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Abstract

Background: Metastatic breast cancer is a deadly disease with a low 5-year survival rate. Tracking metastatic spread
in living patients is difficult and thus poorly understood.

Methods: Via rapid autopsy, we have collected 30 tumor samples over 3 timepoints and across 8 organs from a
triple-negative metastatic breast cancer patient. The large number of sites sampled, together with deep whole-
genome sequencing and advanced computational analysis, allowed us to comprehensively reconstruct the tumor’s
evolution at subclonal resolution.

Results: The most unique, previously unreported aspect of the tumor’s evolution that we observed in this patient
was the presence of “subclone incubators,” defined as metastatic sites where substantial tumor evolution occurs
before colonization of additional sites and organs by subclones that initially evolved at the incubator site. Overall,
we identified four discrete waves of metastatic expansions, each of which resulted in a number of new, genetically
similar metastasis sites that also enriched for particular organs (e.g., abdominal vs bone and brain). The lung played
a critical role in facilitating metastatic spread in this patient: the lung was the first site of metastatic escape from the
primary breast lesion, subclones at this site were likely the source of all four subsequent metastatic waves, and
multiple sites in the lung acted as subclone incubators. Finally, functional annotation revealed that many known
drivers or metastasis-promoting tumor mutations in this patient were shared by some, but not all metastatic sites,
highlighting the need for more comprehensive surveys of a patient’s metastases for effective clinical intervention.

Conclusions: Our analysis revealed the presence of substantial tumor evolution at metastatic incubator sites in a
patient, with potentially important clinical implications. Our study demonstrated that sampling of a large number of
metastatic sites affords unprecedented detail for studying metastatic evolution.
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Background
Metastatic breast cancer (MBC) is a deadly disease
with a median survival of only 38 months [1]. A pre-
vious study estimated that 3 out of 4 patients initially
diagnosed with stage I–III disease progressed to MBC
[2]. Although the genomic and transcriptomic proper-
ties of primary tumors have been described exten-
sively [3–5], metastatic tumors, as well as the
processes leading to metastasis, are poorly understood
because comprehensive biopsying of metastatic sites is
difficult or impossible in living patients. Rapid aut-
opsy programs, in contrast, offer pathologists a com-
prehensive spatial understanding of the extent of the
disease and allow for the collection of fresh tissue
samples across all affected organs within hours of the
patient’s death. This approach has been used to study
metastatic tumor evolution in breast cancer with
TNBC patients being a smaller subset [6–9] and in
other cancer types [10–14]. For example, Savas et al.
studied tumor evolution in 3 estrogen-receptor (ER)-
positive, human epidermal growth factor receptor 2
(HER2)-negative breast cancer patients, and 1 triple-
negative breast cancer patient, using primary tumor
and 5–12 matched metastatic samples from the
CASCADE program [8]; and Hoadley et al. profiled
primary tumors with 4–5 matched metastases geno-
mically and transcriptomically in 2 triple-negative
breast cancer patients [7]. More recently, De Mattos-
Arruda et al. profiled 7–26 samples per patient from
autopsies of 10 patients (5 ER+/HER2-, 3 ER+/HER2+, 1
ER-/HER2+, 1 TNBC) with therapy-resistant breast
cancer [9]. These studies found significant heterogen-
eity in both the primary and metastatic tumors, and
complex evolutionary patterns during disease progres-
sion. However, critical questions remain unanswered,
especially in TNBC patients: for example, whether the
ability for the cancer to metastasize fully develops in
the primary tumor, as suggested by studies [7], or if
early metastatic sites can provide niches where the
cancer can further develop metastatic potential not
present in the primary tumor, but necessary to invade
additional organs. To understand metastatic tumor
evolution and disease progression at the subclonal
resolution, we studied the primary tumor at diagnosis
and at surgery, as well as 28 metastatic samples
across seven organs from a metastatic breast cancer
patient with aggressive disease, collected via rapid
autopsy following the patient’s death, with 30 samples
in total. Deep whole-genome sequencing allowed us
to reconstruct detailed subclone structure and track
subclonal expansion across these samples, elucidating
the order and timing in which each metastatic site
was established, including metastatic colonization
events from one organ to another.

Methods
The workflow for this study is shown in Additional file
1: Fig. S1.

