran on a 1% agarose
gel with SYBR Safe, and gel extracted using a freeze and
squeeze column (Bio-Rad). The product was quantified
using the Kapa Illumina quant kit (Roche) and se-
quenced on a NextSeq 500 using a NextSeq 500/550
High Output v2 75 cycle kit (Illumina). Sequencing reads
were de-multiplexed and converted to FASTQ format
with bcl2fastq. Barcode paired sequencing reads were
joined using the fastq- join tool within the ea-utils pack-
age [14] using the default parameters. FASTQ files from
these technical replicate amplification, and sequencing
runs were concatenated for analysis with Enrich2 [15].
Illumina sequencing revealed there were ~ 33,274
unique barcodes within this library.

Variant expression and sorting
All cell culture reagents were purchased from Thermo-
Fisher Scientific unless otherwise noted. The HEK 293T
LLP-iCasp9-Blast clone 12 cell line [16] was used for all
the cell culture experiments. These cells were cultured
in Dulbecco’s modified Eagle’s medium supplemented
with 10% fetal bovine serum, 100 U/mL penicillin, and
0.1 mg/mL streptomycin. For induction of expression
from the Tet-inducible promoter, the media were sup-
plemented with 2 μg/mL Doxycycline (Sigma). Cells
were detached for routine passaging with 0.25% trypsin-
ethylenediaminetetraacetic acid.
For library experiments, six-million total HEK 293T

LLP-iCasp9-Blast clone 12 cells were transfected over
four 6-well plates. Each 6-well was seeded with 250,000
293T cells and mixed with 1500 ng pCAG-NLS-Bxb1,
1500 ng attB-EGFP-PTEN-IRES-mCherry-562bgl Fill-in
library plasmid, and 6 μL Fugene 6 (Promega), in
doxycycline-free media. Two days following transfection,
the media were switched to Dox-containing media. The
next day, AP1903/Rimiducid (MedChemExpress) was
added to a final concentration of 10nM. The media were
exchanged the next day to remove dying cells. Surviving
cells were pooled into T175 plates and passed for
roughly 1 week, when a fraction of the selected cells
were frozen for storage. The remaining cells were propa-
gated and processed for fluorescence activated cell
sorting.
The library sorting experiments were performed as

previously described [9]. Briefly, recombined cells were
lifted from the plates with Versene solution (0.48 mM

Matreyek et al. Genome Medicine          (2021) 13:165 Page 3 of 17



EDTA in PBS) to minimize clumping experienced with
Trypsin digestion. The cells were pelleted at 300xg for 3
min and resuspended in sorting buffer (1X PBS + 1%
heat-inactivated FBS, 1 mM EDTA and 25 mM HEPES
pH 7.0) and filtered through a 35-μm nylon mesh. The
cells were sorted on a BD FACSAria III machine using a
85-μm nozzle and equipped with FACSDiva software.
mTagBFP2 fluorescence was excited with a 405-nm laser
and detected after passing through a 450/50 nm band
pass filter. EGFP fluorescence was excited with a 488-
nm laser and detected after passing through a 505-nm
long pass and 530/30-nm band pass filters. mCherry
fluorescence was excited with a 561-nm laser and de-
tected after passing through a 600-nm long pass and
610/20 band pass filters. All events had to pass through
a FSC-A and SSC-A live cell gate, followed by a FSC-A
and FSC-H gate for identifying singlets. Recombinant
cells were isolated by gating for mTagBFP2 negative,
mCherry positive cells. Cells passing these gates were fi-
nally passed into a FITC:PE–Texas Red ratiometric par-
ameter in the BD FACSDIVA software, where gates
were drawn to separate the cells into equally populated
quartiles based on their ratio. Three replicate integra-
tions were conducted and sorted for recombinants (Add-
itional file 1: Table S2).

Illumina sequencing of sorted cells
Amplification and sequencing of the barcodes from the
genomically integrated library were also performed as
previously described [9]. Genomic DNA including the
recombined plasmid was isolated from cells using Qia-
gen DNeasy columns with the addition of RNAse-A
(ThermoFisher Scientific) in the first incubation step.
The genomic DNA was first amplified using one primer
5′ of the Bxb1 recombination site and the adapter pri-
mer 3′ of the barcode in order to guarantee that unrec-
ombined plasmids would not be amplified. These were
50 μL technical duplicate reactions in Kapa Hifi (Roche)
containing ideally, but no more than 2.5 μg of genomic
DNA. These reactions were denatured for 3 min at 95°C
and cycled 5 times at 98°C for 20s, 65°C for 15s, 72°C
for 2 min with a final 3-min extension at 72°C. The
adapter reactions were cleaned using AMPure XP beads
(Beckman-Coulter). Individual indices and Illumina clus-
ter generating sequences were added in 50 μL Kapa Ro-
bust reactions (Roche) using SYBR Green I on a BioRad
MiniOpticon. These reactions were denatured for 3 min
at 95°C and cycled 20 times at 95°C for 15s, 60°C for
15s, and 72°C for 15s with a final 3-min extension at
72°C. The indexed amplicons were mixed based on rela-
tive fluorescence units, run on a 1% agarose gel with
SYBR Safe, and gel extracted using a freeze and squeeze
column (Bio-Rad). The product was quantified using the
Kapa Illumina quant kit (Roche).

Replicate filter
We tested a replicate filter (code found at https://github.
com/MatreyekLab/PTEN_composite) [17] wherein a
variant had to be observed in a minimal number of repli-
cates to pass the filter. To determine the ideal value that
should be used for this replicate filter, we performed a
test where we sequentially tested all possible values of
the replicate filter (0 through 15). Only variants observed
at or above the replicate filter value were considered to
have passed the filter, and variants observed in fewer
replicates than the filter value were removed. For each
replicate filter threshold value, we asked whether the
upper bound of the 95% confidence interval of the non-
sense variant score overlapped with the lowest 5% of
synonymous variant scores. If not, then it was deemed
correctly scored. As a control, we resampled the syn-
onymous and nonsense variant scores, but randomized
the score associations with the number of replicates in
which the score was a product of. A bootstrapping pro-
cedure was used to repeat this process 100 times per
replicate filter value. The code used to perform this
process is provided in the Github repository. A data
table of all PTEN variant abundance scores is included
as Additional file 2: Table S3.

