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Abstract

Background: Circular RNAs (circRNAs) constitute a largely unexplored source for biomarker discovery in prostate
cancer (PC). Here, we characterize the biomarker potential of circRNAs in PC, where the need for novel diagnostic
and prognostic tools to facilitate more personalized management is pressing.

Methods: We profiled the transcriptomic landscape of circRNAs in PC by total RNA sequencing of 31 adjacent-
normal and 143 tumor samples from localized (radical prostatectomy (RP)) and metastatic PC patients (cohort 1,
training). Diagnostic and prognostic potential was evaluated in cohort 1, and 39 top circRNA candidates were
selected for validation in two additional PC cohorts (cohort 2, n = 111; RP cohort 3, n = 191) by NanoString-based
expression analysis. Biochemical recurrence (BCR)-free survival was assessed using Kaplan-Meier, univariate, and
multivariate Cox regression analyses. The circRNA candidates were further detected in extracellular vesicle (EV)-
enriched plasma samples from PC patients and controls (cohort 4, n = 54).

Results: Expression of circABCC4, circFAT3, circATRNL1, and circITGA7 was highly cancer-specific (area under the
curve 0.71–0.86), while low circITGA7 expression was significantly (P < 0.05) associated with BCR in univariate
analysis in two RP cohorts. Moreover, we successfully trained and validated a novel 5-circRNA prognostic signature
(circKMD1A/circTULP4/circZNF532/circSUMF1/circMKLN1) significantly associated with BCR beyond routine
clinicopathological variables (RP cohort 1: P = 0.02, hazard ratio = 2.1; RP cohort 3: P < 0.001, hazard ratio = 2.1).
Lastly, we provide proof-of-principle for detection of candidate circRNAs in EV-enriched plasma samples from PC
patients.

Conclusions: circRNAs hold great biomarker potential in PC and display both high cancer specificity and
association to disease progression.
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Background
Prostate cancer (PC) is the second most frequently diag-
nosed non-cutaneous cancer in men worldwide and the
third leading cause of cancer-associated mortality in
men in Western Europe and the USA [1].
Whereas localized PC (LPC) is curable by radical

prostatectomy (RP), metastatic PC (MPC) is incur-
able with a 5-year survival rate below 40% [2, 3].
Early diagnosis is thus essential for long-term patient
survival. Still, approximately 30% of patients with
LPC who undergo curatively intended RP experience
relapse within 10 years [4]. Accordingly, PC diagno-
sis and patient risk stratification are challenging.
Both are based mainly on serum prostate-specific
antigen (PSA) and histopathologic evaluation of
prostate biopsies (most often transrectal ultrasound-
guided biopsies (TRUSbx)) or surgical specimens.
Hence, there is an urgent need for novel diagnostic
and prognostic biomarkers for more personalized PC
management.
A new and largely unexplored source for biomarker

discovery in PC are circular RNAs (circRNAs) that
form a class of primarily noncoding RNAs generated
by an alternative splicing event, which covalently links
a splice-donor site to an upstream splice-acceptor site
[5, 6]. Until recently, circRNAs were viewed as by-
products of aberrant RNA splicing events. However,
upon the rise of next-generation sequencing, it has
now been established that circRNAs can be highly
abundant in human cells and can regulate fundamen-
tal cellular functions [5, 7, 8]. Thus, circRNAs are im-
plicated in a wide range of physiological and disease
processes [1, 9]. Two previous studies have character-
ized the landscape of circRNA in cancer [10] and in
PC in particular [11], demonstrating that circRNA ex-
pression is dysregulated in several malignancies, in-
cluding in PC. Furthermore, circRNAs have higher
stability in blood than linear RNAs [5, 12] and are re-
ported enriched in extracellular vesicles (EVs) com-
pared to the level in cells [13, 14], suggesting that
EVs could be a compelling source for the discovery
of novel minimally invasive circRNA biomarkers.
Nonetheless, circRNAs still constitute a poorly char-
acterized output of the human transcriptome and
studies of circRNA expression patterns in multiple
clinical PC cohorts are limited [10, 11].
Here, we characterize the transcriptomic landscape

and biomarker potential of circRNAs in PC by analyzing
a cohort of patients with clinically localized or metastatic
PC, respectively, and perform independent validation in
two additional PC patient cohorts. Finally, we present
proof-of-principle of the detection of selected circRNA
candidates in EV-enriched plasma samples from PC pa-
tients and cancer-free controls.

Methods
Patient cohorts
Cohort 1 (training)
Cohort 1 included 31 adjacent-normal (AN) and 126
tumor samples from 141 patients with clinically LPC
treated by RP (RP cohort 1), as well as 17 primary
tumor samples from MPC patients undergoing palliative
transurethral resection of the prostate (TURP) (Table 1).
All samples were collected at the Department of
Urology, Aarhus University Hospital, Denmark (2004–
2017) or Department of Urology, Regional Hospital
West Jutland, Denmark (2016–2019) (Additional file 1:
Supplementary Methods). Inclusion and exclusion
criteria for RP cohort 1 are reported according to the
REMARK guidelines [15] (Additional file 2: Fig. S1a).
circRNA profiling in cohort 1 was performed by total
RNA-seq of fresh-frozen (FF) AN and tumor tissue sam-
ples (Additional file 1: Supplementary Methods).

Cohort 2 (validation)
Cohort 2 included 22 AN samples, 35 tumor samples
from patients with clinically LPC, and 54 primary tumor
samples from MPC patients (Table 1, Additional file 1:
Supplementary Methods). All patients in cohort 2 were
high-risk PC (D’Amico classification [16]) patients re-
ferred for primary 68Ga-PSMA PET/CT staging at De-
partment of Nuclear Medicine and PET, Aarhus
University Hospital (2016-2019).

RP cohort 3 (validation)
RP cohort 3 included 191 tumor samples from patients
with clinically LPC treated by RP from the Department
of Urology, Aarhus University Hospital (1998-2009)
(Table 1).
For validation of top circRNA candidates discovered in

cohort 1, NanoString-based expression analysis was per-
formed on formalin-fixed paraffin-embedded (FFPE) AN
and tumor samples from patients in cohorts 2 and 3
(Additional file 1: Supplementary Methods) [17].

