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Abstract

Background: Metastatic breast cancer is a deadly disease with a low 5-year survival rate. Tracking metastatic spread
in living patients is difficult and thus poorly understood.

Methods: Via rapid autopsy, we have collected 30 tumor samples over 3 timepoints and across 8 organs from a
triple-negative metastatic breast cancer patient. The large number of sites sampled, together with deep whole-
genome sequencing and advanced computational analysis, allowed us to comprehensively reconstruct the tumor’s
evolution at subclonal resolution.

Results: The most unique, previously unreported aspect of the tumor’s evolution that we observed in this patient
was the presence of “subclone incubators,” defined as metastatic sites where substantial tumor evolution occurs
before colonization of additional sites and organs by subclones that initially evolved at the incubator site. Overall,
we identified four discrete waves of metastatic expansions, each of which resulted in a number of new, genetically
similar metastasis sites that also enriched for particular organs (e.g., abdominal vs bone and brain). The lung played
a critical role in facilitating metastatic spread in this patient: the lung was the first site of metastatic escape from the
primary breast lesion, subclones at this site were likely the source of all four subsequent metastatic waves, and
multiple sites in the lung acted as subclone incubators. Finally, functional annotation revealed that many known
drivers or metastasis-promoting tumor mutations in this patient were shared by some, but not all metastatic sites,
highlighting the need for more comprehensive surveys of a patient’s metastases for effective clinical intervention.

Conclusions: Our analysis revealed the presence of substantial tumor evolution at metastatic incubator sites in a
patient, with potentially important clinical implications. Our study demonstrated that sampling of a large number of
metastatic sites affords unprecedented detail for studying metastatic evolution.
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Background
Metastatic breast cancer (MBC) is a deadly disease
with a median survival of only 38 months [1]. A pre-
vious study estimated that 3 out of 4 patients initially
diagnosed with stage I–III disease progressed to MBC
[2]. Although the genomic and transcriptomic proper-
ties of primary tumors have been described exten-
sively [3–5], metastatic tumors, as well as the
processes leading to metastasis, are poorly understood
because comprehensive biopsying of metastatic sites is
difficult or impossible in living patients. Rapid aut-
opsy programs, in contrast, offer pathologists a com-
prehensive spatial understanding of the extent of the
disease and allow for the collection of fresh tissue
samples across all affected organs within hours of the
patient’s death. This approach has been used to study
metastatic tumor evolution in breast cancer with
TNBC patients being a smaller subset [6–9] and in
other cancer types [10–14]. For example, Savas et al.
studied tumor evolution in 3 estrogen-receptor (ER)-
positive, human epidermal growth factor receptor 2
(HER2)-negative breast cancer patients, and 1 triple-
negative breast cancer patient, using primary tumor
and 5–12 matched metastatic samples from the
CASCADE program [8]; and Hoadley et al. profiled
primary tumors with 4–5 matched metastases geno-
mically and transcriptomically in 2 triple-negative
breast cancer patients [7]. More recently, De Mattos-
Arruda et al. profiled 7–26 samples per patient from
autopsies of 10 patients (5 ER+/HER2-, 3 ER+/HER2+, 1
ER-/HER2+, 1 TNBC) with therapy-resistant breast
cancer [9]. These studies found significant heterogen-
eity in both the primary and metastatic tumors, and
complex evolutionary patterns during disease progres-
sion. However, critical questions remain unanswered,
especially in TNBC patients: for example, whether the
ability for the cancer to metastasize fully develops in
the primary tumor, as suggested by studies [7], or if
early metastatic sites can provide niches where the
cancer can further develop metastatic potential not
present in the primary tumor, but necessary to invade
additional organs. To understand metastatic tumor
evolution and disease progression at the subclonal
resolution, we studied the primary tumor at diagnosis
and at surgery, as well as 28 metastatic samples
across seven organs from a metastatic breast cancer
patient with aggressive disease, collected via rapid
autopsy following the patient’s death, with 30 samples
in total. Deep whole-genome sequencing allowed us
to reconstruct detailed subclone structure and track
subclonal expansion across these samples, elucidating
the order and timing in which each metastatic site
was established, including metastatic colonization
events from one organ to another.

Methods
The workflow for this study is shown in Additional file
1: Fig. S1.

Sample collection
The study was reviewed and approved by the human
subjects Institutional Review Boards (IRB) of the Univer-
sity of Utah. Informed consent in accordance with the
Declaration of Helsinki was obtained from the patient.
We collected in total 44 autopsy samples including 2
skin normal tissues, 28 tumor samples, and 14 adjacent/
distal normal tissues from a 45-year-old woman with
ER-negative, PR-negative, and HER2-negative metaplas-
tic grade III invasive ductal carcinoma of the breast via
rapid autopsy program approximately 2 h after death.
There were 12 metastatic samples from the lung, 1 from
the kidney, 1 from the peri-pancreas, 1 from the skin, 4
from the brain, 3 from the bone, 4 from the liver, and 2
from the peritracheal lymph nodes. All metastatic sam-
ples represent individual tumors except sample Bn3 and
Bn4, and Ln2 and Ln3, which were from different parts
of the same brain tumor, and the same lung tumor, re-
spectively. The tumor sizes vary ranging from 3 to 33
mm (see detailed description in Additional file 2: Table
S1). For all autopsy samples, frozen sections were
reviewed by pathologists to confirm the tumor type and
presence and to quantify necrosis levels. All autopsy
samples were stored in RNAlater at −80°C until DNA
and/or RNA isolation. FFPE samples for the primary
tumor biopsy and the mastectomy biopsy were also
available for this study. All tumor samples and 2 normal
skin samples were subjected to whole-genome sequen-
cing (WGS). All samples except the FFPE samples and
the two normal skin samples were also subjected to bulk
RNA sequencing.

Sample process
DNA from FFPE samples was isolated using the Qiagen
QIAamp DNA FFPE Tissue Kit. DNA from all 28 aut-
opsy tumor samples and 2 skin normal tissues was iso-
lated using Qiagen’s QIAamp DNA Micro Kit. RNA
from all 28 autopsy tumors and adjacent/distal normal
samples was extracted by using Qiagen RNeasy Micro/
Mini Kit.