Combining abundance and activity scores
For lipid phosphatase activity, we restricted our analysis to
variants classified as WT-like phosphatase activity, corre-
sponding to the lower 95th percentile for synonymous
variants (activity scores above 10-1.11), and loss of activity,
corresponding to the upper 95th percentile for nonsense
variants (activity scores below 10-2.13). Both values were
used as cutoffs in the original manuscript [10]. To ease
comparison with the abundance data, the phosphatase
score was rescaled so that the mean nonsense variant
score was set to zero, and WT was set to 1.

Accession of public data
PTEN missense and nonsense variants were accessed
from the ClinVar website on April 15, 2021, and manu-
ally filtered for single-codon changes. PTEN variants as-
sociated with autism spectrum disorder (ASD) were
accessed from the SFARI Gene platform on April 15,
2021, and filtered for single codon changes [18]. PTEN
missense and nonsense variants found in the population
were accessed from GnomAD v2.1.1 (non-TOPMed) [1]
on April 20, 2021, as well as from the TOPMed Freeze 8
with the Bravo database (https://bravo.sph.umich.edu/
freeze8/hg38/) [19] on April 20, 2021. For the somatic
variant analyses, PTEN missense and nonsense variants
were taken from the “curated set of non-redundant stud-
ies” selection on cBioPortal [20, 21], which are drawn
from 184 studies, corresponding to 48,035 samples.
These were manually curated from both TCGA [2] and
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non-TCGA studies and do not have overlapping sam-
ples. We also drew samples from the separate AACR
GENIE database [22] (also accessed through cBioPortal),
corresponding to an additional 4 studies with 106,908
patients and 115,754 samples. The Cleveland Clinic Co-
hort data used in this work were calculated from the
supplementary tables published by Mighell et al. [12]. As
noted in the original work, the CC cohort consists of
256 prospectively accrued individuals with germline
PTEN nonsynonymous variants, with 145 individuals en-
coding missense variants, and the remaining 111 encod-
ing nonsense variants.

Western blotting
HEK 293T LLP-iCasp9-Blast clone 12 [16] cells were
transfected with the 1.5 μg pCAG-NLS-HA-Bxb1 and
1.5 μg of the attB-PTEN-HA-IRES-mCherry plasmids
encoding WT PTEN or a PTEN variant using 6 μL of
Fugene 6, in the absence of doxycycline. Four days after
transfection, the cells were switched to doxycycline-
containing medium, and 10 nM of AP1903 was added to
kill off un-recombined cells. Each confluent 6-well was
collected with 0.25% Trypsin-EDTA, washed in PBS, and
incubated with 50 μL of lysis buffer (20 mM Tris pH
8.0, 150 mM NaCl, 1% Triton X-100, and Protease In-
hibitor Cocktail (Sigma-Aldrich)) for 10 min at 4°C. The
lysed cells were spun at 21,100xg for 10 min at 4°C, and
the supernatant was collected into a separate tube. 12 μL
of cleared lysate was mixed with 4 μL of 4x sample load-
ing dye and separated on a NuPage 4–12% Bis-Tris gel
(Invitrogen) in MOPS buffer, using Spectra Multicolor
Broad Range Protein Ladder (ThermoFisher Scientific).
The separated proteins were transferred onto a polyviny-
lidene difluoride membrane using a GENIE® Electro-
phoretic Transfer cassette (Idea Scientific). The
membranes were blocked overnight in 5% milk powder
in tris-buffered saline (20 mM Tris, 150 mM NaCl) with
0.1% Tween-20.
Each membrane was Western blotted with a 1:2000 di-

lution of anti-phospho-AKT (p.Thr308; 13038; Cell Sig-
naling Technology) followed by detection with a 1:4000
dilution of anti-rabbit-HRP (NA934V; GE Healthcare), a
1:2000 dilution of anti-pan-AKT (2920; Cell Signaling
Technology) followed by detection with a 1:5000 dilu-
tion of anti-mouse-HRP (NA931V; GE Healthcare), 1:
5000 dilution of anti-HA-HRP (3F10; Roche), or a 1:
2000 dilution of anti-beta-actin-HRP (ab8224; Abcam),
using the SuperSignal West Dura extended duration
substrate (ThermoFisher Scientific).

Statistical analysis
Pearson’s r and Spearman’s ρ were calculated using the
base functions in R. The linear models used in the work
were calculated using the lm() base function in R. The

permutation test used in the bootstrapped replicate filter
analysis is described above and is encoded and fully rep-
licable with the R Markdown file found at the aforemen-
t ioned Gi thub repos i tory ht tps : / /g i thub .com/
MatreyekLab/PTEN_composite [17].
The null distributions of PTEN variant subsets in the

cancer genomics data were determined without using
cancer-specific mutational signatures, as we previously
observed little effect on the distribution of abundance
scores when cancer-specific transition and transversion
rates were used to estimate the null distribution [9]. To
create the null distribution, a Python script was used to
computationally substitute every nucleotide within the
PTEN cDNA to every other nucleotide, resulting in a list
of all possible single-nucleotide variants, and each of
these codons was computationally translated. Synonym-
ous variants were removed from the list. The list was
then collapsed to unique missense and nonsense vari-
ants, which were also given frequencies of representation
based on the degeneracy of the codon table. This table
of missense and nonsense variant frequencies was subse-
quently split into subclasses based on each variant’s
abundance and activity phenotypes, and the frequencies
of the variants were added to provide the null estimate
of expected class frequency in the absence of selection.