Cohort 4 (liquid biopsy analyses)
Cohort 4 included plasma samples from 27 patients his-
tologically verified as cancer-free at initial TRUSbx (con-
trols), 21 patients diagnosed with clinically LPC at initial
TRUSbx, and 6 patients with known MPC undergoing
palliative TURP (Table 1, Additional file 1: Supplemen-
tary Methods). Plasma samples from controls and LPC
patients were collected at the Department of Urology,
Aarhus University Hospital, Denmark (2017–2020).
Plasma samples from MPC patients were collected at
Department of Urology, Regional Hospital West Jutland,
Denmark (2016–2019). Detection of top circRNA candi-
dates in cohort 4 was performed by NanoString-based
expression analysis on EV-enriched plasma samples
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Table 1 Clinicopathologic characteristics of patient sample sets
Characteristics Cohort 1

Training (total RNA-seq)
Cohort 2
Validation (NanoString)

RP cohort 3
Validation (NanoString)

Cohort 4
Liquid biopsies (NanoString)

RP cohort 1
LPC (n = 126)

MPC
(n = 17)

LPC
(n = 35)

MPC
(n = 54)

LPC (n = 191) LPC
(n = 21)

MPC
(n = 6)

Sample type RP TURP RP (n = 22),
TRUSbx (n = 13)

TRUSbx RP Plasma/EVs Plasma/EVs

Median agea, years (IQR) 65.1 (59.2–68.7) NA 69.4 (62.8–73.0) 71.5 (67.9–74.1) 64.2 (61.5–67.6) 68.4 (64.9–72.8) 73.7 (67.7–74.8)

Median PSA at diagnosis
(IQR)

10.8 (7.7–17.9) 46.0 (9.7–98.8) 9.2 (6.3–16.5) 30.0 (11.8–46.0) 10.2 (7.1–5.8) 9.1 (6.8–17.2) NA

Gleason Grade Groupb

1 12 (9.5%) 1 (5.9%) 0 1 (1.9%) 61 (31.9 %) 1 (4.8%) 0

2 68 (54.0%) 1 (5.9%) 13 (37.1%) 1 (1.9%) 105 (55.0 %) 8 (38.1%) 0

3 22 (17.5%) 1 (5.9%) 9 (25.7%) 11 (20.4%) 0 5 (23.8%) 0

4 14 (11.1%) 5 (29.4%) 3 (8.6%) 23 (42.6%) 20 (10.5%) 4 (19.0%) 0

5 9 (7.1%) 8 (47.1%) 10 (28.6%) 17 (31.5%) 5 (2.6%) 2 (9.5%) 3 (50%)

Unknown 1 (0.8%) 1 (5.9%) 0 1 (1.9%) 0 1 (4.8%) 3 (50%)

T-stagec

T1 0 0 8 (22.9%) 3 (5.6%) 0 4 (19.0%) 1 (16.7%)

T2 75 (59.5%) 2 (11.8%) 12 (34.3%) 15 (27.8) 140 (73.3 %) 13 (61.9%) 3 (50%)

T3 49 (38.9%) 2 (11.8%) 15 (42.9%) 33 (61.1%) 49 (25.7 %) 2 (9.5%) 2 (33.3%)

T4 1 (0.8%) 1 (5.9%) 0 2 (3.7%) 1 (0.3 %) 0 0

Unknown 1 (0.8%) 12 (70.6%) 0 1 (1.9%) 1 (0.5%) 2 (9.5%) 0

CAPRA-S risk nomogram

Low risk 29 (23.0%) NA NA NA 47 (24.6%) NA NA

Intermediate risk 60 (47.6%) NA NA NA 100 (52.4%) NA NA

High risk 34 (27.0%) NA NA NA 36 (18.8%) NA NA

Unknown 3 (2.4%) 8 (4.2%)

Surgical margin status

Negative 82 (65.1%) NA NA NA 140 (73.3 %) NA NA

Positive 41 (32.5%) NA NA NA 51 (26.7 %) NA NA

Unknown 3 (2.4%) 0

Recurrence status

Recurrence-free 75 (59.5%) NA NA NA 108 (56.5 %) NA NA

Biochemical recurrence 50 (39.7%) NA NA NA 83 (43.5 %) NA NA

Unknown 1 (0.8%) 0

Progression to MPC

Progression free NA NA NA NA 180 NA NA

MPC progression NA NA NA NA 11 NA NA

Median follow-up time,
months (IQR)

65.9 (45.3–102.6) NA 19.9 (14.2–22.7) NA 125.3 (98.8–141.7) NA NA

Survival status

Alive 110 (87.3%) NA NA NA 155 (81.2%) NA NA

Dead 16 (12.7%) NA NA NA 36 (18.8%) NA NA

Non-malignant samples AN (n = 31, from
LPC patients)

AN (n = 22, from 20 LPC and
2 MPC patients)

Control (n = 27, cancer-free at initial
TRUSbx)

Median agea(IQR) 63.4 (58.1–66.5) 68.6 (61.7–71.8) 63.9 (58.5–68.3)

Data is n (%) or median (IQR). aAge at time of sample collection. bFor cohort 4, biopsy Gleason Grade Group is stated. cFor RP cohorts 1 and 3, pathological T
stage is stated and for all other samples, clinical T stage. IQR interquartile range, NA not available/not applicable
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(Supplementary Methods). Full exclusion criteria for co-
horts 2–4 according to the REMARK guidelines [15] can
be found in Additional file 2: Fig. S2.
For additional external validation, we downloaded cir-

cRNA expression data from the MiOncoCirc database
[10] and used the “PRAD” dataset to compare circRNA
expression between normal and cancer samples.
All research was carried out in accordance with

relevant guidelines and regulations. The studies were
approved by The Central Denmark Region Commit-
tees on Health Research Ethics [#2000/0299, #1-10-
72-361-18, #1-10-72-367-13] and The National
Committee on Health Research Ethics [#1603543/
66451], and notified to The Danish Data Protection
Agency [#2013–41-2041, #1-16-02-330-13, #1-16-02-
23-19, #1-16-02-248-14]. For cohorts 1, 3, and 4,
written consent was obtained from all participants
prior to their donation of blood/tissue samples for a
research biobank, while archived tissue was used for
cohort 2. In all cases (cohorts 1–4), the requirement
for patient consent to the specific analyses in this
retrospective study was waived. The research con-
formed to the principles of the Helsinki Declaration.
Biochemical recurrence status for RP cohorts 1 and 3
was updated in September 2020.

Study design
This study was performed in multiple steps. First, to
profile the landscape of circRNAs in non-malignant and
PC tissue, we conducted transcriptome-wide expression
profiling in cohort 1 (training, Fig. 1a), consisting of 31
AN and 126 tumor samples from patients with LPC (RP
cohort 1) as well as 17 primary tumor samples from
MPC patients. Next, using cohort 1, we evaluated the
diagnostic and prognostic biomarker potential for cir-
cRNAs and selected 39 top candidate circRNAs for inde-
pendent validation in two additional patient cohorts,
including 22 AN, 35 LPC, and 54 MPC samples (cohort
2) and 191 LPC samples (RP cohort 3), respectively (Fig.
1b,c). Finally, as proof-of-principle, we tested the bio-
marker potential in liquid biopsies for the 39 circRNA
candidates using EV-enriched plasma samples from 27
cancer-free controls, 21 LPC, and 6 MPC patients (co-
hort 4; Fig. 1d).