WGS analysis including somatic SNV and INDEL calling,
CNV calling, LOH calling, structural variant calling, and
translocation calling
Primary and mastectomy samples were subjected to 45X
WGS at the Huntsman Cancer Institute’s High
Throughput Genomics Core Facility using the Illumina
TruSeq. Metastatic tumors and skin biopsy samples were
subjected to 60X WGS at the McDonnell Genome
Institute at Washington University using NantOmics.
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Samples sequenced at Washington University were pro-
vided as aligned BAM files. Primary and mastectomy
WGS sequencing data were aligned using an identical
pipeline to the one used at the McDonnel Genome Insti-
tute to the same GRCh37-lite reference genome [15]
(ftp://ftp.ncbi.nih.gov/genbank/genomes/Eukaryotes/
vertebrates_mammals/Homo_sapiens/GRCh37/special_
requests/GRCh37-lite.fa.gz) using BWA-MEM 0.7.15-
r1140; Freebayes 0.9.21 was used to identify SNV and
INDEL variants called jointly over all samples using the
following command line parameters:

� --allele-balance-priors-off
� --report-genotype-likelihood-max
� --genotype-qualities
� --pooled-discrete
� --pooled-continuous

The variants produced by Freebayes were then sub-
jected to quality filtering, including criteria as follows:

� Variant quality > 30
� Per-sample sequencing depth > 15
� Intersecting with 1000G genome accessibility mask
� Inverse-intersecting with low complexity region

mask of GRCh37d5
� Filtering out multi-allelic variant sites

Somatic variants were identified when the variant al-
lele frequency (VAF) was below 0.1 or the alternate al-
lele count was less than five in both normal skin
samples. To ensure that differences in sequencing pro-
vider and depths did not affect variant detection, we
showed that the number of somatic variants detected in
BrP and BrM (45X, at Huntsman Cancer Institute) were
similar to other samples (60X, at Washington Univer-
sity). We detected in total 20,012 somatic variants across
all samples. On average, we detected 10,648 ± 493
(standard deviation) variants per metastatic sample,
10,352 variants in BrP, and 10,121 variants in BrM (Add-
itional file 1: Fig. S2). The same trend can be observed
for somatic variants on chromosome 14 and chromo-
somes 2, 7, 9, 11, 14, 15, 16, 21, and 22 (Additional file
1: Fig. S2). SNVs and INDELs were annotated by
SnpEFF 4.2.
FACETS [16] was used to identify copy number vari-

ants (CNV) and loss of heterozygosity (LOH) events
(Additional file 1: Fig. S3A). All copy number calls were
then manually curated. We binned the log2(ratio) value
(calculated from the FACETS R package) in 1Mb win-
dows in each of the 28 tumor samples. Then, we clus-
tered the copy number profile by calculating the
Euclidean distance between each pair of samples and
then used the UPGMA method to cluster the samples.

Except for BrP, BrM, Ln7, Ln9, and Ln1, all other sam-
ples which are clustered together had distinct copy num-
ber patterns (Fig. 2A, Additional file 1: Fig. S3B).
Structural variants and translocations were identified

using the reference-free variant detection algorithm
RUFUS [18] and Lumpy [19] followed by visual inspec-
tion in IGV [17, 20].

Allele-specific CNV/LOH calling in multiple samples
Heterozygosity and copy number for each sample were
derived using FACETS. Allele-specific copy number
changes were not generated by FACETS, but were separ-
ately inferred using inherited variants falling in somatic
CNV regions. By comparing the AF of these variants be-
tween samples, we were able to identify the allele-
specific copy number changes. For example, the AF of
inherited variants on chromosome 3 in pure tumor sam-
ples with copy number neutral LOH chromosome 3 is
either 1 or 0, whereas the AF of these variants in pure
tumor samples with copy number three and both alleles
would be 0.33 and 0.67. A scatter plot of AF of these
variants between two samples reveals which chromo-
some is amplified in the copy number amplified sample,
as well as whether the amplified chromosome is the
same as the ones in the copy number neutral, LOH sam-
ple. Additional file 1: Fig. S4A shows the AF of inherited
exonic variants on chromosome 3 between Pa1 and Bn2.
Variants in red circles represent the homozygous vari-
ants in both samples. The AF of variants in yellow cir-
cles indicates that the amplified allele in Pa1 became the
only allele that remained in Bn2, at copy number 2. The
AF of variants in green circles indicates that the unamp-
lified allele in Pa1 was lost in Bn2. This method enabled
us to establish whether samples with the same copy
number and LOH are the same events. In addition, this
method provides higher resolution information such as
allele-specific structural variants (including transloca-
tion) (Additional file 1: Fig. S4B).

Tumor phylogenetic tree construction
We used somatic short variants on chromosome 14
(which harbored no copy number or LOH events in all
samples except Ln9) to construct the phylogenetic tree
across all samples and additional somatic variants on
copy number-neutral but LOH chromosomes (chromo-
somes 2, 7, 9, 11, 15, 16, 21, and 22) to refine the phylo-
genetic tree in each group. We encoded the state of a
known somatic variant locus in a sample as a binary
value, where 1 indicates the variant is present (AF>0.1)
and 0 that the variant is absent (AF<0.1). We used two
methods to construct a phylogenetic tree. First, we used
the UPGMA clustering method based on the hamming
distance matrix calculated between samples (Additional
file 1: Fig. S5). Samples in the same group were
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confirmed to the cluster. However, this method does not
consider the constraint that samples sharing the same
variants should share an evolutionary lineage. Therefore,
secondly, we developed a method that would incorporate
this constraint while simultaneously assuming that (1)
all cancer cells are descendants of a single founding
clone (i.e., normal cell) and (2) all variants satisfy the in-
finite sites assumption that the chance the same variant
occurs independently in different cells, as well as vari-
ants reverting back to the wild type, is extremely low.
Therefore, we can describe our problem as a perfect
phylogeny problem [21] with complete and cladistic
characters which are the states of variants. For each vari-
ant, a binary vector vi

j is calculated where vi
j = 1 if vari-

ant i is found in sample j or 0 otherwise. Variants with
the same binary vectors are clustered together, which
means that they occur in the same clone, albeit the clone
can be found in multiple samples. The evolution order-
ing between any two variants can be established by com-
paring their binary vectors. If a variant i1 occurred in
the clone that already contained i2, for all samples j, ei-
ther of the following two conditions must hold true: (1)
vi1

j = 1 and vi2
j = 1 when j contains the descendant

clone or (2) vi1
j = 1 and vi2

j = 0 when j contains the an-
cestral clone before variant i1 occurred. We imple-
mented this method [22] (available via the GitHub
repository for all code used in this manuscript). Al-
though Ln9 had acquired an additional chromosome 14,
no variants were lost in this process. Thus, this method
can still apply to Ln9. The results from the second
method showed that Ln9 was the first sample to branch
out and the rest of the samples had a common ancestor
(Fig. 3A). We then calibrated the length of evolution
branches by the number of variants.

Subclonal analysis with SubcloneSeeker
We used AFs of somatic variants on chromosome 14 to
reconstruct subclone structure and estimate cell preva-
lence of each subclone of BrP, BrM, Ln1, Ln7, and Ln9.
Except for Ln9, all samples have CN normal chromo-
some 14; therefore, AF can be used to accurately esti-
mate the cell prevalence. For the subclone structure of
samples in each group, in addition to variants on
chromosome 14, we also used group-specific variants
that are absent in BrP and BrM on the CN neutral chro-
mosomes containing LOH (chromosomes 2, 7, 9, 11, 15,
16, 21, and 22) events shared by all samples in G1–G4
as well as BrP and BrM. Since these variants occurred
after the LOH event chronologically, they are most likely
to be heterozygous and can be used for subclone analysis
within a group. Because all samples in G4 had chr11p15-
q25 deletion, we can also accurately estimate cell preva-
lence from G4-specific variants in this region. Thus, these
variants were also used for subclone analysis in G4.