Results
Mutational tolerance patterns for PTEN abundance
We previously developed VAMP-seq, a generalizable
method to simultaneously measure the effects of thou-
sands of missense variants of a protein on intracellular
abundance [9]. In VAMP-seq, each cell expresses a dif-
ferent protein variant directly fused to a fluorescent pro-
tein such as the enhanced green fluorescent protein
(EGFP), so each cell’s level of fluorescence is directly
proportional to the steady-state abundance of that pro-
tein variant. Single-copy, site-directed genomic integra-
tion into a HEK 293T landing pad cell line permits the
expression of a library of thousands of protein variants
in a pooled format [23]. The pooled cells are then sepa-
rated into four bins of graded fluorescence using
fluorescence-activated cell sorting (FACS). High
throughput DNA sequencing is used to quantify the dis-
tribution of each variant across the four bins, and this
distribution is analyzed to yield an abundance score for
each variant. VAMP-seq has thus far been applied to five
proteins: PTEN [9], TPMT [9], NUDT15 [24], VKOR
[25], and CYP2C9 [26].
To supplement the 4407 PTEN variants whose abun-

dance we measured initially [9], we generated a new
PTEN library focused on positions with low coverage in
the initial experiment (Additional file 1: Fig S1A, B). We
re-amplified 198 low coverage positions using degener-
ate NNK primers, fused the resulting PTEN variant
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library to EGFP, and tagged each plasmid with a unique
nucleotide barcode. We introduced the library into an
improved HEK 293T landing pad cell line [14], which
allowed for rapid enrichment for modified cells express-
ing the library by triggering apoptosis of the unmodified
cells in the culture using the built-in iCasp9 cassette.
We conducted seven replicate VAMP-seq experiments
using this library, yielding additional abundance data for
4186 unique variants within this secondary library. 272
variants were observed in 5 or more replicates in both
the initial and new experiments, and abundance scores
for these overlapping variants were well correlated (Pear-
son’s r2 0.70, Fig. 1A). A linear model fit to the scores of
the overlapping variants had a slope of 0.89 and an
intercept of 0.11, suggesting that the abundance scores

from the two libraries could be combined without add-
itional normalization steps.
Thus, we aggregated abundance scores from the initial

and new libraries (Additional file 1: Fig S1C). We cre-
ated a composite abundance score by taking the mean of
all replicate scores for variants observed in 4 or more
replicates, a threshold we set using a permutation test of
the separation of synonymous and nonsense variants
(Additional file 1: Fig S2) [17]. As expected, the number
of variants encoded by two or more unique codons in-
creased with the composite dataset (Additional file 1: Fig
S3A). The final filtered dataset of 4721 variants included
174 synonymous variants, 160 nonsense variants, and
4387 missense variants including 764 variants not scored
in the initial experiment (Fig. 1B). 3904 variants scored

Fig. 1 Steady-state cellular abundance data for 4721 PTEN variants. A Variants observed in 5 or more replicate in both the original and new PTEN abundance
libraries were scored independently and compared. Gray line: ideal correlation with a slope of 1 and intercept of 0. Purple line: Observed correlation with a
slope of 0.9 and intercept of 0.1. B Abundance scores for all subsets of variants observed in 4 or more replicates of the combined dataset. C PTEN high-
coverage positions with 17 or more scored missense variants were assessed for their mutational tolerance patterns and shown in a clustered heatmap colored
by abundance score. Variants that were not scored are colored in gray. WT residues are identified by black dots. Positions were ordered with hierarchical
clustering based on their mutational tolerance patterns, with the corresponding dendrogram shown on the bottom. D Ball and stick representations of the
Arg173 and Asp326 side chains on the PTEN crystal structure (1d5r), with the hydrogen bonding network at the PTEN inter-domain boundary causing Arg173
and Asp326 to be completely intolerant to substitution. Nitrogen atoms are colored in blue. Oxygen atoms are colored in red. Water molecules are colored in
magenta. Predicted hydrogen bonds are denoted as yellow dashed lines. Gly251 is in a turn facing the interdomain interface and is shown at the top of
this image
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in the initial experiment received modestly refined
scores, reducing the coefficient of variation for many
variants (Additional file 1: Fig S3B). This resulted in a
net 12.5% increase in the number of variants with a coef-
ficient of variation less than 0.5 (Additional file 1: Fig
S3C). We compared our revised scores to a set of 24
PTEN variants we had individually assessed for steady-
state abundance in the original manuscript, and while
the correlation coefficient did not change with the re-
fined score, this is likely because the correlation with the
original data was already high (Spearman ρ2 = 0.93;
Additional file 1: Fig S3D). Altogether, the number of
variants confidently assigned low abundance classifica-
tions increased from 1260 to 1423, and the number of
variants confidently assigned WT-like classifications in-
creased from 1577 to 1738 variants (Additional file 1:
Fig S3E). Thus, as cell and library engineering ap-
proaches improve, VAMP-seq datasets can be bolstered
with additional replicates containing new variants, and
existing datasets can be reanalyzed to create more
complete and accurate datasets.
An advantage of the composite abundance dataset was

an increased number of positions with high variant
coverage, revealing patterns of amino acid substitutions
tolerated at each position. The composite dataset in-
cluded 61 positions where approximately 90% of mis-
sense variants were scored (increased from an original
50 positions) and 22 positions that had full coverage (in-
creased from an original 9 positions). We performed
hierarchical clustering of the high coverage position
abundance scores, which yielded groups of intolerant,
partially tolerant, and tolerant positions (Fig. 1C).
Roughly half (n = 33) of positions were nearly uniformly
tolerant to substitutions. In contrast, 15 positions were
partially tolerant to substitution, while the remaining 13
positions were intolerant. Residues Arg173, Gly251, and
Asp326 were almost entirely intolerant to substitution
(Fig. 1C). All three of these residues are located in the
interface between the PTEN phosphatase and C2 do-
mains, suggesting that specific characteristics of the WT
amino acids at these positions are critical for keeping
the interface intact. Consistent with this hypothesis,
Arg173 and Asp326 make extensive polar contacts in
the PTEN structure (Fig. 1D). With the exception of
His61, the remaining intolerant positions encoded
phenylalanine, isoleucine, leucine, or valine residues and
were only partially tolerant of other bulky hydrophobic
side-chains (Fig. 1C).
Missing data is often computationally imputed using

machine learning to yield a complete dataset needed for
certain downstream analyses [27, 28]. A recent study im-
puted missing PTEN abundance data prior to training a
logistic regression classifier of PTEN variant effect and
molecular phenotype [12]. 693 of the imputed