Total RNA sequencing and circRNA quantification
Transcriptome-wide RNA-seq libraries were prepared
from total RNA after depletion of rRNA using the Ribo-
ZeroTM Magnetic Gold Kit (Epicentre, an Illumina com-
pany) or KAPA RiboErase Kit (Roche). Library prepar-
ation was performed using the ScriptSeq RNA-Seq

Fig. 1 Workflow and patient samples across all four prostate cancer patient cohorts. a Cohort 1. b Cohort 2. c RP cohort 3. d Cohort 4. Created
with BioRender.com
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Library Kit (Epicentre) or KAPA RNA HyperPrep Kit
(Roche). All libraries were sequenced paired-end on ei-
ther an Illumina HiSeq 2000 (2 × 75 base pairs (bp)),
NextSeq 500 (2 × 75 bp), or NovaSeq 600 (2 × 100 bp)
with a coverage target of 25 million reads/sample.
Sequencing data from samples in cohort 1 were

analyzed using CIRI2 [18], described as the best stand-
alone bioinformatics algorithm for circRNA quantifica-
tion [19]. circRNAs were annotated according to hg19
and default thresholds for mapping quality of each seg-
ment of junction reads (10), and maximum spanning
distance of a circRNA (200,000) was applied. Only cir-
cRNAs supported by more than two back-splice junc-
tion (BSJ)-spanning reads in at least two different
samples were included in the final data analysis. The
length of individual circRNAs was estimated by calcu-
lating the difference between exon start and exon end
in a BSJ, which may fail to capture changes in length
due to exon-intron circRNAs [20] or circRNAs effected
by alternative splicing [21].
Identified BSJ reads were normalized to the total num-

ber of reads in each sample and log2 transformed using
the cpm function in the R package edgeR (v3.30.3) [22].
A batch correction was performed due to the use of two
different library preparation kits, using the removeBatch-
Effect function in the Limma package (v3.44.3) [23].
Circular-to-linear ratios (circ/lin) were calculated by
CIRI2 [18] by dividing the number of reads spanning a
particular BSJ by the corresponding number of reads
spanning the same splice site, but consistent with linear
RNA instead of being back-spliced. To avoid division by
zero, a pseudocount of one was added to both the num-
ber of BSJ reads and the number of linear reads.

NanoString nCounter Codeset design and circRNA
expression analysis
A custom CodeSet of capture and reporter probes was
designed to target regions of 100 nucleotides overlaying
the BSJ of 39 selected top candidate circRNAs identified
in cohort 1 (Additional file 3: Table S1). In addition, five
reference transcripts were included, identified as stably
expressed in the total RNA-seq data by the NormFinder
algorithm [24] (ACTB, HPRT1, RPS24, circARHGAP12,
and circRBM23).
For FFPE and plasma samples, 300 ng and 5 μL total

RNA, respectively, was subjected to nCounter™ SPRINT
(NanoString Technologies) analysis according to the
manufacturer’s instructions. Hybridization time was set
to 23 h. Background subtraction and subsequent
normalization was performed using the nSOLVER 3.0
software (NanoString Technologies). A background
threshold of 10 was selected, which all raw counts at or
below were set to. Normalization was performed using
the geometric mean of the five reference transcripts

(ACTB, HPRT1, RPS24, circARHGAP12, and
circRBM23).

Statistical analyses
All statistical analyses were conducted in R (version
3.6.1) using R Studio version 1.3.959. The 100 circRNAs
with the greatest variance across cohort 1 were selected
among the most abundant circRNAs (n = 271) and sub-
ject to non-negative matrix factorization (NMF) consen-
sus clustering using the package NMF (v0.23.0) [25].
The optimal number of clusters was determined using
the rank-estimation function in the NMF package, test-
ing ranks 2–6. Consensus clustering with 5000 iterations
was performed.
Comparison between different sample types and/or

patient subgroups was performed using the non-
parametric Wilcoxon rank-sum test or Kendall’s rank
correlation. The diagnostic potential of circRNAs was
evaluated by receiver operating characteristics (ROC)
curve analysis between AN and PC samples.
The prognostic potential of circRNAs was evaluated

by Kaplan-Meier, uni- and multivariate Cox regression
analyses using the survival package (v3.1.12) [26] with
postoperative BCR (PSA ≥ 0.2 ng/mL) or progression to
MPC (defined by medical journal entry) as clinical end-
points. All circRNAs that did not fulfill the proportional
hazard assumption (tested by the cox.zph function in
the survival package) were removed. Patients not having
experienced BCR or progression to MPC after RP were
censored at their last normal PSA test. For survival ana-
lyses, patients in RP cohort 1 (training) were dichoto-
mized according to circRNA expression levels based on
the optimal cut-off identified by ROC analysis of BCR
status, using Youden’s J statistic in the pROC package
(v1.16.2) [27]. The cut-off fraction for circITGA7, cir-
cKDM1A, and the 5-circRNA signature identified in RP
cohort 1 (0.70, 0.66, and 0.68, respectively) was subse-
quently used and tested in RP cohort 3. In multivariate
Cox regression analysis, comparisons to the CAPRA-S
risk nomogram were performed [28]. P values were ad-
justed for multiple testing using the Benjamini-
Hochberg (BH) approach and considered significant if
below 0.05.

Results
Profiling of circRNAs in prostate cancer
For unbiased profiling of circRNA expression in AN and
PC tissue samples, we analyzed 31 AN and 126 tumor
samples from patients with LPC as well as 17 primary
tumor samples from MPC patients by total RNA se-
quencing (cohort 1, training). Using the CIRI2 pipeline
on the complete RNA-seq data set from cohort 1 (n =
174 samples), we identified 27,458 unique circRNAs
supported by at least two BSJ spanning reads. Of these,
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11,525 circRNAs were only supported by a single sample
and hence excluded, leaving 15,933 circRNAs eligible for
further analysis (Fig. 1a). The majority (91.0%) of the
identified 15,933 circRNAs originated from protein-
coding exons (Fig. 2a) and had a median estimated
length of 484 bp (Fig. 2b). This is in agreement with pre-
vious reports for human exonic circRNAs [1, 29]. The
remaining circRNAs originated from introns (6.1%) and
intergenic regions (2.9%) (Fig. 2a), suggesting that a mi-
nority of cirRNAs expressed in prostatic tissue derive
from ncRNA.