For subclone analysis, we clustered variants with the
same level of AF in all samples to a cluster (C1–C28 in
Additional file 1: Fig. S6A, S6B, S6C, S7A, S9A, S9B,
S10A). We used 0.05 as the allele frequency cutoff for
positive somatic variant detection. The ancestral rela-
tionship between two subclones satisfy (1) variants in
the ancestral clone have larger AF than variants unique
to the descendant clone in one sample, (2) variants in
the ancestral clone will also be in the descendant clone
via clonal lineage, and (3) variants that have ~0.5 AF are
in the founding clone of a sample. SubcloneSeeker v2
[23, 24] (https://github.com/yiq/SubcloneSeeker/tree/v2)
was used to jointly construct subclone structures, enu-
merating all possible trees with ±0.1 VAF tolerance to
accommodate the VAF measurement error, and estimat-
ing cell prevalence for each subclone for individual sam-
ples. SubcloneSeeker outputs all subclone structures if
multiple solutions exist. The computational outputs
were manually reviewed, and the final subclonal evolu-
tionary trajectory was assembled. When multiple solu-
tions are available, we choose the solution that
minimizes cellular prevalence violation in a parent-child
relationship. For detailed discussions on alternative solu-
tions, see Additional file 3. The cell prevalence for each
subclone (shown in Additional file 1: Fig. S6-S10) was
corrected for tumor purity.

Identification of monoclonal and polyclonal seeding
A clone presented at a less than 100% cell preva-
lence in one sample, and then at 100% in another
sample, signifies that this subclone emerged in the
former sample, and seeded the latter, which can be
characterized as a monoclonal seeding event. How-
ever, if a clone had a low cellular prevalence in both
samples, it is likely to be the result of a polyclonal
seeding event, in which two or more subclones in
one sample traveled together or separately and
seeded the other one.

Mutational signature analysis
We assessed the dynamics of mutational process over
time by analyzing somatic mutation patterns attributed
to the branches of the phylogenetic tree, including trun-
cal variants (variants occurs in the primary tumor), vari-
ants shared by all samples in G1, G2, G3, and G4,
respectively, as well as the remaining, group-specific var-
iants for each group. We applied MutationalPatterns
[25] to our dataset. Briefly, after de novo extraction of
mutational signatures from the mutation count matrix,
the contribution of COSMIC mutational signatures
(https://cancer.sanger.ac.uk/cosmic/signatures_v2) to the
mutational profile was quantified.
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RNA-seq and data processing
RNA-seq was performed using rRNA depletion-based li-
brary preparation followed by paired-end Illumina HiSeq
sequencing. We obtained RNA-seq data from 42 speci-
mens throughout the patient’s body at autopsy, includ-
ing 28 gross tumors (which also had DNA samples) and
14 surrounding normal samples. RNA-seq data were
processed with Rsubread [26, 27] v1.16.1. We aligned
the reads to GRCh37 and used only uniquely mapped
reads and the Hamming distance to break ties. The max-
imum indels allowed per alignment was 5. Gene-level
expression values were processed to transcript per mil-
lion mapped reads (TPM). We used the featureCounts
function in Rsubread for reads counting. We used the
built-in annotation file which includes the exon annota-
tion information from NCBI Build GRCh37.2 and Entrez
gene identifier.

RNA-seq-based copy number inference
To infer approximate copy number events from RNA-
seq data, we used an approach reported previously for
single-cell RNA-seq copy number inference [28], which
we had also used previously [29]. This approach relies
on the normalization and calculation of 101-gene win-
dow expression averages, followed by normalization to
samples with little or no tumor purity.

Differential expression (DE) analysis
We used a R workflow package, “RnaSeqGeneEdgeRQL”
[30] for normalization, and downstream DE and pathway
analysis. Specifically, we normalized data by using calc-
NormFactors function which applied the trimmed mean
of M values (TMM) approach. Next, the DE analysis was
performed on samples in four groups (G1–G4) by using
EdgeR which implemented empirical Bayes methods that
permit the estimation of gene-specific biological varia-
tions. We made pairwise comparisons between all four
groups and performed a one-way analysis of deviance
(ANODEV) for each gene. FDR<0.05 was used for the
significance cutoff. Significantly expressed genes in each
group were annotated in terms of higher order biological
processes or molecular pathways by using the NCI-
Nature pathway database in Enrichr [31]. Finally, we
performed gene set enrichment analysis (GSEA) using
the C2 curated signatures from MSigDB (including 5637
signatures). RnaSeqGeneEdgeRQL package incorporates
the Correlation Adjusted MEan RAnk gene set test
(CAMERA) [32] method for the enrichment analysis.

Validation of variants in RNA-seq data
Somatic SNVs and INDELs identified by Freebayes from
WGS data were validated by RNA-seq data. We ran-
domly picked two samples in each group and Ln7 (total
nine samples) with high tumor purity in RNA-seq data

for this validation. For any given tumor sample, only
somatic short variants that have greater than 0.1 gen-
omic VAF and have a read depth of at least ten in the
paired RNA-seq were considered. We use the following
workflow to validate the variants:

� If a variant is present in paired RNA-seq data, i.e.,
having RNA-seq reads containing the variant allele,
it is considered “validated.”

� If a variant is not found in the paired RNA-seq data
but found in the RNA-seq data of other tumor sam-
ples genomically determined to also contain the
same variant, it is then considered as “validated in
other samples.”

� If a variant cannot be validated by either of the
mentioned steps, we consider the following
possibilities:

� Variant dropout in RNA seq data due to sampling:
It is reasonable to consider that a variant with low
WGS VAF (e.g., 0.1) and low RNA-seq coverage
(e.g., 10X) may not be sampled by RNA-seq accord-
ing to binomial distribution (in the example case,
the possibility of sampling 0 alternate allele contain-
ing reads, or P0, is 0.35). We skip such variants with
P0 > 0.05. Note that less than five variants were in
this category in each sample.

� Variant allele not expressed: this can be the result of
unbalanced expression between alleles or false
positives in genomic variant calling.

More than 90% of variants can be either “validated” or
“validated in other samples” (Additional file 1: Fig. S11).