abundance values were scored in our refined dataset,
allowing an independent confirmation of the accuracy of
the imputation. We examined the correlation between
the imputed abundance data and newly acquired data
from our second library and found moderate correlation
and scaling between the imputed and experimentally de-
termined values (slope: 0.53; Pearson’s r2: 0.54; Add-
itional file 1: Fig S4). This was consistent with the
correlation observed by the authors during 10-fold
cross-validation of their initial imputation algorithm
with the initial abundance dataset (Pearson’s r2: 0.56).
The lower than expected slope is largely explainable by a
difference in scaling of the imputed data, which ranged
from 0.25 to 1, whereas the measured values ranged
from 0 to 1.
We next examined positions which were poorly im-

puted to better understand the situations in which the
imputation algorithm struggled to accurately predict
abundance scores. Variants of Arg173 and Gly251, two
of the three positions highlighted earlier as being almost
entirely intolerant to substitution, were incorrectly im-
puted with intermediate abundance scores, likely be-
cause our analyses showed that these WT residues were
unusually critical for maintaining PTEN abundance (Fig.
1C, magenta triangles). Imputed values for proline resi-
dues were generally low, even for residues such as
Pro103 and Pro248, which were highly amenable to sub-
stitution and yielded numerous variants with WT-like
scores (Fig. 1C, blue triangle). The algorithm also strug-
gled with Tyr180, Leu182, and Asp268, which were resi-
dues that were partially tolerant to substitution and
exhibited a wide range of abundance scores depending
on the variant, whereas the imputed values roughly ap-
proximated the positional mean (Fig. 1C, cyan triangles).
By providing additional experimental data and reducing
reliance on imputation, the additional abundance data
we furnish here will improve accuracy in the down-
stream uses of the abundance data.

Classification of PTEN variants by abundance and activity
Our composite abundance scores, along with the PTEN
lipid phosphatase scores measured in yeast [10], provide
two distinct measures of the properties of a total of 4178
PTEN missense variants. We integrated these two data-
sets to separate PTEN variants into four distinct subsets:
WT-like, loss of abundance only, loss of activity only,
and loss of both abundance and activity. To perform this
four-way classification, we focused on variants that were
confidently scored by both assays and thus could be cat-
egorized according to both properties (Fig. 2A; see
Methods). The majority of variants were in agreement
with both assays, as 51% of the classified variants were
WT-like for both properties (Fig. 2A, green), while 21%
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Fig. 2 (See legend on next page.)
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exhibited loss of both activity and abundance (Fig. 2A,
purple).
The remaining 28% of variants exhibited discrepancies

between the two assays, pointing to subtler molecular
phenotypes than near-complete losses of phosphatase
activity through loss of intracellular abundance. The
smallest subsets were the 6% of variants classified as loss
of activity only variants, where phosphatase activity was
abrogated without affecting protein steady-state abun-
dance (Fig. 2A, orange). The remaining variants, ac-
counting for 22% of the total classified variants, were
loss of abundance only (Fig. 2A, turquoise). These are
likely variants that have no inherent effect on phosphat-
ase activity, yet may reduce the total amount of intracel-
lular PTEN expressed in cells, such that the net result
may be hypomorphic functioning in cells. This included
Asp331Gly, which also exhibited reduced abundance
when expressed in U87-MG glioblastoma cells [29], but
had near-WT phosphatase activity when purified and
equimolar amounts were tested in vitro [29, 30].
The preponderance of loss of abundance only variants

prompted us to examine the relationship between the
two assays more closely. We first analyzed the scaled ac-
tivity scores of a panel of 20 variants exhibiting a range
of abundances that had been individually assessed for
their steady-state mean fluorescence intensity when
fused with GFP [9]. The variants in this panel only con-
sistently showed reduced activity when their measured
abundances were profoundly reduced, by at least 5-fold
(Fig. 2B). Thus, very low abundance variants can score
as WT-like in the yeast rescue activity assay.
To better understand whether these low abundance vari-

ants without reduced yeast rescue activity scores were clinic-
ally important, we focused on the subset of low abundance
PTEN variants classified as pathogenic in ClinVar, or associ-
ated with autism spectrum disorder (ASD) or PTEN Hamar-
toma Tumor Syndrome (PHTS) in a recently published
cohort of well curated PTEN variant positive individuals seen
at Cleveland Clinic (CC cohort) [12]. Of the 40 total variants

in this set, 22 (55%) were classified as loss of both activity
and abundance variants (Fig. 2C). The remaining 18 variants
(45%) were confidently assessed as low in abundance, with 8
considered loss of abundance only due to their high activity
scores. The other 10 exhibited intermediate activity. Notably,
12 of these clinically meaningful variants (Tyr27Ser,
Gly129Arg, Met134Thr, Arg173Cys, Arg173His, Thr202Ile,
Pro246Leu, Gly251Val, Asp252Gly, Lys254Thr, Asn276Ser,
Asp326Asn) have reduced in vitro activity, reduced abun-
dance, or altered function when assessed in human cell
models by other labs, further supporting these variants’ per-
turbed function [30–38]. For the 6 remaining pathogenic var-
iants, the low abundance score in our dataset is the only
measurement of altered experimental consequence to date.
Thus, it is tempting to speculate that at least some of these
loss of abundance only variants are pathogenic by sole virtue
of their lowered abundance despite scoring as WT-like or in-
determinate in the yeast activity assay. However, it is also
possible that noise in either assay, a lack of sensitivity to sub-
tle but clinically meaningful loss of activity, or alterations in
function not captured by the yeast activity assay, could be re-
sponsible for the pathogenicity of these variants.
We next asked how variants in each subset were dis-

tributed within the PTEN protein structure. At 42 posi-
tions, the majority of variants led to both loss of
abundance and loss of activity, and these largely mapped
to the buried regions of both PTEN domains (Fig. 2D,
purple spheres). At 17 positions, the majority of variants
led to a loss of abundance only, and these positions were
located around the periphery of the PTEN structure, es-
pecially within the C2 domain (Fig. 2D, turquoise
spheres). At 9 positions, variants led to a loss of activity
only, and these largely mapped around the active site
but included Ala333, a membrane-proximal residue on
the C2 domain (Fig. 2D, orange spheres).
We then analyzed how each subset related to the vari-

ants found in publicly available databases for PHTS,
ASD, and various tumors biopsied from cancer patients,
or in the CC cohort [12]. We found 59 germline