There was profound variation in the number of uniquely
expressed circRNAs per gene. The majority of circRNA
host genes (4849/5061; 96%) gave rise to one to ten
unique circRNAs, while a few genes (7/5061; 0.1%) gave
rise to over 30 unique circRNAs (ABCC4, ARHGAP10,
BIRC6, MYH11, PTK2, SMARCC1, and UBAP2; Fig. 2c).
A subset of circRNAs (962/15,933; 5.9%) were more highly
expressed than their linear counterpart, e.g., circRIMS1,
ciRS-7, and circFAT3 (Fig. 2d), indicating differential
regulation of the expression of specific circular transcript
as compared to their linear counterparts.

Fig. 2 Profiling of circRNAs in prostate cancer patients. a Genomic origin of circRNAs. b Estimated exonic length of circRNAs. Bin size = 100 bp. c
Number of total circular reads (CPM) per gene versus number of distinct circRNAs per gene. d For each circRNA, the number of circular and
corresponding linear reads on a logarithmic scale. Above the red line: Linear > circRNA, below the red line: circRNA > linear. e Total number of
circular reads across all patient samples vs. the number of samples expressing each distinct circRNA. The red dotted line marks circRNAs detected
in more than 80% of all samples. f Boxplot of total expression (CPM) of abundant circRNA across cancer (LPC and MPC) and AN samples in
cohort 1. P value represents Wilcoxon rank-sum test. g–h Volcano plot of (g) abundant circRNAs or (h) circ/lin ratio for abundant circRNAs
showing log2 fold change between cancer and AN samples in cohort 1 according to the levels of significance. Horizontal dashed line
corresponds to q (g) or p (h) = 0.05. X-axis and Y-axis are plotted on a logarithmic scale (log2 and log10, respectively). CPM = counts per million.
FC = fold change
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We evaluated the abundance of the 15,933 detected
circRNAs across all 174 samples from cohort 1 and
identified a subset of 268 circRNAs (1.7%) expressed in
> 80% of all samples analyzed (Fig. 2e). As biomarker
candidates must be robustly detectable to be of clinical
use, we limited all further analyses to a set of 271 abun-
dant circRNAs, which were either expressed in > 80% of
all samples and/or belonging to the top 1% most highly
expressed circRNAs in cohort 1 (n = 159, based on
ranked mean expression) (Fig. 1a).

Dysregulated circRNAs in prostate cancer
Using unsupervised consensus clustering of circRNA-
based expression values, we identified two stable clus-
ters (Additional file 2: Fig. S3a) that almost completely
separated AN and MPC samples, but not LPC from AN
or MPC, respectively (Additional file 2: Fig. S3b). The
two clusters showed significant differences in their
composition, with cluster 1 being enriched for MPC
samples and advanced stage LPC samples (P = 0.003
and P = 0.03, respectively, chi-square test), while cluster
2 was enriched for AN samples (P < 0.0001, chi-square
test) (Additional file 2: Fig. S3b-d). Consistent with this,
cluster 1 was moderately enriched for higher-grade
LPC samples, although this was not statistically signifi-
cant (P = 0.25, chi-square test, Additional file 2: Fig.
S3e). Cluster 1 was also significantly associated with
lower overall expression of circRNAs (P < 0.0001,
Wilcoxon rank-sum test, Additional file 2: Fig. S3f), to-
gether suggesting a possible association between low
circRNA expression and clinical parameters associated
with more aggressive PC.
Similarly, differential expression analysis of all 271

abundant circRNAs showed a global downregulation of
circRNA levels in PC (LPC + MPC) as compared to be-
nign (AN) prostate tissue samples (P < 0.0001, Fig. 2f).
Overall, in cohort 1, we identified 204 circRNAs that
were significantly downregulated and two circRNAs that
were significantly upregulated in PC vs. AN samples (P <
0.05, BH-adjusted Wilcoxon rank-sum test, Fig. 2g, Add-
itional file 4: Table S2a). In terms of fold change, the
most significantly downregulated circRNAs in cohort 1
were circFAT3 (3.13-fold, P < 0.0001), while the most
upregulated circRNA was circABCC4 (1.62-fold, P =
0.001) (Fig. 2g). Out of the 206 dysregulated circRNAs, a
total of 71 (34%) also showed a significant change in
circ/lin ratio between PC vs. AN samples (53 in the same
direction, P < 0.05, Wilcoxon rank-sum test, Additional
file 4: Table S2a), including top candidates circFAT3 and
circABCC4.
Similar results were obtained for differential expres-

sion analyses of circRNA levels and circ/lin ratios in
subgroup comparisons of AN vs. LPC and AN vs. MPC,
respectively (Additional file 4: Table S2b). Furthermore,

we identified 52 circRNAs as significantly deregulated
between LPC and MPC samples (1 upregulated and 51
downregulated in MPC, respectively, P < 0.05, BH-
adjusted Wilcoxon rank-sum test, Additional file 4:
Table S2a). Of these, 33 circRNAs displayed a significant
gradual downregulation from AN to LPC to MPC sam-
ples (P < 0.05, BH-adjusted Wilcoxon rank-sum test,
Additional file 4: Table S2). circFAT3 presented as the
most significantly downregulated circRNA, in terms of
fold change, in both LPC vs. AN (2.52-fold, P < 0.0001)
and MPC vs. LPC (6.46-fold, P < 0.0001) (Additional file
4: Table S2).

Identification and selection of circRNA candidates for
independent validation
To identify candidate circRNAs with diagnostic/prog-
nostic biomarker potential in cohort 1 (training), we
used the results of differential expression analyses of AN
vs. PC samples (see above and Additional file 4: Table
S2a) combined with additional analyses of clinically rele-
vant subgroups of LPC patients (RP cohort 1). The latter
included association analyses between circRNA expres-
sion and key clinicopathological parameters known to be
linked with PC aggressiveness: pT stage, Gleason Grade
Group (GG), and BCR status (Additional file 5: Table S3
and text below).
The best performing circRNAs from each analysis in

cohort 1 (ranked by P value) were selected, while also fa-
voring circRNAs significant in more than one analysis
and taking expression level into consideration. Based on
this, we selected 39 top diagnostic and/or prognostic cir-
cRNA candidates (Additional file 3: Table S1) for valid-
ation in two independent PC patient sets (cohort 2 and
RP cohort 3, Fig. 1b,c). Independent validation was per-
formed using NanoString assays targeting each of these
39 circRNAs. Cohort 2 comprised of 22 AN, 35 LPC,
and 54 MPC samples (RP/TRUSbx specimens) and was
used to validate top diagnostic candidate circRNAs. Due
to incomplete clinical follow-up, cohort 2 was not eli-
gible for prognostic analyses. RP cohort 3 included 191
LPC patients with 125 months median follow-up (Table
1) and was used for validation of prognostic circRNA
candidates associated with clinicopathological parame-
ters and/or BCR.