Results
Clinical presentation showed extremely aggressive
metastatic cancer
We studied a 45-year-old woman with ER-negative, PR-
negative, and HER2-negative metaplastic grade III inva-
sive ductal carcinoma of the breast (Fig. 1A). At the time
of diagnosis, she had a clinical T2N0M0 breast cancer,
with staging including an ultrasound (US) and MRI
showing a 3.1-cm mass. However, the sentinel node bi-
opsy showed none of the three biopsied lymph nodes
had cancer. The patient received neoadjuvant therapy of
doxorubicin and cyclophosphamide (AC) followed by 8
weeks of weekly paclitaxel. An ultrasound image after
the AC showed enlargement of the breast mass. After
paclitaxel, the mass remained stable in size on ultra-
sound but was more painful. The patient underwent a
mastectomy at week 21. At week 39 after diagnosis,
MRIs showed brain metastases, and CT scans showed
multifocal metastases in the lung, liver, pancreas, bone,
skin, and lymph nodes. This led to subsequent courses
of chemotherapy and radiation therapy, all without
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response, and 56 weeks after diagnosis, the patient suc-
cumbed to the disease. A rapid autopsy was performed
approximately 2 h after death: 28 metastatic tumor sam-
ples, 14 surrounding normal tissue samples, and 2 nor-
mal skin samples were collected (see detailed sample
descriptions in Additional file 2: Table S1). We were also
able to acquire formalin-fixed paraffin-embedded (FFPE)
primary breast tumor samples collected at diagnosis
(BrP) and at mastectomy (BrM). All tumor samples and
2 normal skin samples were subjected to whole-genome
sequencing (WGS). All samples except the FFPE samples
and the two normal skin samples were also subjected to
bulk RNA sequencing. We hypothesized that genomic
and transcriptomic analysis of this unprecedented

collection of 46 biopsy samples from a single patient
would provide the ability to reconstruct the evolutionary
course of this aggressive metastatic cancer. According to
the wishes of the patient and family, to honor the contri-
bution of the patient, and after IRB approval, we named
this study “The Victoria Clark Study.”

Genomic characteristics show widespread somatic
variants across all tumor sites
We interrogated the WGS data (~60X coverage from
the rapid autopsy fresh tissue samples, and ~45X cover-
age from the FFPE samples, with no discernible quality
difference between 60X and 45X samples; see Additional
file 1: Fig. S2) with our state-of-the-art multi-sample

Fig. 1 Patient treatment history and sample origins. A Treatment history over the course of disease progression as well as imaging history
including ultrasound (US) imaging, MRI, and CT scan. B Primary breast tumors at diagnosis (BrP) and at mastectomy (BrM) were biopsied. 26
metastatic tumors and 2 normal skin autopsy samples were collected through a rapid-autopsy procedure. Placements of samples are indicative of
organ-of-origin, not actual sample locations
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tumor data analysis pipeline, identifying inherited and
somatically acquired variants including single nucleotide
variants (SNVs), short insertions/deletions (INDELs),
copy number variations (CNVs), regions of loss-of-
heterozygosity (LOH), and chromosomal translocation
events. Tumor purity was estimated by FACETS [16]; 28
tumor samples that had >50% tumor content (see Fig.
1B) were selected for subsequent genomic analysis. The
patient had no identifiable germline breast cancer pre-
disposition variants, in concordance with earlier clinical
testing for BRCA1 and BRCA2 germline mutations.
However, all tumor samples, including the primary and
mastectomy, showed widespread chromosomal aberra-
tions, including CNVs and large regions of LOH (Add-
itional file 1: Fig. S3A). We also found a total of 20,012
somatic variants across all samples. 5149 of these were
shared by all samples, including a homozygous TP53
missense (c.517G>C, p.V173L) SNV, a homozygous
PTEN frameshift (c.676_697delTCCTCCAATTCAG-
GACCCACAC, p.S226fs), and a homozygous RB1 dele-
tion; 11,246 additional variants were shared by at least
two samples, and 3617 variants were sample-specific.
The average number of variants was 10,648 per sample
(range 9975–12,548, see Additional file 2: Table S2). The
numbers of variants shared among samples were im-
pacted by the presence of LOH. For example, samples
Pa1 and Ln4 retained both copies of chromosome 3
whereas samples Ln3, Ly1, and Bn4 lost one copy. All
somatic variants on the lost chromosomal copy are
therefore absent in samples Ln3, Ly1, and Bn4 (Add-
itional file 1: Fig. S3A). A high fraction, on average 80%
per sample, was already present in the primary tumor
BrP, i.e., these were truncal variants. 18% were shared
variants with at least one other sample, and the
remaining 2% were sample-specific variants.

Chromosomal changes suggest four distinct waves of
metastatic colonization
Based on the similarity of their copy number profiles
(Additional file 1: Fig. S3B), we were able to cluster 23
of the 28 tumor samples into 4 distinct groups (the
shared CNVs in each group are highlighted in red boxes
in Fig. 2A). Samples in each group fell into almost per-
fectly delineated organ groups within the body (G1: ab-
dominal organs, G2: lymph nodes, G3: brain and bones,
and G4: lymph nodes). Notably, every group also con-
tains lung sites. Each group signifies a distinct wave of
metastatic colonization, as samples in the same group
share a common genetic origin. The CNV-based group-
ing was confirmed by detailed structural variant (SV)
analysis in which we identified the exact deletion and
amplification breakpoints and the specific deleted or
amplified alleles (Fig. 2B).

We then attempted to reconstruct the time order of
these metastatic waves. In contrast to longitudinally
sampled cancer genomes with an inherent time course,
rapid autopsy datasets are collected at a single time
point. Therefore, the time order in which these sites
were established must be inferred from the data. Here,
we were able to use the observed chromosomal changes
to infer partial time ordering: samples in G1 all have one
chromosome 3 allele amplified, while still retaining the
second allele; whereas samples in groups G2–G4 have
two copies of the first allele but lost the second allele
(Fig. 2C, Additional file 1: Fig. S12). This indicates that
tumor sites in G1 were seeded by an earlier tumor sub-
clone than sites in the other groups; therefore, G1 was
likely the first metastatic wave. Furthermore, the breast
biopsy collected at mastectomy (sample BrM) consists
entirely of the G2–G4 genotype, whereas the primary
breast tumor (BrP) is a mixture of cells, containing both
the earlier and the later genotypes (Fig. 2C). This indi-
cates that a clonal sweep of the G2–G4 lineage occurred
in the primary tumor after a G1 precursor escaped.
CNV data alone was insufficient to determine the rela-
tive time order of the three later waves (G2–G4) and the
relationship between the four groups and three lung me-
tastasis samples (Ln1, Ln9, and Ln7) which have distinct
copy number profiles and therefore could not be placed
in any group (Fig. 2A).