(See figure on previous page.)
Fig. 2 Four-way classification of PTEN variants. A Scatterplot of PTEN variants scored in both assays, with abundance scores shown on the x-axis,
and phosphatase scores shown on the y-axis. WT-like variants are shown in green, loss of activity variants are shown in orange, loss of abundance
variants are shown in cyan, and variants that have both losses in activity and abundance are shown in purple. The total counts of the classified or
unclassified (gray) variants in each sector of the plot are shown. B Scatterplot of activity scores and individually assessed EGFP fluorescence for 20
variants. Variants at known catalysis affecting residues 45, 124, and 129, as well as PIP2 binding residues 1 through 13, were removed from the
analysis. C Scatterplot of ClinVar pathogenic or CC cohort PHTS or autism spectrum disorder (ASD) variants with low abundance, plotted by
abundance and activity scores. Variants that did not score as low for activity are labeled. D Positions with variants of extreme effects shown on
the PTEN crystal structure (pdb: 1d5r). E (Top) Bar chart showing the distribution of the abundance and activity PTEN variant subsets across the
various clinical groupings. (Bottom) The fraction of each variant class for each category was divided by the fraction of the corresponding variant
class in the All SNV category to calculate the fold enrichment or depletion. The PHTS category includes ClinVar pathogenic or likely pathogenic
PTEN variants for PHTS, and variants from patients identified with PHTS in the CC cohort. The ASD category includes variants listed in the SFARI
Gene database, and variants from patients identified with ASD or developmental disorders in the CC cohort. Variants associated with both were
put in their own category of PHTS & ASD. VUS are variants of uncertain significance in ClinVar. PTEN variants observed in unaffected populations
captured by the GnomAD and TOPMed databases are also shown
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pathogenic or likely pathogenic variants associated with
PHTS in ClinVar, or characterized as having classic
PHTS symptoms in the CC cohort, that were also confi-
dently scored in both abundance and activity datasets.
Of these, 46 were PHTS only variants that were not ob-
served associated with autism spectrum disorder or de-
velopmental disabilities in the SFARI database or the CC
cohort. Compared to all possible single-nucleotide vari-
ants, or variants observed in unaffected population data-
bases such as GnomAD or TOPMed, these PHTS only
variants were enriched for loss of abundance and activity
variants, as well as loss of activity only variants (Fig. 2E,
purple and orange bars). In contrast, loss of abundance
variants were slightly reduced, while WT-like variants
were reduced (Fig. 2E, turquoise and green bars). There
were 8 variants that were only associated with autism
spectrum disorder. While the sample is small, there were
enrichments in loss of abundance or loss of activity vari-
ants, but no enrichment in variants with concomitant
losses to both abundance and activity. On the other
hand, there were 13 germline variants associated with
both classic PHTS symptoms and autism spectrum dis-
order. Seven of these variants were loss of both abun-
dance and activity.
The enrichment of loss of activity and abundance vari-

ants in individuals with PHTS, particularly those also
exhibiting autism spectrum disorders, was consistent
overall with the phenotypes observed in a similar ana-
lysis by Mighell et al. [12]. There was a notable differ-
ence in the enrichments of loss of abundance only or
loss of activity only variants. They observed more loss of
abundance only variants associated with PHTS, whereas
we observed more loss of abundance only variants asso-
ciated with autism spectrum disorder. Their method dif-
fered from ours, as their analysis looked at frequencies
of variants and variant classes observed within PTEN
variant-positive individuals in their cohort, while we uti-
lized a larger set of data where information on frequency
was not always available. We thus examined how each
abundance and activity class was populated by unique
PTEN variants, and the aforementioned differences may
be due to these methodological differences. Regardless,
distinct clinical groups appear potentially enriched with
different PTEN molecular phenotypes. In contrast, there
were only slight enrichments and depletions observed in
the 154 variants of uncertain significance (VUS) in Clin-
Var that were also confidently scored in both datasets.
52 of these variants exhibited either loss of abundance
or loss of activity based on these criteria and may be
prime targets for reclassification in the future.
Reclassifying these variants will require incorporation

of PTEN-specific considerations for clinical interpret-
ation by expert working groups [39]. Along these lines,
the initial PTEN abundance and activity data were used

to create a logistic regression model capable of separat-
ing clinically significant PTEN variants from other vari-
ants [12]. This model revealed that PTEN variants with
intermediate activity in yeast or truncation-like missense
variants were appreciably more likely to also cause
PHTS, supporting the use of abundance and activity
measurements as evidence of pathogenicity [12]. This
study relied on imputed missing abundance scores to
train their model. By providing additional experimental
data and reducing reliance on imputation, the additional
abundance data we provide here will empower refine-
ment of PTEN variant reclassification.
Next, we examined enrichment of variants in the dif-

ferent PTEN abundance and activity subsets in breast,
uterine, lung, colorectal, prostate, skin, and brain cancers
found in various cancer genomics datasets accessed with
cBioPortal [20, 21]. Here, the goal was to use our data to
better distinguish different types of potentially cancer-
driving, PTEN loss-of-function variants, from the poten-
tially innocuous PTEN variants that may have coinciden-
tally accumulated during tumor development. We
estimated a null model of mutation in the absence of se-
lection by calculating the frequencies of each subset pos-
sible through single nucleotide variation (Fig. 3, grey
bars). WT-like variants were uniformly depleted as com-
pared to our null model, likely due to corresponding en-
richments of variants from the other functionally
damaging subsets outcompeting them. Loss of abun-
dance only variants also appeared to be depleted, likely
due to the fact that, by definition, these variants retain at
least partial activity, which may be sufficient to counter-
act oncogenesis in most circumstances. In contrast, vari-
ants exhibiting both a loss of abundance and activity
were uniformly enriched across cancer types. This find-
ing is consistent with the enrichment of low abundance
variants we previously observed [9] and suggests PTEN
loss of function through loss of abundance along with
loss of activity is a common contributor to oncogenesis
across cancer types.
The remaining loss of activity only subset is particularly