Validation of dysregulated circRNA candidates in prostate
cancer
In cohort 1, a total of 38 selected top candidate cir-
cRNAs were significantly deregulated between PC and
AN samples (2 upregulated and 36 downregulated in
PC; P < 0.05, BH-adjusted Wilcoxon rank-sum test,
Additional file 6: Table S4a). Of these, we successfully
validated 37 (97%) in cohort 2 (2 upregulated and 35
downregulated, P < 0.05, BH-adjusted Wilcoxon rank-
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sum test, Additional file 6: Table S4a). Similar results
were obtained by subgroup analyses (AN vs. LPC or AN
vs. MPC, see Additional file 6: Table S4b-c). Next, using
the MiOncoCirc database [10] for further external valid-
ation, we could find 33 of the 38 circRNAs and validated
28 (85%) of them as significantly dysregulated between
PC (n = 323) and AN (n = 17) samples (all downregu-
lated in PC; BH-adjusted Wilcoxon rank-sum test,
Additional file 6: Table S4a).
The most significantly upregulated circRNAs in PC

tissue samples were circABCC4 and circZNF577, while
the most significantly downregulated were circFAT3,
circITGA7, and circATRNL1 (ranked by fold change in
cohort 1, Fig. 3, Table 2). ROC curve analyses showed
that four of these five circRNAs (circABCC4, circFAT3,
circATRNL1, and circITGA7) had AUCs above 0.7, ran-
ging from 0.71 to 0.82 in cohort 1 and 0.78 to 0.86 in
cohort 2 (Fig. 3), suggesting promising diagnostic poten-
tial for PC. A logistic regression model using a combin-
ation of the five circRNAs did not yield a significantly
(bootstrap p > 0.05) higher AUC than the best single cir-
cRNA (data not shown).
Out of the 38 circRNAs dysregulated in PC vs. AN

samples in cohort 1, a total of 21 circRNAs were also
significantly deregulated between MPC and LPC samples
in the same cohort (P < 0.05, all downregulated in MPC,
Wilcoxon rank-sum test, Additional file 6: Table S4a).
When comparing MPC vs. LPC samples in cohort 2, we
could validate five (24%) of these circRNAs (circMKLN1,
circN4BP2L2, circZNF532, circCDYL2, and circARH-
GAP10, P < 0.05, Wilcoxon rank-sum test, Table 2,
Additional file 2: Fig. S4).

Association of abundant circRNAs to clinicopathological
parameters of prostate cancer aggressiveness
In RP cohort 1 (training, n = 126 LPC samples), we
found 129 abundant circRNAs that were significantly as-
sociated with either advanced pT stage (Additional file
5: Table S3a), high GG (Additional file 5: Table S3b), or
BCR status (Additional file 5: Table S3c), suggesting pos-
sible prognostic biomarker potential. Of these, the 31
most promising candidates were selected for further
testing in RP cohort 3, as described above (Fig. 1a,c,
Additional file 7: Table S5).
Among the 31 circRNA candidates with prognostic

potential, a total of 24 were significantly deregulated be-
tween high/low pT stage in RP cohort 1 (all downregu-
lated in pT2 vs. pT3-4, P < 0.05, Wilcoxon rank-sum
test, Additional file 7: Table S5a). We successfully vali-
dated five (21%) of these (circZNF532, circCDYL2, cir-
cLPAR3, circELK4, and circMAN1A2) in RP cohort 3 (P
< 0.05, Additional file 2: Fig. S5, Table 3). Furthermore,
17 of the 31 circRNA candidates were significantly cor-
related to GG in RP cohort 1 (all negatively correlated, P

< 0.05, Kendall’s rank correlation, Additional file 7:
Table S5b). We successfully validated three (18%) of
these circRNAs in RP cohort 3 (circSLC45A4, circFAT3,
and circSEMA3C; P < 0.05, Table 3, Additional file 2:
Fig. S5).
In RP cohort 1, seven out of 31 candidate circRNAs

were significantly deregulated between patients with or
without BCR (all downregulated in patients with BCR, P
< 0.05, Wilcoxon rank-sum test, Additional file 7: Table
S5c). We successfully validated one of these circRNAs
(circMKLN1) in RP cohort 3 (P = 0.04, Wilcoxon rank-
sum test, Table 3, Additional file 2: Fig. S5).
In summary, we validated nine of the 31 prognostic

circRNA candidates associated with key clinicopatholog-
ical parameters (pT stage, GG, and BCR status) of PC
aggressiveness identified in RP cohort 1 in the independ-
ent RP cohort 3 (Table 3).

Prognostic performance of individual circRNA candidates
Using circRNA expression as a continuous variable in
univariate Cox regression analysis of time to BCR, 11 of
the 39 circRNA candidates were significant in RP cohort
1 (uncorrected P < 0.05, Additional file 8: Table S6). Of
these 11, three circRNAs (circITGA7, circMKLN1, and
circTULP4) were independently validated in RP cohort 3
(univariate cox regression; P < 0.05, HR 0.64 to 0.79,
Additional file 8: Table S6). When analyzed as continu-
ous variables, two of the three circRNAs (circMKLN1
and circTULP4) remained significant predictors of BCR-
free survival after adjustment for the clinical nomogram
CAPRA-S, but only in RP cohort 3 (P < 0.05, Additional
file 8: Table S6).
However, when applied clinically, biomarkers are often

preferred as dichotomous variables for easy interpret-
ation of test results. Using RP cohort 1 for training, we
divided patients into high and low circRNA expression
groups based on ROC analysis of BCR status for each of
the 39 circRNA candidates. We identified 24 circRNAs
significant in both Kaplan-Meier and univariate analysis
in RP cohort 1 (uncorrected P < 0.05, Additional file 8:
Table S6), of which we independently validated
circKDM1A and circITGA7 in RP cohort 3 using the
cut-off fraction trained in RP cohort 1.
For both of these circRNAs, low expression was sig-

nificantly associated with BCR (Fig. 4a,b, Additional file
2: Fig. S6, Additional file 8: Table S6). Thus, in univari-
ate analyses, circITGA7 was a significant predictor of
BCR in two independent RP cohorts, both as a continu-
ous and a dichotomous variable.
After adjustment for the CAPRA-S nomograms in

multivariate analysis, only circITGA7 remained signifi-
cant and only in RP cohort 3 (P = 0.03, HR 1.64, 95%
CL 1.04–2.58, Additional file 8: Table S6). Notably, low
circITGA7 (but not circKDM1A) expression was also
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Fig. 3 (See legend on next page.)
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significantly associated with progression to MPC in both
Kaplan-Meier and univariate cox regression analysis in
RP cohort 3 (P = 0.005, HR 6.8, 95% CI 1.8–25.6, univar-
iate Cox regression, Fig. 4c), where long patient follow-
up allowed for investigation of this additional endpoint
(> 10 years). Due to low event numbers (n = 11), multi-
variate analysis of metastasis-free survival was not
feasible.