Sample collection
The study was reviewed and approved by the human
subjects Institutional Review Boards (IRB) of the Univer-
sity of Utah. Informed consent in accordance with the
Declaration of Helsinki was obtained from the patient.
We collected in total 44 autopsy samples including 2
skin normal tissues, 28 tumor samples, and 14 adjacent/
distal normal tissues from a 45-year-old woman with
ER-negative, PR-negative, and HER2-negative metaplas-
tic grade III invasive ductal carcinoma of the breast via
rapid autopsy program approximately 2 h after death.
There were 12 metastatic samples from the lung, 1 from
the kidney, 1 from the peri-pancreas, 1 from the skin, 4
from the brain, 3 from the bone, 4 from the liver, and 2
from the peritracheal lymph nodes. All metastatic sam-
ples represent individual tumors except sample Bn3 and
Bn4, and Ln2 and Ln3, which were from different parts
of the same brain tumor, and the same lung tumor, re-
spectively. The tumor sizes vary ranging from 3 to 33
mm (see detailed description in Additional file 2: Table
S1). For all autopsy samples, frozen sections were
reviewed by pathologists to confirm the tumor type and
presence and to quantify necrosis levels. All autopsy
samples were stored in RNAlater at −80°C until DNA
and/or RNA isolation. FFPE samples for the primary
tumor biopsy and the mastectomy biopsy were also
available for this study. All tumor samples and 2 normal
skin samples were subjected to whole-genome sequen-
cing (WGS). All samples except the FFPE samples and
the two normal skin samples were also subjected to bulk
RNA sequencing.

Sample process
DNA from FFPE samples was isolated using the Qiagen
QIAamp DNA FFPE Tissue Kit. DNA from all 28 aut-
opsy tumor samples and 2 skin normal tissues was iso-
lated using Qiagen’s QIAamp DNA Micro Kit. RNA
from all 28 autopsy tumors and adjacent/distal normal
samples was extracted by using Qiagen RNeasy Micro/
Mini Kit.

WGS analysis including somatic SNV and INDEL calling,
CNV calling, LOH calling, structural variant calling, and
translocation calling
Primary and mastectomy samples were subjected to 45X
WGS at the Huntsman Cancer Institute’s High
Throughput Genomics Core Facility using the Illumina
TruSeq. Metastatic tumors and skin biopsy samples were
subjected to 60X WGS at the McDonnell Genome
Institute at Washington University using NantOmics.
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Samples sequenced at Washington University were pro-
vided as aligned BAM files. Primary and mastectomy
WGS sequencing data were aligned using an identical
pipeline to the one used at the McDonnel Genome Insti-
tute to the same GRCh37-lite reference genome [15]
(ftp://ftp.ncbi.nih.gov/genbank/genomes/Eukaryotes/
vertebrates_mammals/Homo_sapiens/GRCh37/special_
requests/GRCh37-lite.fa.gz) using BWA-MEM 0.7.15-
r1140; Freebayes 0.9.21 was used to identify SNV and
INDEL variants called jointly over all samples using the
following command line parameters:

� --allele-balance-priors-off
� --report-genotype-likelihood-max
� --genotype-qualities
� --pooled-discrete
� --pooled-continuous

The variants produced by Freebayes were then sub-
jected to quality filtering, including criteria as follows:

� Variant quality > 30
� Per-sample sequencing depth > 15
� Intersecting with 1000G genome accessibility mask
� Inverse-intersecting with low complexity region

mask of GRCh37d5
� Filtering out multi-allelic variant sites

Somatic variants were identified when the variant al-
lele frequency (VAF) was below 0.1 or the alternate al-
lele count was less than five in both normal skin
samples. To ensure that differences in sequencing pro-
vider and depths did not affect variant detection, we
showed that the number of somatic variants detected in
BrP and BrM (45X, at Huntsman Cancer Institute) were
similar to other samples (60X, at Washington Univer-
sity). We detected in total 20,012 somatic variants across
all samples. On average, we detected 10,648 ± 493
(standard deviation) variants per metastatic sample,
10,352 variants in BrP, and 10,121 variants in BrM (Add-
itional file 1: Fig. S2). The same trend can be observed
for somatic variants on chromosome 14 and chromo-
somes 2, 7, 9, 11, 14, 15, 16, 21, and 22 (Additional file
1: Fig. S2). SNVs and INDELs were annotated by
SnpEFF 4.2.
FACETS [16] was used to identify copy number vari-

ants (CNV) and loss of heterozygosity (LOH) events
(Additional file 1: Fig. S3A). All copy number calls were
then manually curated. We binned the log2(ratio) value
(calculated from the FACETS R package) in 1Mb win-
dows in each of the 28 tumor samples. Then, we clus-
tered the copy number profile by calculating the
Euclidean distance between each pair of samples and
then used the UPGMA method to cluster the samples.