interesting as it includes dominant-negative PTEN vari-
ants [6]. Homodimerization is thought to keep PTEN in
its active conformation and allow it to exert maximal
PtdIns(3,4,5)P3 phosphatase activity [40]. Accordingly,
cells encoding a WT PTEN allele exhibited greater Akt
intracellular signaling when the dominant-negative variant
Cys124Ser was co-expressed as compared to a null or
destabilized variant [9, 40]. Consistent with this observa-
tion, transgenic mice where one allele was replaced with
known dominant-negative alleles such as Cys124Ser and
Gly129Glu exhibited increased tumor burden [40, 41].
Thus, we examined this subset for both known and poten-
tially uncharacterized dominant-negative variants amongst
the differing cancers.
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Fig. 3 Distribution of somatic PTEN variants in cancer genomics datasets. A Each nucleotide within the PTEN cDNA was computationally substituted to every
other nucleotide to create a list of all possible single-nucleotide variants, and each of these codons was computationally translated to create a list of PTEN
missense variants possible through single-nucleotide variation, as well as their relative frequencies of being observed based on degeneracy of the codon table.
Approximately 46% of these missense variants had clear abundance and activity classifications (this is the sum of all of the gray lines across the four classes
shown in panel A). To aid comparisons for cancer-specific enrichment of PTEN variant classes, these PTEN variant frequencies calculated from mutation only
were separated into different phosphatase-abundance groups, and their expected frequencies are shown as thick gray lines. PTEN variants observed in cancer
genomics databases were also separated by phosphatase-abundance groups, and their frequencies shown as different colored points. B Loss of activity only
variants were next separated into known dominant negatives, as well as other previously uncharacterized loss of activity only variants. The total number of
somatic PTEN variants observed in cancer genomics databases with concomitant abundance and activity classifications, is shown as n values next to each
cancer type

Fig. 4 PTEN variants and phospho Akt1. WT or PTEN variants were overexpressed in HEK 293T cells, lysed, and Western blotted for the HA tag (A,
top), Beta-actin (A, bottom), Thr308 phosphorylated Akt1 (B, top), or all Akt1 (B, bottom). Representative Western blots are shown. Normalized
band intensities of each of three independent Western blotting experiments are shown as points, while the mean value is shown as a black bar.
C Scatterplot comparing the mean normalized pThr308 value to the number of independent samples each variant was observed in the cancer
genomics databases. D Comparison of PTEN protein abundance level and pThr308 Akt1 abundance level calculated by reverse-phase protein
array in the cancer cell line encyclopedia. Leu42Arg, which was not tested in our assay, is highlighted in blue as it exhibits strong reverse-phase
protein array data for both PTEN abundance and pThr308 in the CCLE data
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Loss of activity only variants were differentially
enriched across cancers, with breast, uterine, pros-
tate, and lung cancers exhibiting the greatest enrich-
ments (Fig. 3A). The known dominant-negative variants
Cys124Ser, Gly129Glu, Arg130Gly, and Arg130Gln were
observed at a much higher frequency than predicted by
the null model, where they were collectively only pos-
sible through 5 of the 3618 single nucleotide-driven
codon changes (Fig. 3B). These known dominant-
negative variants were the major contributors to the en-
richment of loss of activity only variants, contributing
58% of the enrichment observed in breast, 87% in uter-
ine, and 100% in lung cancers. Thus, no additional loss
of activity only lung cancer variants were scored, while
uterine and breast cancers had enriched loss of activity
only variants in addition to the known dominant nega-
tives (Fig. 3B). We hypothesized that this additional loss
of activity only variants observed in uterine and breast
cancers might represent new dominant-negative
variants.

Identifying potential dominant-negative variants
To test this hypothesis and identify new PTEN
dominant-negative variants, we quantified levels of Akt
activation loop phosphorylation at Thr308 (pAkt) in
cells expressing both a variant and a WT copy of PTEN
[40] (Fig. 4, Additional file 1: Fig S5). We implemented
this assay by expressing PTEN variants using our HEK
2393T landing pad cells, which already express WT
PTEN [9]. Using this approach, we previously identified
Pro38Ser as a dominant-negative variant, as it resulted
in increased pAkt levels similar to the known dominant-
negative Cys124Ser variant [9].
We chose a small panel of loss of activity only variants

to screen using this assay including Asp24Gly, Asp92His,
Arg130Pro, and Arg159Ser which were selected because
they were observed multiple times in breast cancer, uter-
ine cancer, or both. We also chose Tyr16Ser, Tyr46Asp,
and Thr160Pro, which were observed one or zero times
in tumors, allowing us to test whether observation in tu-
mors correlated with dominant-negative activity. Finally,
we included the known low abundance variants
Leu345Gln and Asp252Gly, along with the known
dominant-negative variant Cys124Ser, as controls.
As expected, all of the loss of activity only variants

were expressed at near WT levels and were clearly dis-
tinguishable from Leu345Gln and Asp252Gly, the loss of
abundance controls (Fig. 4A). Overexpression of WT
PTEN reduced pAkt levels below that of unrecombined
cells. In contrast, the loss of abundance control variants
had pAkt levels similar to unrecombined cells, suggest-
ing we could qualitatively distinguish variants presum-
ably functional for PtdIns(3,4,5)P3 phosphatase activity
over those that were inactive. Importantly, all of the loss

of activity only variants exhibited pAkt levels equal to or
greater than the unrecombined and loss of abundance
controls, confirming these variants were, indeed, loss of
activity. Along with the known dominant-negative vari-
ant Cys124Ser, the Arg130Pro and Asp92His variants
exhibited markedly increased pAkt levels (Fig. 4B). This
increase in pAkt signal was not due to elevated AKT1
expression, suggesting a specific effect on Akt1 signaling.
The remaining loss of activity only variants exhibited
intermediate pAkt signals and were thus less conclusive.
Importantly, each variant’s ability to drive Akt1

Thr308 phosphorylation correlated with the variant’s in-
cidence in cancers (Pearson’s r: 0.76) (Fig. 4C). Arg130-
Pro was found to be mutated four times in sequenced
breast cancers, and three times in uterine cancers, and
once in an esophageal cancer (Fig. 4C). Asp92His was
mutated in three independent instances of breast cancer.
Consistent with these results, the Asp92His variant is
present in the CAMA-1 breast cancer cell line tested in
the Cancer Cell Line Encyclopedia (CCLE) [42]. This cell
line exhibits normal PTEN expression and elevated
pAkt, similar to other cell lines expressing the known
dominant-negative variants Arg130Gln, Cys124Ser, and
Arg130Gly in CCLE [42] (Fig. 4D). In contrast,
Asp24Gly and Arg159Ser, which were mutated two
times in breast and uterine cancers, respectively, did not
exhibit increased pAkt intensity in our assay. Thus, the
PTEN large-scale variant functional datasets, when com-
bined with cancer genomics data, can identify dominant-
negative variants that may exhibit altered disease
severity.