Development of a prognostic 5-circRNA signature to
independently predict postoperative BCR
Next, we tested if a multi-marker signature could im-
prove prognostic accuracy. Therefore, the five circRNAs
(as dichotomous variables) with the strongest individual
association to BCR in univariate Cox regression analysis
in RP cohort 1 (based on P value and HR P < 0.0002
and HR > 2.6, Additional file 8: Table S6), were com-
bined in a 5-circRNA prognostic signature (SumlogCPM(-
circKMD1A, circTULP4, circZNF532, circSUMF1,
circMKLN1)). In RP cohort 1, a low 5-circRNA

signature score was significantly associated with BCR in
both Kaplan-Meier and univariate Cox regression ana-
lysis (dichotomous, HR = 3.3, P < 0.0001, Fig. 4d, Table
4). The 5-circRNA signature remained significant in
multivariate Cox regression analysis after adjusting for
the CAPRA-S nomogram and increased the predictive
accuracy (C-index) from 0.71 to 0.75 (Table 4).
Using the same cut-off fraction as trained in RP cohort

1, the 5-circRNA signature was successfully validated in
RP cohort 3 as a significant predictor of BCR in Kaplan-
Meier, uni- and multivariate analysis (P < 0.05, Fig. 4e,
Table 4). In multivariate analysis, the 5-circRNA signa-
ture increased the C-index from 0.66 to 0.68 when com-
bined with the CAPRA-S nomogram. The 5-circRNA
signature was not significantly associated with progres-
sion to MPC in univariate analysis in RP cohort 3. How-
ever, the 5-circRNA signature score was significantly
lower in MPC vs. LPC as well as in LPC vs. AN samples
in both cohorts 1 and 2 (P < 0.05, Wilcoxon rank-sum
test, Fig. 4f,g).

(See figure on previous page.)
Fig. 3 Individual circRNAs with diagnostic potential in prostate cancer. Boxplot (left) of individual circRNA expression across AN and cancer (LPC
and MPC) patient tissue samples (a, c, e, g, i: cohort 1; b, d, f, h, j: cohort 2). P values represent Wilcoxon rank-sum test. Boxes represent the
25th and 75th percentiles and median. Outlier cases, defined as more than 1.5 times the IQR from the median are marked as individual dots
outside the whiskers. ROC curve analysis (right) for distinguishing PC from AN tissue specimens. Specificity and sensitivity at optimal cut-off
are shown

Table 2 Successfully validated dysregulated circRNAs in prostate cancer

Cohort 1 Cohort 2

Upregulated in PC vs. AN Adj. P value FC AUC Adj. P value FC AUC

circABCC4 0.0004 1.62 0.71 < 0.0001 2.31 0.78

circZNF577 0.01 1.33 0.64 0.04 1.56 0.64

Downregulated in PCvs. AN Adj.P value FC AUC Adj.P value FC AUC

circFAT3 < 0.0001 − 3.14 0.82 < 0.0001 − 3.79 0.86

circITGA7 < 0.0001 − 2.31 0.75 < 0.0001 − 2.96 0.81

circATRNL1 < 0.0001 − 2.25 0.78 < 0.0001 − 5.54 0.85

circSLC45A4 < 0.0001 − 2.17 0.82 < 0.0001 − 1.96 0.85

circRNASEH2B < 0.0001 − 2.08 0.81 < 0.0001 − 2.00 0.81

circSEMA3C < 0.0001 − 2.07 0.80 < 0.0001 − 2.25 0.82

circSLC8A1 < 0.0001 − 2.04 0.76 < 0.0001 − 2.12 0.87

circARHGAP10 < 0.0001 − 2.01 0.79 < 0.0001 − 1.92 0.83

Downregulated in MPCvs. LPC P value FC AUC P value FC AUC

circMKLN1 0.0004 − 2.03 0.77 0.028 − 1.36 0.64

circN4BP2L2 0.03 − 1.77 0.67 < 0.0001 − 1.53 0.76

circZNF532 0.01 − 1.76 0.69 0.0002 − 1.78 0.74

circCDYL2 0.04 − 1.60 0.66 < 0.0001 − 2.19 0.76

circARHGAP10 0.001 − 2.13 0.76 0.001 − 1.74 0.71

Results for the top dysregulated candidates in PC vs. AN and in MPC vs. LPC, respectively. For upregulated circRNAs in PC, all candidates significant in cohort 1 are
shown. For downregulated circRNAs in PC, candidates with fold change > − 2 in cohort 1 are shown. For dysregulated circRNAs in LPC vs. MPC, candidates
significant (uncorrected P < 0.05) in both cohorts 1 and 2 are shown (all downregulated)
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Taken together, these results suggest that combining
the five circRNAs with the strongest individual prognos-
tic potential into a simple dichotomous signature can
improve robustness compared to a single circRNA. The
5-circRNA prognostic signature may refine the predic-
tion of BCR after surgery beyond routine clinicopatho-
logical variables (Table 4).

Detectability of circRNA candidates in EV-enriched plasma
samples from prostate cancer patients and controls
As proof-of-principle, we tested whether the 39 top cir-
cRNA biomarker candidates were detectable in liquid bi-
opsies. We analyzed EV-enriched plasma samples from
27 cancer-free controls, 21 LPC patients, and 6 MPC pa-
tients (cohort 4, n = 54; Table 1, Fig. 1d) using the cus-
tom NanoString assays. Of the 39 circRNA candidates,
23 (59%) were detectable in EV-enriched plasma sam-
ples. The 16 circRNAs not detected in EV-enriched
plasma samples tended to be more lowly expressed in
tumor and AN prostate tissue samples (cohorts 1 and 2,
Additional file 2: Fig. S7a-d).
For the 23 circRNAs detected in EV-enriched plasma,

we identified a significant higher overall level of cir-
cRNAs from control to MPC samples (P = 0.03, Fig. 4h).
Five circRNAs (circSMARCA5, circHIPK3, circACVR2A,
circN4BP2L2, and circMAN1A2) were particularly abun-
dant in EV-enriched plasma (detected in > 89% of all
samples; Additional file 9: Table S7). Three of these (cir-
cSMARCA5, circHIPK3, and circMAN1A2) were also
among the top five most highly expressed circRNA can-
didates in patient tumor and AN tissue samples (cohort
1), whereas circACVR2A was among the most lowly
expressed (Additional file 3: Table S1), combined, indi-
cating both substantial correlations in circRNA levels
between tissue and EV-enriched plasma, respectively, as
well as some differences.
The level of circSMARCA5, circHIPK3, and cir-

cACVR2A in EV-enriched plasma samples gradually

increased from control to LPC to MPC patients (Fig. 4i–
k). Contrary, in patient tissue samples, expression levels
for these three circRNAs gradually decreased from AN
to LPC to MPC samples in cohorts 1 and 2 (Additional
file 2: Fig. S7e-j).
circACVR2A levels were significantly elevated in EV-

enriched plasma from MPC patients relative to controls
(P = 0.02, Fig. 4k). Interestingly, circACVR2A levels were
also moderately elevated in EV-enriched plasma samples
from LPC patients with high-grade tumors (GG 3–5) in
initial TRUSbx compared to LPC patients with low-
grade tumors (GG 1–2) in cohort 4 (P = 0.10, Fig. 4l),
highlighting the possible potential of circRNAs as min-
imally invasive biomarkers.