Phylogenetic analysis based on somatic tumor SNVs and
short INDELs confirms and refines the four metastatic
waves
To further resolve the evolutionary trajectory of the
tumor, we constructed a phylogenetic tree among the
tumor biopsy samples using somatic SNVs and INDELs
(see the “Methods” section). To avoid any confounding
effects of CNV and/or LOH on calculating evolutionary
distances between samples (e.g., deletions/LOH events
cause samples to lose acquired somatic alleles that reside
on the deleted chromosome, resulting in a falsely re-
duced evolutionary distance), we restricted our analysis
to somatic variants on chromosome 14 (Additional file
1: Fig. S13A), the only chromosome in our dataset that
remained copy number neutral and unaffected by LOH
across all tumor samples (Additional file 1: Fig. S3). Fig-
ure 3A shows the inferred phylogenetic relationship
across all samples.
The sample phylogeny derived from chromosome 14

somatic variants is concordant with the CNV-based
grouping, confirming that G1 was seeded by an earlier
ancestor, and that the remaining three groups (G2–G4)
share a common ancestor. These data also allow the
placement of two additional lung samples (Ln7 and Ln9)
onto the phylogenetic tree. Based on this phylogeny,
most of the tumor evolution (i.e., 85%, as measured by
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the accumulation of somatic mutations, Additional file
1: Fig. S13B) had already taken place in the primary
tumor, before diagnosis. Once the cancer was able to
metastasize; however, it rapidly spread and led to the pa-
tient’s death. Three samples (BrP, BrM, and Ln1) share
mutations with samples across different groups and
therefore cannot be placed concordantly as nodes on the
phylogenetic tree. Indeed, these samples span multiple
branches of the phylogenetic tree (see the colored shade
on Fig. 3A) and are likely to be mixtures of cell popula-
tions (i.e., tumor subclones) also present in other
samples, a conclusion consistent with the mixed CNV
profile observed above for these three samples (Fig. 2A).
In addition, we refined phylogenetic tree structures in
each group using many additional somatic variants on
copy number-neutral but LOH chromosomes (chromo-
somes 2, 7, 9, 11, 15, 16, 21, and 22) (Additional file 1:
Fig. S13C).

Subclone-level analysis elucidates the main patterns of
metastatic evolution in the patient
To understand the composition of these three heteroge-
neous sites at the subclonal resolution, as well as the
time ordering and trajectory of the major events that
were crucial for this patient’s metastasis, we carried out
subclonal analysis based on the variant allele frequencies
of somatic events. In addition to somatic variants on
copy number-invariant chromosome 14, we were able to
use many additional somatic mutation events on copy
number-neutral but LOH chromosomes (chromosomes
2, 7, 9, 11, 15, 16, 21, and 22), in order to refine group-
specific subclone structure. Each subclone in this recon-
struction is defined, on average, by 33 mutations (see the
“Methods” section; Additional file 1: Fig. S6-10; Add-
itional file 2: Table S3-6). This analysis revealed the
complex subclonal composition of the primary and
mastectomy breast tumors (BrP and BrM) as well as
lung metastasis Ln1 and elucidated the critical role that
the subclones present in these key, but heterogeneous
samples, played in the metastatic process within our
patient (Fig. 3B, blue circles labeled with numbers

represent the corresponding subclones). Notably, lung
metastasis Ln1 was the site of the initial metastatic es-
cape from the breast. This site contains subclone Sc8
that was derived from primary subclone Sc4 (Additional
file 1: Fig. S6A). However, neither Sc4 nor any of its des-
cendant subclones are present in the mastectomy (sam-
ple BrM), indicating that lung site Ln1 had likely already
been colonized before the mastectomy procedure took
place (Additional file 1: Fig. S6A). Furthermore, although
primary subclone Sc1 is inferred by our subclonal ana-
lysis, this ancestral subclone is no longer present at the
primary site (BrP) at the time and location of resection
(the observed subclone frequency of Sc1 is zero) (Add-
itional file 1: Fig. S6D). This indicates that metastatic site
Ln1 was established even earlier, i.e., before the time of
the patient’s diagnosis and primary tumor resection. Our
analysis also revealed that all four metastatic waves in
the patient were seeded by subclones from lung site Ln1:
subclone Sc8 gave rise to the first metastatic wave
(group G1) (Additional file 1: Fig. S6A); and Sc9 to the
three later metastatic waves (G2–G4) (Additional file 1:
Fig. S6C). These observations establish lung site Ln1 as a
“jumping board” for all subsequent metastatic spread in
this patient (Fig. 3C).
Previous studies have reported examples of monoclo-

nal and polyclonal seeding in breast cancer patients [7,
8, 33]. We observed both patterns in our patient (Fig. 4).
As the most striking example of monoclonal seeding,
multiple subclones from lung site Ln10 seeded as many
as 9 metastases, primarily in the brain and bones (Fig.
4). Subclone Sc17 colonized 5 distinct sites, including all
four metastases in the brain (Fig. 4; Additional file 1: Fig.
S9B, C). The lack of additional variants across these sites
suggests that they were formed within a very short time
period (in contrast to Sc18-21, assuming a similar vari-
ant acquisition rate across sites). Conversely, subclones
Sc18-Sc21 each seeded a single metastatic site (Fig. 4;
Additional file 1: Fig. S9B). These subclones evolved
from each other by accumulating mutations gradually
and colonizing additional sites in a stepwise manner.
This pattern demonstrates that lung site Ln10 acted as a

(See figure on previous page.)
Fig. 2 Genomic CNV profiles across samples reveal metastatic waves. A Heatmap of copy number profile across all samples. Chromosomal
coordinates are on the x-axis, and samples are plotted along the y-axis. Colors in the heatmap represent the log2 ratio of tumor copy number to
normal copy number. Samples with similar CNV profiles are grouped together as G1, G2, G3, and G4. The shared CNVs in each group are
highlighted in red boxes. Colored bars beside the sample names represent the host organs: lung(blue), bone(orange), brain(pink), breast(cyan),
liver(green), kidney(grey), and pancreas(yellow). B An example of samples in the same group sharing complicated structural variants on
chromosome 6, further confirming CNV-based grouping. Yellow and black lines are the two alleles of chromosome 6. A deletion occurred
between 6p22.3 and 6p12.1 on one black allele in G2. A translocation occurred between chromosome 11 and one yellow allele of chromosome
6, designated as t(11;6)(p15.1;p11.2) (red and yellow line), and a translocation occurred between one black allele of chromosome 6 and
chromosome 20, designated as t(6;20)(p22.3;p12.2) (black and green line), in G4. A translocation occurred between chromosome 4 and one black
allele of chromosome 6, designated as t(4;6)(q32.1;q22.1) (blue and black line), in G3. C Copy number changes on chromosome 3 in different
groups and inferred evolution. Yellow and black lines are two alleles of chromosome 3. G1, G2, G3, and G4 represent samples in each group.
Each blue circle represents a cell population with certain chromosomal features inside
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subclonal incubator, in which subclones were able to
evolve before colonizing consecutive sites (Fig. 4). We
also found examples of polyclonal seeding (Fig. 4, green
arrows): subclones Sc1 and Sc4 from the primary tumor
colonizing lung site Ln1 (Additional file 1: Fig. S6) and
subclones Sc24 and Sc26 from pancreas site Pa1 coloniz-
ing liver site Lv4 (Additional file 1: Fig. S7). The import-
ant distinction between these two polyclonal seeding
events is that the former represents primary tumor to
metastasis seeding, whereas the latter is a metastasis-to-
metastasis event. It is important to note that in this pa-
tient, the vast majority of the metastatic colonization
events fall into this latter category, i.e., originated from
an already metastatic site, rather than directly from the