Discussion
Here, we showed that integrating multiple large-scale
PTEN variant functional datasets can reveal how vari-
ants impact protein function, and illuminate mecha-
nisms by which disease-associated variants act. We
improved our previous PTEN variant abundance dataset
by assaying a new, independently generated library, add-
ing abundance scores for 764 new variants. This was
aided by newly engineered iCasp9 landing pad cells,
which allowed us to rapidly select for our entire culture
of recombined cells overnight. In contrast, the original
method required FACS to sort for mCherry positive
cells, which necessitated hours of preparation and sort-
ing, costing many hundreds of dollars per replicate re-
combination. More importantly, by avoiding the FACS
step through chemical selection, we could avoid library
bottlenecking that occurs from extended culturing
needed prior to sorting, the inability to capture every
target cell during FACS, or the loss of cell viability that
occurs from the sorting procedure. The combination of
improved workflow, an independently generated library
of previously missing variants, and slight improvement
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in accuracy of previously scored variants combined to
yield a final dataset of 4721 variants confidently scored
for abundance.
We integrated this improved abundance dataset with

an existing large-scale PTEN phosphatase activity data-
set to separate variants into four distinct subsets based
on their abundance and activity. We compared the vari-
ants in these subsets to germline variants associated with
PTEN hamartoma tumor syndrome or autism spectrum
disorder. Disease-associated variants tended to have re-
duced activity, with the largest fraction of these also hav-
ing reduced abundance. This finding is consistent with
another recently published analysis comparing the PTEN
variant activity and abundance, which reported that ASD
and PHTS variants were enriched in loss of abundance
and activity variants [12]. For PTEN somatic variants, we
found that those with losses of activity and abundance
were uniformly enriched across cancers, while loss of ac-
tivity only variants were particularly enriched only in
breast, uterine, and lung cancers. We analyzed four pre-
viously uncharacterized loss of activity only variants that
were observed multiple times in breast cancer, uterine
cancer, or both, and found that two of these variants ex-
hibited increased pAkt signaling consistent with
dominant-negative activity. These findings highlight the
utility of having multiple, distinct large-scale variant
functional datasets for important disease genes like
PTEN, since integrating these data can reveal groups of
variants that have different functional properties with
different implications for disease.
As compared to null alleles, expression of certain

cancer-associated PTEN variants in mouse models exac-
erbated developmental overgrowth and tumor burden
[41]. These alleles also exhibited dominant-negative ef-
fects on the intracellular regulation of the PI3K/Akt
pathway [40]. Thus, cancer-associated variants exhibiting
dominant-negative in vitro activity are likely stronger
drivers for cancer. Recent studies have begun to reveal
differences in associations between some functionally
distinct PHTS PTEN variants, particularly for their asso-
ciations with autism, cancer, or both [33, 43]. However,
additional research with larger cohorts is needed to fully
characterize the genotype-phenotype associations of
PTEN variants with different loss-of-activity levels, in-
cluding dominant-negative variants.
Only Cys124Ser, Gly129Glu, Arg130Gly, and Arg130Gln

were originally identified as exhibiting dominant negative
in vitro activity [40]. We previously determined that
Pro38Ser had WT-like abundance, but its recurrent appear-
ance in melanomas suggested it could have been inactive
and, thus, acting in a dominant-negative fashion [44].
Follow-up assays revealed that Pro38Ser overexpression in
cells with a WT copy of PTEN drove abnormally high pAkt
levels, supporting this notion [9]. Here, by comparing

abundance and activity for thousands of PTEN variants, we
directly identified numerous variants lacking activity while
remaining abundant in the cells. These comprise the func-
tional properties generally required for PTEN dominant-
negative activity. Follow-up assays on four variants revealed
that Arg130Pro and Asp92His also disrupt AKT regulation
in the presence of a WT copy of PTEN and thus act in a
dominant-negative fashion, at least in our cellular assay.
Arg130Pro joins Arg130Gly and Arg130Gln, two pre-

viously known dominant-negative variants affecting a
key catalytic residue in the P-Loop/HCXXGXXR motif
shared by protein tyrosine phosphatases and dual-
specificity phosphatases [43, 45]. The observation that
three different substitutions of the WT arginine residue
can confer dominant-negative activity suggests that any
stable PTEN variants lacking this side-chain are likely
capable of interfering with WT PTEN activity. Variants
with Arg130 substitutions to Ala, Phe, and Leu all
scored as stable and inactive in our integrated analysis,
and thus are highly likely to be dominant-negative vari-
ants as well. Of those three, only Arg130Leu is possible
through single-nucleotide variation, and it is accordingly
repeatedly observed in cancer genomics databases [22,
46].
Asp92 is a key residue in the PTEN WPD loop and is

thought to coordinate and polarize the nucleophilic
water molecule [47]. Like Gly129Glu, Asp92Ala was
found to abrogate the removal of phosphate groups from
phospholipids but not phosphopeptides [48]. However,
Asp92His has not been biochemically characterized, so it
is unclear whether it retains protein tyrosine phosphat-
ase activity like Asp92Ala. Variants with Asp92 substitu-
tions to Glu, Leu, Pro, Gln, Arg, and Ser all scored as
stable and inactive in the integrated analysis, although
only Asp92His and Asp92Glu are possible through
single-nucleotide variation. Asp92Glu is observed in can-
cers even more often than Asp92His, suggesting that its
negatively charged side-chain is not sufficiently able to
mimic the role played by the aspartate and that it is also
a dominant-negative variant. While not scored in our
dataset, Asp92 substitutions to Gly and Tyr were also
observed more times in the COSMIC database than His
and are thus strong dominant-negative candidates.
Not all putative PTEN dominant-negative variants