Discussion
This work represents one of the largest and most com-
prehensive circRNA profiling studies in PC to date. We
have described the transcriptomic landscape of cir-
cRNAs in AN and tumor tissue samples from patients
with localized and metastatic PC, and defined a novel set
of 271 abundantly expressed circRNA in benign/malig-
nant prostatic tissue. In addition, we profiled the bio-
marker potential of this set of abundant circRNAs and
selected a set of 39 top candidates for validation using
NanoString-based expression analysis in two independ-
ent PC patient cohorts (cohort 2, n = 111; RP cohort 3,
n = 191). Lastly, we demonstrated the detectability of a
subset of these circRNA candidates in EV-enriched
plasma samples from PC patients and cancer-free con-
trols, highlighting the promising future potential of cir-
cRNAs also as minimally invasive biomarkers.
We identified 15,933 unique circRNAs across a total

of 174 AN and PC tumor samples (cohort 1). Consistent
with previous findings in other tissue types, most cir-
cRNAs in PC were spliced from protein-coding genes,
with the majority (96%) giving rise to one to ten cir-
cRNA isoforms [1, 6].

Table 3 circRNA candidates validated as significantly associated with prostate cancer aggressiveness in both cohorts

pT2 vs. pT3-4 Correlation to GG BCR vs. recurrence-free

RP Cohort 1 RP Cohort 3 RP Cohort 1 RP Cohort 3 RP Cohort 1 RP Cohort 3

circRNA P value FC P value FC P value Tau P value Tau P value FC P value FC

circMKLN1 0.01 − 1.34 0.58 − 1.11 0.21 − 0.08 0.03 − 0.13 0.001 − 1.41 0.04 − 1.30

circZNF532 0.002 − 1.55 0.001 − 1.35 0.08 − 0.12 0.14 − 0.08 0.01 − 1.43 0.23 − 1.12

circMAN1A2 0.003 − 1.36 0.03 − 1.12 0.03 − 0.15 0.36 − 0.05 0.15 − 1.22 0.85 1.00

circSEMA3C 0.001 − 1.55 0.77 1.00 0.01 − 0.17 0.03 − 0.13 0.28 − 1.25 0.85 1.04

circLPAR3 0.01 − 1.46 0.01 − 1.40 0.03 − 0.15 0.31 − 0.06 0.37 − 1.24 0.11 − 1.12

circCDYL2 0.04 − 1.17 0.01 − 1.33 0.03 − 0.14 0.21 − 0.07 0.09 − 1.26 0.19 − 1.15

circELK4 0.02 − 1.31 0.01 − 1.33 0.06 − 0.13 0.03 − 0.12 0.11 − 1.19 0.22 − 1.18

circFAT3 0.01 − 1.60 0.06 − 1.47 0.01 − 0.17 0.01 − 0.15 0.22 − 1.20 0.05 − 1.25

circSLC45A4 0.01 − 1.49 0.61 − 1.01 0.003 − 0.20 0.02 − 0.13 0.42 − 1.09 0.10 − 1.17
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Investigating differentially expressed circRNAs in PC,
we found a significant global downregulation of abun-
dant circRNAs in PC compared to AN samples in cohort
1 (P < 0.0001, Fig. 2f). This is in agreement with previ-
ous findings in other cancer types, where circRNAs have
been described as generally downregulated in tumor
compared to AN/control tissue samples [10, 30–32].
In addition, we identified and validated circABCC4,

circFAT3, circATRNL1, and circITGA7 as possible
novel diagnostic candidate circRNA biomarkers specific
for PC (AUCs ranging from 0.71 [circABCC4, cohort 1]
to 0.86 [circFAT3, cohort 2]), and especially, circFAT3

showed promising diagnostic potential (Table 2, Fig. 3e–
f). Here, we identified a significant upregulation of cir-
cABCC4 in PC, confirming and expanding on results
from recent studies using 47 PC and 47 paired AN sam-
ples [33] as well as 25 PC and 25 paired AN samples
[10]. Consistent with this, it has been reported that cir-
cABCC4 promotes PC cell line proliferation, cell-cycle
progression, migration, and invasion, possibly by regulat-
ing FOXP4 expression through sponging of miR-1182
[33]. None of the other three circRNAs (circFAT3, cir-
cATRNL1, and circITGA7) have been functionally
linked to PC or described in expression studies in PC

Fig. 4 circRNA candidates hold strong prognostic potential and are detectable in EV-enriched plasma samples. a–e Kaplan-Meier analysis of
biochemical recurrence (BCR)-free survival (a,b,d,e) or progression to MPC (c) in RP cohort 1 (a,d) and RP cohort 3 (b,c,e). Patients in RP cohorts
1 and 3 were dichotomized based on cut-off trained in RP cohort 1 from circITGA7 expression (a–c) or the 5-circRNA signature (d, e). For each
Kaplan-Meier plot, p values for two-sided log-rank tests and the number of patients at risk are given. f, g Boxplot of 5-circRNA signature score in
cohort 1 (f) and cohort 2 (g). h–k Boxplot of overall (h) or individual (i–k) circRNA levels in EV-enriched plasma samples across sample types
(cohort 4, n = 54). l circACVR2A expression across GG in diagnostic biopsies from LPC patients. Boxes represent the 25th and 75th percentiles and
median. Outlier cases, defined as more than 1.5 times the IQR from the median are marked as individual dots outside the whiskers
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patient samples. However, both circITGA7 and cir-
cATRNL1 have been described as downregulated in
other cancers, including colorectal cancer (CRC) (cir-
cITGA7, [34, 35]) and ovarian cancer (circATRNL1,
[36]), similar to our findings in PC. Moreover, cir-
cITGA7 and circATRNL1 have been reported to be in-
volved in cell proliferation, invasion, and migration in
CRC and ovarian cancer [34, 36], supporting a potential
functional role of these circRNA candidates in cancer
development/progression. circFAT3 has not previously
been described in relation to cancer. However, the FAT
family genes, including FAT3, has been described to be
involved in tumor suppression [37]. Further studies
should investigate the function of these circRNAs in re-
lation to PC biology.
Investigating prognostic biomarker potential, we found