primary tumor, consistent with recent findings in other
metastatic cancers [8, 13, 34]. Finally, metastatic
recolonization of an existing tumor site has been noted
in a cell line engrafted mouse model [35]. We observed
such a recolonization event in this patient (Fig. 4, red
arrow): a subclone (Sc9) and its further evolved descend-
ent (Sc16) are observed at a single site (Ln1). However,
subclones Sc12 and Sc14, representing intermediary evo-
lutionary steps between Sc9 and Sc16, are found at a dif-
ferent lung site, Ln2 (Fig. 4, G3 Ln2; Additional file 1:
Fig. S9A), and at that site only. The most parsimonious
explanation for this observation is that, after evolving at
site Ln2, subclone Sc16 invaded, i.e., “recolonized” site
Ln1, an already established metastatic site.

(See figure on previous page.)
Fig. 3 Short variants reveal high-resolution phylogenetic relationships among all tumor biopsies, and early subclonal expansion and migration
events. A Reconstructed phylogenetic tree based on short variants confirms the grouping of the samples and reveals more detailed relationships
among samples in groups as well as the placement of Ln7 and Ln9. BrP, BrM, and Ln1 shared variants with different samples, indicating that they
are mixtures of cell populations. Three shades spanning multiple branches represent samples BrP, BrM, and Ln1. B Reconstructed subclone
structures in BrP, BrM, and Ln1 show the heterogeneity of these three samples. The descendant relationship among the subclones suggests the
earliest invasion was to the lung and reveal other subclone migrations and expansions from BrP. Each blue circle represents an inferred subclone.
Each box represents a sample or a group of samples. C Overall migration patterns across all tumor sites, with arrow colors corresponding to
metastatic waves. After the first invasion from primary breast tumor to lung (blue arrow), four metastatic waves spread the tumors to
other organs

Fig. 4 Subclone evolution and migration across all samples. Each blue circle represents an inferred subclone. Each box represents a sample or a
group of samples. Samples in the same group are shown in a group box-labeled G1–G4. Blue arrows represent subclone evolution or
monoclonal seeding. Green arrows represent polyclonal seeding (Sc1, Sc4, and Sc6 seeded Ln1; Sc26 and Sc24 seeded Lv4). Red arrow represents
recolonization (Sc16 from Ln2 recolonized Ln1). Ln1 served as the “jumping board” where Sc7 and Sc8, descendants of Sc1 and Sc4 from BrP,
and Sc9, descendant of Sc6 from BrM, were all attracted to stay, further evolved, and then colonized other samples. In G3, Ln10 served as an
“incubator” where many subclones evolved and went on to seed other sites
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Comprehensive sampling of metastatic tumors is
important for understanding subclonal dynamics across
sites
Our comprehensive sampling of multiple metastatic sites
affords us the ability to evaluate the contribution of each
sample to the biological conclusions. 20 of 28 total
tumor sites are phylogenetic “leaves” that give rise to no
further sites. Were any one of these sites left out of the
study, our conclusions would be minimally affected.
However, leaving out one of the more complex sites for
which our analysis inferred a more critical role would
have a larger effect. For example, had we not been able
to collect a biopsy at lung site Ln1 (Additional file 1: Fig.
S14A), we would not have observed a metastatic
recolonization event or been able to identify the lung as
the critical first site of metastatic escape. Without this
site, we would have concluded that the primary tumor
site (BrP) gave rise directly to the first metastatic wave
(G1) and that the mastectomy site (BrM) gave rise to the
3 later metastatic waves (G2–G4). As a result, substan-
tial insight into the role of the lung in the metastatic
spread in this patient would have been lost. Unavailabil-
ity of sample Ln2 would have resulted in the loss of our
ability to infer the recolonization event (Additional file
1: Fig. S14B). Losing sample Ln10 would have obfus-
cated the identification of the “incubator effect” in the
lung. Unavailability of either sample Lv4 or Pa1 would
have resulted in the loss of observation of a polyclonal
seeding event in G1 (Additional file 1: Fig. S14C). This
highlights the importance of comprehensive sampling of
metastatic sites for studies aimed at elucidating subclo-
nal dynamics in metastatic expansion.

Functional annotation of somatic variants explains the
aggressive metastatic disease observed in the patient and
provides a window into organ group-specific metastasis
To assess the driver mechanisms for tumorigenesis and
metastasis, we interrogated the overall mutational signa-
tures, variants on well-known oncogenes and tumor sup-
pressors, variants on genes that have been reported to be
involved in metastasis, and metastatic sample and
group-specific variants.
We first examined the relative contributions of COS-

MIC mutational signatures at different stages of tumor
evolution (Fig. 5A). We observed that signatures 1, 3, 5,
and 8 were consistently present throughout the tumor’s
evolution, suggesting that the mutational processes that
caused these signatures were continuously present
throughout the disease progression. Signatures 1 and 5
are correlated with age of diagnosis, and signatures 3
and 8 are associated with homologous recombination
deficiency (HRD). Consistent with the previous studies
[36, 37], TP53-mutated, relatively late diagnosis, TNBC
patients had enrichment in signature 3. The dominant

signatures during the early evolution of the tumor (i.e.,
those associated with truncal variants, present at each
tumor site) point overwhelmingly to APOBEC activity
(signatures 2 and 13). Strikingly, these signatures were
almost completely absent during the later stages of
tumor evolution, pointing to cessation/attenuation of
APOBEC activity at metastatic sites, in contrast with the
general pattern that APOBEC mutational signature in-
creases in prevalence during the course of tumor evolu-
tion [12, 38, 39]. Nevertheless, this phenomenon has
been observed in the Yates et al. study, wherein one of
the studied patients’ tumors, APOBEC activity-related
mutational signatures, was present early on but was later
turned off [40]. Signature 18 was found to be only
present in group-shared or group-specific variants, but
not in the truncal variants (Fig. 5A). Signature 18 was
previously reported to be associated with oxidative DNA
damage due to reactive oxygen species (ROS) [41, 42],
which can be induced by gamma-radiation [43]. A recent
study [44] also showed that gamma-radiation can induce
mutations linked to signature 18. The high prevalence of
signature 18 that presented in the late tumor evolution
may be due to the radiation therapy this patient received
after the mastectomy.
Second, we tried to identify driver mutations. A homo-