Except for BrP, BrM, Ln7, Ln9, and Ln1, all other sam-
ples which are clustered together had distinct copy num-
ber patterns (Fig. 2A, Additional file 1: Fig. S3B).
Structural variants and translocations were identified

using the reference-free variant detection algorithm
RUFUS [18] and Lumpy [19] followed by visual inspec-
tion in IGV [17, 20].

Allele-specific CNV/LOH calling in multiple samples
Heterozygosity and copy number for each sample were
derived using FACETS. Allele-specific copy number
changes were not generated by FACETS, but were separ-
ately inferred using inherited variants falling in somatic
CNV regions. By comparing the AF of these variants be-
tween samples, we were able to identify the allele-
specific copy number changes. For example, the AF of
inherited variants on chromosome 3 in pure tumor sam-
ples with copy number neutral LOH chromosome 3 is
either 1 or 0, whereas the AF of these variants in pure
tumor samples with copy number three and both alleles
would be 0.33 and 0.67. A scatter plot of AF of these
variants between two samples reveals which chromo-
some is amplified in the copy number amplified sample,
as well as whether the amplified chromosome is the
same as the ones in the copy number neutral, LOH sam-
ple. Additional file 1: Fig. S4A shows the AF of inherited
exonic variants on chromosome 3 between Pa1 and Bn2.
Variants in red circles represent the homozygous vari-
ants in both samples. The AF of variants in yellow cir-
cles indicates that the amplified allele in Pa1 became the
only allele that remained in Bn2, at copy number 2. The
AF of variants in green circles indicates that the unamp-
lified allele in Pa1 was lost in Bn2. This method enabled
us to establish whether samples with the same copy
number and LOH are the same events. In addition, this
method provides higher resolution information such as
allele-specific structural variants (including transloca-
tion) (Additional file 1: Fig. S4B).

Tumor phylogenetic tree construction
We used somatic short variants on chromosome 14
(which harbored no copy number or LOH events in all
samples except Ln9) to construct the phylogenetic tree
across all samples and additional somatic variants on
copy number-neutral but LOH chromosomes (chromo-
somes 2, 7, 9, 11, 15, 16, 21, and 22) to refine the phylo-
genetic tree in each group. We encoded the state of a
known somatic variant locus in a sample as a binary
value, where 1 indicates the variant is present (AF>0.1)
and 0 that the variant is absent (AF<0.1). We used two
methods to construct a phylogenetic tree. First, we used
the UPGMA clustering method based on the hamming
distance matrix calculated between samples (Additional
file 1: Fig. S5). Samples in the same group were
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confirmed to the cluster. However, this method does not
consider the constraint that samples sharing the same
variants should share an evolutionary lineage. Therefore,
secondly, we developed a method that would incorporate
this constraint while simultaneously assuming that (1)
all cancer cells are descendants of a single founding
clone (i.e., normal cell) and (2) all variants satisfy the in-
finite sites assumption that the chance the same variant
occurs independently in different cells, as well as vari-
ants reverting back to the wild type, is extremely low.
Therefore, we can describe our problem as a perfect
phylogeny problem [21] with complete and cladistic
characters which are the states of variants. For each vari-
ant, a binary vector vi

j is calculated where vi
j = 1 if vari-

ant i is found in sample j or 0 otherwise. Variants with
the same binary vectors are clustered together, which
means that they occur in the same clone, albeit the clone
can be found in multiple samples. The evolution order-
ing between any two variants can be established by com-
paring their binary vectors. If a variant i1 occurred in
the clone that already contained i2, for all samples j, ei-
ther of the following two conditions must hold true: (1)
vi1

j = 1 and vi2
j = 1 when j contains the descendant

clone or (2) vi1
j = 1 and vi2

j = 0 when j contains the an-
cestral clone before variant i1 occurred. We imple-
mented this method [22] (available via the GitHub
repository for all code used in this manuscript). Al-
though Ln9 had acquired an additional chromosome 14,
no variants were lost in this process. Thus, this method
can still apply to Ln9. The results from the second
method showed that Ln9 was the first sample to branch
out and the rest of the samples had a common ancestor
(Fig. 3A). We then calibrated the length of evolution
branches by the number of variants.