occur at active site residues. Pro38Ser, which is adjacent
to the active site, likely exerts its effect by perturbing the
active site conformation enough to render it catalytically
dead, without destabilizing the global folding of the pro-
tein. Beyond perturbing the active site, other mecha-
nisms, such as aberrant subcellular localization, could
confer dominant-negative effects. One candidate can be
found in the T98G glioblastoma cell line which encodes
a PTEN Leu42Arg variant. Leu42Arg has a normal
abundance and intact phosphatase activity but aberrant
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membrane localization [49]. While Leu42Arg exhibited
an intermediate activity score, it was absent in our abun-
dance data, so we were unable to incorporate this variant
into our analysis. However, T98G cells exhibit increased
pAkt levels (Fig. 4D), suggesting that Leu42Arg may
possess a dominant-negative function that does not dir-
ectly impact the active site. Notably, Cas9-based rever-
sion of only one of the two Leu42Arg alleles in T98G
cells did not alter steady-state Akt T308 phosphoryl-
ation, supporting its purported dominant-negative activ-
ity [50].
PTEN homodimerization may explain why some abun-

dant, lipid phosphatase defective variants can act as
dominant negatives while others cannot. In particular,
lipid phosphatase defective variants that fail to homodi-
merize would not be able to bind to WT PTEN and thus
could not exert dominant-negative activity. The majority
of previously known PTEN-dominant negative variants
substitute conserved residues in the catalytic motif, in-
cluding Cys124, Asp92, and Arg130. These variants ef-
fectively eliminate enzymatic function while potentially
having little effect on protein stability and three-
dimensional conformation. Thus, they would be able to
dimerize with WT PTEN protein and dominantly sup-
press their function [40]. Importantly, the large-scale
variant effect datasets alone were not sufficient to iden-
tify dominant-negative PTEN variants. Not all abundant
but inactive variants exhibited dominant-negative activ-
ity, as five of the variants we tested did not elicit in-
creased pAkt levels. Thus, comparing the variant effect
data to cancer genomics data is likely the most effective
approach for highlighting potential dominant-negative
variants. While it is impossible to accurately estimate
what fraction of abundant but inactive PTEN variants
will be dominant negatives, we believe it will likely be no
more than the ~13% in the panel we tested and possibly
much less.
The combined analysis also illustrates the differing

strengths of each assay, even when considered in isola-
tion. The yeast PTEN activity assay directly assesses
catalytic activity, thus identifying a large swath of abun-
dant but inactive variants that would be missed with the
abundance assay. The abundance assay can capture sub-
tle decreases to protein abundance associated with hypo-
morphic variants, potentially outside of the dynamic
range of the yeast activity assay (Fig. 2C). This is consist-
ent with what is currently known about functionally dis-
tinct PTEN variant groups in the literature, wherein
gross reductions in PTEN activity are more often associ-
ated with cancer and severe cases of PHTS, while partial
losses in protein stability and subtler reductions to func-
tion are associated with milder presentations observed
with autism spectrum disorder and developmental dis-
abilities [33, 51–53]. Thus, each assay provides

complementary experimental readouts that have to-
gether improved our ability to delineate how PTEN
genotype impacts phenotype.
As useful as they are, large-scale functional data have

many limitations. For example, seven variants are classi-
fied as abundant and active in our analysis but are also
listed as pathogenic in ClinVar. One of these is
His93Arg, which is known to remain abundant and par-
tially active, but with altered substrate specificity due to
changes in the phospholipid-binding site [54]. The
His93Arg phosphatase activity defect was not observed
in yeast [55], suggesting context-specific differences in
assay readout. Furthermore, different assays may give re-
sults with dissimilar dynamic ranges, and care must be
taken when comparing their results. For example, the
fluorescence readings from the EGFP-fused variants in
VAMP-seq likely have the highest dynamic range slightly
below the abundance of the WT protein. In contrast, the
yeast-based rescue assay depends upon PTEN enzymatic
activity, and the dynamic range of the assay is likely
highest at low levels of PTEN phosphatase activity, far
less than the activity of WT. Accordingly, a large frac-
tion of variants exhibited WT-like yeast rescue activity
but low abundance (Fig. 2A, orange), revealing an almost
right angle in populating the scatterplot, rather than a
straight line along the diagonal. A comparison with a
range of individually assessed PTEN abundance variants
confirmed this pattern of relationship (Fig. 2B). For dif-
ferent proteins and assays, each analogous plot will likely
differ, and thus, care must be taken when integrating
multiple large-scale variant effect datasets and interpret-
ing what they mean for protein-specific relationship be-
tween abundance and activity. In fact, a recent
comparative analysis of yeast-based enzymatic activity
and mammalian intracellular abundance of CYP2C9 re-
vealed the opposite pattern, where there were many
abundant variants with little detectable enzymatic activ-
ity, suggesting that the sensitivities of the two assays had
flipped in this case [26].
In conclusion, as we and others have shown, integrative

analysis of multiple large-scale variant effect datasets, each
measuring different properties of a single protein, can yield
new insights into protein function, protein structure and dis-
ease [24, 25, 56–58]. We anticipate that as multiplexed assays
are more widely deployed, such integrative analyses will be-
come commonplace. As such, improved methods for inte-
grating variant effect datasets, as well as tools for analyzing
these datasets in the context of structural, clinical, and evolu-
tionary information, are needed.

Conclusions
We showed that multidimensional, large-scale variant
functional data, when paired with public cancer genom-
ics datasets and follow-up assays, can reveal how protein
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variants impact protein function and illuminate mecha-
nisms by which disease-associated variants act. We cre-
ated an improved dataset for PTEN intracellular
abundance and integrated it with an existing large-scale
PTEN phosphatase activity dataset to separate 4178
PTEN variants into four distinct subsets based on their
abundance and activity, and found that disease-
associated germline variants tended to be loss of activity
variants, with the majority also reduced in abundance.
For PTEN somatic variants, we found that those with
losses of activity and abundance were uniformly
enriched across cancers, while loss of activity only vari-
ants were more variably enriched. Using follow-up as-
says, we found that two of these variants exhibited
increased pAkt signaling consistent with a previously un-
appreciated dominant-negative activity of these variants.
These findings highlight the importance of collecting
and integrating multiple large-scale variant functional
datasets for important disease genes like PTEN to pro-
vide better insights into how protein variants contribute
to disease.
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