zygous TP53 missense (c.517G>C, p.V173L) SNV, a
homozygous PTEN frameshift (c.676_697delTCCTC-
CAATTCAGGACCCACAC, p.S226fs), and a homozy-
gous RB1 deletion occurred in the founding subclone,
indicating that these mutations were major primary
driver mutations in this patient’s tumor. Then, we fo-
cused on variants in 127 genes (Additional file 2: Table
S7) that have been reported as metastasis-related [45–
47]. We found that this patient had somatically acquired
deletions and amplifications in 17 of these genes (Fig.
5B); 8 of the genomic lesions were present in the pri-
mary tumor, including the MTDH, ANGPTL4, and ID1
genes associated with lung metastasis [46, 48]; and the
IL11 and TGFB1 genes in which genomic alterations
have been associated with bone metastasis [46, 49].
Third, we identified variants in those metastasis-

related genes (Additional file 2: Table S7) that may con-
tribute to sample- or group-specific tumor cell survival
and expansion (Fig. 5B). Three of the previously
reported metastasis-related genes (CTNNB1, PIK3CA,
PIK3CB) were somatically altered only in group G1
samples, as well as in the G1-progenitor subclones
within samples BrP and Ln1; these genes are therefore
candidates for promoting abdominal organ-specific
metastasis.
We speculate that some of the nonsynonymous coding

mutations that were shared among all samples in the
same group, albeit without well-established links to
tumorigenesis and metastasis, may also contribute to
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group-specific metastasis (genes HSPG2 and ISM1 are
mutated in samples in G1, IQGAP2 and RUNX1T1 in
G2, SPINK5 and FGA in G3, and PCDH20 in G4) (Add-
itional file 2: Table S8; and Additional file 1: Fig. S15).
More functional studies are needed, however, to critic-
ally evaluate these findings in the context of tumor
development.

Transcriptomic profiling confirms the genomic
observation of distinct metastatic waves and identifies
group-specific phenotypes
To gain insight into the evolution of the patient’s tumor
on a molecular/phenotypic level, and thus to comple-
ment genomic findings, we collected bulk RNA-seq data
from the 28 rapid-autopsy tumor biopsies and 14 sur-
rounding normal tissue samples. First, CNVs were

Fig. 5 Temporal and spatial distribution of mutational signatures, mutated metastasis-related genes, and clinically actionable genes. A Genome-
wide mutational signatures exhibited at different stages of tumor evolution, annotated to the phylogenetic tree. The number of variants is
labeled beside each pie chart. HRD homologous recombination deficiency. ROS reactive oxygen species. B Distribution of metastasis-related
mutations across genes and samples. Genes that are involved in lung metastasis labeled L; genes that are involved in bone metastasis labeled B.
C Distribution and type of potentially clinically informative mutations across genes and samples. Gene mutations are shown in yellow, deletions
in blue, and amplifications in red
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inferred from RNA-seq data by averaging expressions
across 101-gene windows and normalized to the expres-
sion of 14 normal samples (see the “Methods” section,
Additional file 1: Fig. S16A). 20 tumor samples showed
significant copy number changes and recapitulated the
presence of large CNVs from the WGS data (major CN
events from WGS data were highlighted in dotted boxes
in Additional file 1: Fig. S16A). The remaining 8 tumor
samples showed no copy number changes, which was
likely due to heavy normal tissue contamination. Indeed,
PCA analysis and unsupervised k-means clustering con-
cordantly showed that the samples without CNV events
clustered together with the normal samples (Additional
file 1: Fig. S16B); thus, we excluded these 8 samples from
subsequent analysis. Then, we explored what factors
played roles in shaping the transcriptomes of the metas-
tases. Unsupervised clustering on 20 metastatic tumor
samples showed that although some samples clustered
along with their genomic groups (e.g., Ly1 and Ln6, both
belonging to G2, were clustered together), and some
samples clustered along with their host tissue types (e.g.,
most of the lung metastases clustered together; all three
brain metastases clustered together), neither genomic
grouping nor host tissue types were the sole factor that
affected the expression (Additional file 1: Fig. S17A). On
the one hand, via clustering samples located in the lung
and liver respectively because these two organs hosted
multiple metastases from different genomic groups, we
found that samples in the same genomic group were in
fact clustered together (e.g., Ln5, Ln8, and Ln10, which
all belong to G3, were more similar with each other than
with Ln6 of G2 and Ln3 of G4; Lv1, Lv2, and Lv4, which
all belong to G1, were more similar with each other than
with Lv3 of G3; Additional file 1: Fig. S17B,C). On the
other hand, we clustered the samples that belong to G3,
which contained the most diverse host organ types, and
found that samples located in the same organ tend to
cluster together (Additional file 1: Fig. S17D). This indi-
cates that the environment of the host tissue can shape
the transcriptomes of the subclones from the different
genomic lineages after these subclones landed and made
them adaptive to the respective organs. Next, we com-
pared the gene expression among metastatic samples
that belong to different genomic groups. Differential ex-
pression (DE) analysis showed that there were 415 genes
that were significantly different among the groups
(ANODEV test FDR<0.05, logFC>2). Particularly, genes
involved in beta1 integrin cell surface interactions (FGB,
FGA, and F13A1, VTN, MDK) were upregulated in G1;
genes involved in Wnt signaling network (FZD8, FZD10,
DKK1) that upregulated in G2; and genes involved in in-
tegrin family cell surface interactions (ITGA10, ITGB7)
and in estrogen receptor alpha network (ESR2 and
GREB1) were upregulated in G4. Genes that are

upregulated in G3 are involved in multiple mechanisms:
RAB40B can promote tumor cell invasion by regulating
trafficking MM2 and MM9 during invadopodia forma-
tion [50, 51]; RET activation can drive signaling through
MAPK and PI3K pathways [52]; ALDH1A1 is a marker
for cancer cell stemness [53]; and ST6GALNAC1 en-
codes the protein in the same family member as
ST6GALNAC5 which has been reported that can medi-
ate infiltration into the brain [54]. Considering the sam-
ples in G3 located in multiple tissues, these genes may
increase the fitness and invasiveness of samples in G3 to
be able to colonize multiple distal organs. This result
showed that subclones from different genomic groups
probably rely on different survival mechanisms/strat-
egies. Gene set enrichment analysis (GSEA) showed that
copy number is the dominant factor in G1 and G3
groups (e.g., gene sets NIKOLSKY_BREAST_CANCER_
17Q11_Q21_AMPLICON and 17Q21_Q25_AMPLICON
were enriched in samples in G3; gene sets 8Q12_Q22_
AMPLICON and 8Q23_Q24 were enriched in samples
in G1) and consistent with the underlying genetic
alterations.