Subclonal analysis with SubcloneSeeker
We used AFs of somatic variants on chromosome 14 to
reconstruct subclone structure and estimate cell preva-
lence of each subclone of BrP, BrM, Ln1, Ln7, and Ln9.
Except for Ln9, all samples have CN normal chromo-
some 14; therefore, AF can be used to accurately esti-
mate the cell prevalence. For the subclone structure of
samples in each group, in addition to variants on
chromosome 14, we also used group-specific variants
that are absent in BrP and BrM on the CN neutral chro-
mosomes containing LOH (chromosomes 2, 7, 9, 11, 15,
16, 21, and 22) events shared by all samples in G1–G4
as well as BrP and BrM. Since these variants occurred
after the LOH event chronologically, they are most likely
to be heterozygous and can be used for subclone analysis
within a group. Because all samples in G4 had chr11p15-
q25 deletion, we can also accurately estimate cell preva-
lence from G4-specific variants in this region. Thus, these
variants were also used for subclone analysis in G4.

For subclone analysis, we clustered variants with the
same level of AF in all samples to a cluster (C1–C28 in
Additional file 1: Fig. S6A, S6B, S6C, S7A, S9A, S9B,
S10A). We used 0.05 as the allele frequency cutoff for
positive somatic variant detection. The ancestral rela-
tionship between two subclones satisfy (1) variants in
the ancestral clone have larger AF than variants unique
to the descendant clone in one sample, (2) variants in
the ancestral clone will also be in the descendant clone
via clonal lineage, and (3) variants that have ~0.5 AF are
in the founding clone of a sample. SubcloneSeeker v2
[23, 24] (https://github.com/yiq/SubcloneSeeker/tree/v2)
was used to jointly construct subclone structures, enu-
merating all possible trees with ±0.1 VAF tolerance to
accommodate the VAF measurement error, and estimat-
ing cell prevalence for each subclone for individual sam-
ples. SubcloneSeeker outputs all subclone structures if
multiple solutions exist. The computational outputs
were manually reviewed, and the final subclonal evolu-
tionary trajectory was assembled. When multiple solu-
tions are available, we choose the solution that
minimizes cellular prevalence violation in a parent-child
relationship. For detailed discussions on alternative solu-
tions, see Additional file 3. The cell prevalence for each
subclone (shown in Additional file 1: Fig. S6-S10) was
corrected for tumor purity.

Identification of monoclonal and polyclonal seeding
A clone presented at a less than 100% cell preva-
lence in one sample, and then at 100% in another
sample, signifies that this subclone emerged in the
former sample, and seeded the latter, which can be
characterized as a monoclonal seeding event. How-
ever, if a clone had a low cellular prevalence in both
samples, it is likely to be the result of a polyclonal
seeding event, in which two or more subclones in
one sample traveled together or separately and
seeded the other one.

Mutational signature analysis
We assessed the dynamics of mutational process over
time by analyzing somatic mutation patterns attributed
to the branches of the phylogenetic tree, including trun-
cal variants (variants occurs in the primary tumor), vari-
ants shared by all samples in G1, G2, G3, and G4,
respectively, as well as the remaining, group-specific var-
iants for each group. We applied MutationalPatterns
[25] to our dataset. Briefly, after de novo extraction of
mutational signatures from the mutation count matrix,
the contribution of COSMIC mutational signatures
(https://cancer.sanger.ac.uk/cosmic/signatures_v2) to the
mutational profile was quantified.

Huang et al. Genome Medicine          (2021) 13:170 Page 4 of 18

https://github.com/yiq/SubcloneSeeker/tree/v2
https://cancer.sanger.ac.uk/cosmic/signatures_v2


RNA-seq and data processing
RNA-seq was performed using rRNA depletion-based li-
brary preparation followed by paired-end Illumina HiSeq
sequencing. We obtained RNA-seq data from 42 speci-
mens throughout the patient’s body at autopsy, includ-
ing 28 gross tumors (which also had DNA samples) and
14 surrounding normal samples. RNA-seq data were
processed with Rsubread [26, 27] v1.16.1. We aligned
the reads to GRCh37 and used only uniquely mapped
reads and the Hamming distance to break ties. The max-
imum indels allowed per alignment was 5. Gene-level
expression values were processed to transcript per mil-
lion mapped reads (TPM). We used the featureCounts
function in Rsubread for reads counting. We used the
built-in annotation file which includes the exon annota-
tion information from NCBI Build GRCh37.2 and Entrez
gene identifier.