low circITGA7 expression to be significantly associated
with BCR in Kaplan-Meier and univariate Cox regres-
sion analysis in both RP cohorts 1 and 3 (Fig. 4a,b, Add-
itional file 8: Table S6), as well as with shorter time to
MPC progression in RP cohort 3 (Fig. 4c, Additional file
8: Table S6). These findings support possible tumor-
suppressive properties of circITGA7 in PC and are fur-
ther supported by results in CRC, where low circITGA7
expression has been reported to be associated with pro-
gression in CRC patients [34]. Nonetheless, we were not
able to validate any single circRNA candidates in multi-
variate analysis adjusting for established clinicopatho-
logic variables, suggesting that the molecular
heterogeneity of PC requires multiple circRNAs to hold
sufficient robustness.
Accordingly, we developed and validated a novel 5-

circRNA prognostic signature for PC (circKMD1A, cir-
cTULP4, circZNF532, circSUMF1, and circMKLN1). To

the best of our knowledge, this is the first report of a
prognostic circRNA signature for PC with significant in-
dependent prognostic value in multiple distinct PC pa-
tient cohorts. A low 5-circRNA signature score
significantly predicted time to BCR in multivariate ana-
lysis including established clinicopathologic variables in
both RP cohorts 1 and 3 (Table 4), indicating that this
novel 5-circRNA signature holds independent prognostic
value for PC. Accordingly, these results suggest that the
detection of circRNAs in tissue specimens from LPC pa-
tients could potentially be utilized in the future for guid-
ing decisions regarding adjuvant treatment after RP as a
predictor of risk of BCR. The 5-circRNA signature could
potentially aid the identification of patients who would
benefit from intensified treatment, e.g., radiotherapy
and/or androgen deprivation therapy (ADT), following
RP to reduce the risk of BCR. Further validation is
warranted.
None of the circRNAs in our novel 5-circRNA prog-

nostic signature have been investigated in relation to
cancer before, highlighting an unused potential of the
circRNA output from the human transcriptome. The
host genes of the five circRNAs are functionally diverse:
KDM1A is a histone demethylase and has been demon-
strated to mediate transcriptional activation of the an-
drogen receptor [38], which is associated with PC
initiation and progression to castration-resistant prostate
cancer [39]. KDM1A inhibition has also been reported
to suppress PC tumor growth in male mice [40]. The
oxidase SULF1 has been shown to modulate growth fac-
tor and cytokine signaling and to hold tumor suppressor
activity in breast, pancreas, kidney, and hepatocellular
cancer cell lines [41]. Moreover, it has been reported
that SULF1is downregulated in PC, where it has been

Table 4 Uni- and multivariate Cox regression analysis of BCR using 5-circRNA prognostic signature

Uni- and multivariate Cox regression analyses of BCR in RP cohort 1 (n = 125, 42 events) and RP cohort 3 (n = 191, 83 events). CI confidence interval, C-index
Harrell’s concordance index
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suggested to inhibit growth of PC bone metastases [42].
The role of TULP4, MKLN1, and ZNF532 in cancer is
largely unknown.
Lastly, we were able to provide proof-of-principle that

a subset of our circRNA candidates can be detected also
in minimally invasive EV-enriched plasma samples from
PC patients. Interestingly, we found that the overall level
of circRNAs in EV-enriched plasma was significantly
higher in samples from MPC patients compared to sam-
ples from cancer-free controls (P = 0.03, Fig. 4h), in con-
trast to the global downregulation observed in PC
compared to AN tissue samples (P < 0.0001, Fig. 2f).
While circRNAs have been comprehensive profiled in
both serum [12] and extracellular vesicles from cancer
cell lines (liver, colon, lung, stomach, breast, and cervical
cancers) [13], the former studies were limited by using
very few patient serum samples (n = 2) or cell lines.
However, few other studies have previously detected cir-
cRNAs in plasma/serum samples from PC patients [43–
48], the majority of which focused on a single or two se-
lected circRNAs, which is most likely the reason for the
lack of overlap between the previously reported cir-
cRNAs detected in serum/plasma and the 39 circRNA
candidates in this study.
However, similar to our findings, four of the previous

studies reported an elevation of the respective circRNA
investigated between PC patients and controls [44–46,
48]. Further, we found that circACVR2A levels were ele-
vated in EV-enriched plasma samples from LPC patients
with high vs. low GG tumors (P = 0.10, Fig. 4l), similar
to a previous report of elevated circAR3 in plasma sam-
ples from PC patients with high GG tumors [45]. Com-
bined, these results suggest a possible association
between circRNA levels in EV-enriched plasma and
tumor burden, supporting the potential of circRNAs as
minimally invasive biomarkers in PC. However, further
studies, including larger cohorts, are needed to fully as-
sess the clinical utility.
The PC patient cohorts 1–3 had some different char-

acteristics. Clinical follow-up for cohort 2 was short and
incomplete (median 20months), thereby preventing
evaluation of prognostic biomarker potential. Clinical
follow-up time for RP cohort 1 was 66months, whereas
it was 125 months in RP cohort 3, thus allowing for ana-
lysis of progression to MPC as an additional endpoint
besides BCR in RP cohort 3.
Future studies should also evaluate the prognostic po-

tential of the 5-circRNA signature in diagnostic biopsies
to assess if the 5-circRNA signature can improve risk
stratification and initial treatment decisions at time of
diagnosis.
Furthermore, circRNA annotation can be biased based

on the algorithm used, and it has been reported that
multiple algorithms may be used to ensure reliable

predictions from RNA-seq data [49]. Still, we confirmed
the presence of our 39 top candidate circRNAs, identi-
fied by the CIRI2 pipeline in RNA-seq data in cohort 1,
using an independent method (NanoString) as well as
two independent patient cohorts (cohorts 2 and 3), sup-
porting the validity of our findings.
In conclusion, our results highlight a profound and ro-

bust dysregulation of circRNAs between PC and AN
samples, and importantly, illustrate a strong prognostic
biomarker potential for our 5-circRNA signature across
two independent RP cohorts. If successfully validated in
future studies, the 5-circRNA signature could aid in
selecting patients with a high probability of BCR post-
surgery for intensified treatment following RP. Add-
itional investigations into the use of circRNAs as minim-
ally invasive biomarkers in PC are encouraged by our
promising findings of specific circRNAs being signifi-
cantly elevated in EV-enriched plasma from MPC pa-
tients compared to cancer-free controls.

Conclusions
Using tissue and plasma samples from four distinct pa-
tient cohorts, we have provided the largest and most
comprehensive circRNA profiling study of PC to date.
We found that circRNAs hold great biomarker potential
in PC, with several circRNAs being highly cancer specific
and/or associated with disease progression. Further stud-
ies, including larger cohorts, are required to fully assess
the clinical utility of circRNAs in future PC
management.
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