Delineation of tumor evolution suggests alternative
treatment strategies
We identified all somatic variants (CNVs and short vari-
ants) in our tumor samples that impacted a gene with
known and clinically targetable mutations in the TAR-
GET database [55, 56]. This allowed us to evaluate gen-
etic information that may have impacted the patient’s
treatment had it been available to the treating oncologist
while the patient was still alive. We found that 11 of 20
(Additional file 2: Table S9) potentially targetable alter-
ations were already present in the primary tumor at
diagnosis and were subsequently retained in all meta-
static samples (Fig. 5C). These alterations include RB1
loss, APC loss, MYC amplification, and AKT2 amplifica-
tion, as well as alterations involving genes with high can-
cer patient population frequencies in the METABRIC
dataset [57], i.e., FGFR1 amplification (14% patient
population frequency) and AURKA amplification (6% pa-
tient population frequency). These variants would have
been the optimal targets for therapy to impact all meta-
static sites in the patient. 5 of the 20 were potentially
targetable, sample- or sample group-specific alterations:
MEN1 loss is present only at lung site Ln7 and in G4
samples; CTNNB1, PIK3CA, PIK3CB, and RAF1 are
amplified only in G1 samples as well as in the samples
containing their progenitor subclones (i.e., BrP, Ln1)
(Fig. 5C). Because these variants are only present in
some but not all metastatic sites, therapies targeting
these genes would likely have been ineffective. This ob-
servation underlines the necessity of comprehensive
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monitoring of metastatic sites for effective therapeutic
intervention.

Discussion
The 46 biopsy/autopsy samples in this dataset, the lar-
gest number from a single patient to date, allowed us to
track the evolution of this metastatic tumor genome at
the subclonal resolution, as it spread from the breast
to 7 additional organs (Fig. 6). Reconstruction of the
evolutionary trajectory of the tumor revealed 4 distinct
waves of metastatic colonization, targeting well-
delineated groups of organs in the patient.
Our study reveals the existence of “metastatic incuba-

tors” where subclones that initially colonized the sites
further evolved into founding clones of additional sites.
Three independent lines of evidence support our conclu-
sion that these subclones evolved at metastatic sites, ra-
ther than that they were already present in the primary.
First, we observed the evolutionary intermediate clones
at lung sites Ln1 (Sc8, Sc9), Ln2 (Sc14-Sc16), and Ln10
(Sc17-Sc21), whereas we did not find any of these inter-
mediate subclones in the breast samples (i.e., in BrP or
BrM) or any other sample in our collection. This sug-
gests in situ evolution at, rather than migration from the
primary to, those sites. We note that the same argument
holds true for other organ sites where evolutionary inter-
mediaries were observed, i.e., liver site Lv4 (Sc24), lymph

node site Ly2 (Sc27), and pancreas site Pa1 (Sc24). Sec-
ond, the evolutionary intermediate subclones are not de-
fined by one or two, but by multiple somatic variants
(Additional file 2: Table S3-6). The absence of these var-
iants in BrP and BrM suggests that the intermediate sub-
clones were absent from the breast samples. Previous
breast cancer studies [6, 8, 9] observed mutations not
found in the primary tumor but shared between multiple
metastatic sites and suggest the presence of an already
metastatic, common ancestor subclone seeding those
sites. Our study provides direct, high-resolution evidence
for the presence of such common ancestor clones, and
elucidates the extent of subclonal evolution that oc-
curred at these sites. Third, COSMIC mutational signa-
ture analysis shows the prominent presence of radiation-
associated signature 18 in mutations shared across meta-
static samples, and its complete absence from the pri-
mary tumor (see Additional file 1: Fig. S18). According
to the patient’s treatment history, radiation therapy was
applied after a double mastectomy. This implies that
these radiation-associated mutations were acquired after
some early metastasis had already occurred, i.e., at “incu-
bator” sites Ln10, Lv4, and Ly2. Subclones evolved at
these sites during radiotherapy and then seeded multiple
other metastatic sites.
Our study highlights the critical role of the lung in the

metastatic process of our patient. The lung was not only

Fig. 6 Summary of tumor evolution and metastasis progression in correlation with treatment history and clinical events
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the first site of metastatic escape, but also an organ with
multiple metastatic incubator sites. A larger TNBC me-
tastasis cohort with a similar genomic resolution is
needed to validate that the lung is a metastatic incubator
hotspot or to identify other incubator hotspot organs.
Indeed, other studies point to the presence of such
metastatic incubators in other cancer types. For ex-
ample, in a study of metastatic colorectal cancer,
Angelova et al. showed that a metastatic site (M10) in
the liver was established as a result of multi-step
colonization and that metastatic sites in the liver seeded
additional sites in the patient’s other organs [58]. Identi-
fication of these “metastatic incubators” may therefore
be critical for effective clinical management of metastatic
patients.
The presence of somatic alterations in genes associ-

ated with lung metastasis in the primary tumor is con-
sistent with our subclonal migration results (see Sections
4 and 5) indicating that the lung was the first organ of
metastasis. The scenarios for distal organs are more
complicated. On the one hand, the presence of somatic-
ally altered genes associated with bone metastasis in the
primary tumor signals that the tumor’s ability to
metastasize to the bone may, in whole or in part, be
already there in the primary tumor. On the other hand,
our subclone analysis revealed that all distal organ me-
tastasis sites outside the lung had originated not directly
from the primary site, but from lung metastasis sites by
new subclones harboring additional mutations. Taken
together, these observations suggest that the rampant
metastatic invasion was the compound result of early
mutations in the primary tumor and later evolution at
metastatic sites in the lung.
Once metastasis was established, resection of the pri-

mary (breast) site was ineffective against the progression
of this aggressive disease. This reinforces the Fisher hy-
pothesis that breast cancer is a systemic disease in which
metastasis occurs before diagnosis [59]. Although many
potentially targetable mutations were already present at
the primary site, and therefore at all tumor sites in the
patient, others were only present at a subset of meta-
static sites. This highlights the need for more compre-
hensive sampling of metastatic sites: indeed, targeted
treatment strategies identified from assays of the primary
site, or only one or two additional metastatic sites, may
fail to achieve the desired therapeutic outcome [60].
Therefore, a more comprehensive survey of metastases
(or liquid biopsy-based approaches [6, 61] if direct sam-
pling of additional metastatic sites is not practicable)
may be necessary for guiding more successful clinical
interventions.
This study lays the methodological foundations for

tracking a patient’s metastases at subclonal resolution.
With additional, similarly comprehensive datasets in

hand, it will be possible to assess the generality of these
findings and to establish how the specific evolutionary
patterns observed in a patient’s metastatic tumor evolu-
tion can, in the future, inform more effective personal-
ized treatment.

Conclusions
This study reports on a one-of-a-kind triple-negative
breast cancer (TNBC) metastatic tumor dataset. This
unique dataset allowed us to track the patient’s tumor
across metastatic colonization in eight distinct organs, at
subclonal resolution. The most striking finding of this
study is the observation of “metastatic incubators,”
where substantial subclonal evolution preceded, and may
have been necessary for, further metastatic colonization.
We found that the lung played a crucial role in meta-
static tumor spread in our patient, a finding that must
be examined in larger patient cohorts. Our results show-
case the level of detail achievable for reconstructing
metastatic subclonal evolution when sampling a large
number of metastatic sites and combining this with deep
genome sequence-based subclonal analysis.
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