RNA-seq-based copy number inference
To infer approximate copy number events from RNA-
seq data, we used an approach reported previously for
single-cell RNA-seq copy number inference [28], which
we had also used previously [29]. This approach relies
on the normalization and calculation of 101-gene win-
dow expression averages, followed by normalization to
samples with little or no tumor purity.

Differential expression (DE) analysis
We used a R workflow package, “RnaSeqGeneEdgeRQL”
[30] for normalization, and downstream DE and pathway
analysis. Specifically, we normalized data by using calc-
NormFactors function which applied the trimmed mean
of M values (TMM) approach. Next, the DE analysis was
performed on samples in four groups (G1–G4) by using
EdgeR which implemented empirical Bayes methods that
permit the estimation of gene-specific biological varia-
tions. We made pairwise comparisons between all four
groups and performed a one-way analysis of deviance
(ANODEV) for each gene. FDR<0.05 was used for the
significance cutoff. Significantly expressed genes in each
group were annotated in terms of higher order biological
processes or molecular pathways by using the NCI-
Nature pathway database in Enrichr [31]. Finally, we
performed gene set enrichment analysis (GSEA) using
the C2 curated signatures from MSigDB (including 5637
signatures). RnaSeqGeneEdgeRQL package incorporates
the Correlation Adjusted MEan RAnk gene set test
(CAMERA) [32] method for the enrichment analysis.

Validation of variants in RNA-seq data
Somatic SNVs and INDELs identified by Freebayes from
WGS data were validated by RNA-seq data. We ran-
domly picked two samples in each group and Ln7 (total
nine samples) with high tumor purity in RNA-seq data

for this validation. For any given tumor sample, only
somatic short variants that have greater than 0.1 gen-
omic VAF and have a read depth of at least ten in the
paired RNA-seq were considered. We use the following
workflow to validate the variants:

� If a variant is present in paired RNA-seq data, i.e.,
having RNA-seq reads containing the variant allele,
it is considered “validated.”

� If a variant is not found in the paired RNA-seq data
but found in the RNA-seq data of other tumor sam-
ples genomically determined to also contain the
same variant, it is then considered as “validated in
other samples.”

� If a variant cannot be validated by either of the
mentioned steps, we consider the following
possibilities:

� Variant dropout in RNA seq data due to sampling:
It is reasonable to consider that a variant with low
WGS VAF (e.g., 0.1) and low RNA-seq coverage
(e.g., 10X) may not be sampled by RNA-seq accord-
ing to binomial distribution (in the example case,
the possibility of sampling 0 alternate allele contain-
ing reads, or P0, is 0.35). We skip such variants with
P0 > 0.05. Note that less than five variants were in
this category in each sample.

� Variant allele not expressed: this can be the result of
unbalanced expression between alleles or false
positives in genomic variant calling.

More than 90% of variants can be either “validated” or
“validated in other samples” (Additional file 1: Fig. S11).

Results
Clinical presentation showed extremely aggressive
metastatic cancer
We studied a 45-year-old woman with ER-negative, PR-
negative, and HER2-negative metaplastic grade III inva-
sive ductal carcinoma of the breast (Fig. 1A). At the time
of diagnosis, she had a clinical T2N0M0 breast cancer,
with staging including an ultrasound (US) and MRI
showing a 3.1-cm mass. However, the sentinel node bi-
opsy showed none of the three biopsied lymph nodes
had cancer. The patient received neoadjuvant therapy of
doxorubicin and cyclophosphamide (AC) followed by 8
weeks of weekly paclitaxel. An ultrasound image after
the AC showed enlargement of the breast mass. After
paclitaxel, the mass remained stable in size on ultra-
sound but was more painful. The patient underwent a
mastectomy at week 21. At week 39 after diagnosis,
MRIs showed brain metastases, and CT scans showed
multifocal metastases in the lung, liver, pancreas, bone,
skin, and lymph nodes. This led to subsequent courses
of chemotherapy and radiation therapy, all without
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